

MATHEMATICS STANDARD LEVEL PAPER 1

Wednesday 3 May 2006 (afternoon)

1 hour 30 minutes

2206-7301

(Candi	idate	sessi	on n	umbe	r	
0							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all the questions in the spaces provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

- 1. (a) Let $\begin{pmatrix} b & 3 \\ 7 & 8 \end{pmatrix} + \begin{pmatrix} 9 & 5 \\ -2 & 7 \end{pmatrix} = \begin{pmatrix} 4 & 8 \\ a & 15 \end{pmatrix}$.
 - (i) Write down the value of a.
 - (ii) Find the value of b.
 - (b) Let $3\begin{pmatrix} -4 & 8 \\ 2 & 1 \end{pmatrix} 5\begin{pmatrix} 2 & 0 \\ q & -4 \end{pmatrix} = \begin{pmatrix} -22 & 24 \\ -9 & 23 \end{pmatrix}$.

Find the value of q.

			 					 						 				•	
 	 	 	 	 	 			 		 	 	 		 		 	 	 •	

2.	Let A and B be independent events such that $P(A) = 0.3$ and $P(B) = 0.8$.													
	(a)	Find $P(A \cap B)$.												
	(b)	Find $P(A \cup B)$.												
	(c)	Are A and B mutually exclusive? Justify your answer.												

3. The following diagram shows part of the graph of f(x).

Consider the five graphs in the diagrams labelled A, B, C, D, E below.

- (a) Which diagram is the graph of f(x+2)?
- (b) Which diagram is the graph of -f(x)?
- (c) Which diagram is the graph of f(-x)?

4.		heights of a group of students are normally distributed with a mean of 160 cm and a dard deviation of 20 cm.
	(a)	A student is chosen at random. Find the probability that the student's height is greater than 180 cm.
	(b)	In this group of students, 11.9 % have heights less than d cm. Find the value of d .

5.	(a)	Let $f(x) = e^{5x}$. Write down $f'(x)$.
	(b)	Let $g(x) = \sin 2x$. Write down $g'(x)$.
	(c)	Let $h(x) = e^{5x} \sin 2x$. Find $h'(x)$.

- **6.** Let $f(x) = a(x-4)^2 + 8$.
 - (a) Write down the coordinates of the vertex of the curve of f.
 - (b) Given that f(7) = -10, find the value of a.
 - (c) Hence find the y-intercept of the curve of f.

.....

7.	Let	f(x)	$= x^3 - 4$	and	g(x)	=2x
. •		.) (**)	•••	****	$\circ \cdots$,

- Find $(g \circ f)(-2)$. (a)

(b)	Fine	d f	(x)												
			• • • •	 	 	 	 	 	 	 	• •	 	 	 	
			• • • •	 	 	 	 • •	 	 	 • •		 	 	 • •	
				 	 	 	 • • •	 • • •	 • • •	 • •	• •	 	 • •	 • •	

Consider the four numbers a, b, c, d with $a \le b \le c \le d$, where $a, b, c, d \in \mathbb{Z}$. The mean of the four numbers is 4. The mode is 3. The median is 3. The range is 6.	

8.

$$-10-$$

- 9. Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 18 \\ 23 \\ 13 \end{pmatrix}$ and $\mathbf{X} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$.
 - (a) Write down the inverse matrix A^{-1} .
 - (b) Consider the equation AX = B.
 - (i) Express X in terms of A^{-1} and B.
 - (ii) Hence, solve for X.

()	,		

10. (a) Let $\log_c 3 = p$ and $\log_c 5 = q$. Find an expression in terms of p and q for

(i) $\log_c 15$;

(ii) $\log_c 25$.

(b) Find the value of d if $\log_d 6 = \frac{1}{2}$.

The following diagram shows part of the curve of a function f. The points A, B, C, D and 11. E lie on the curve, where B is a minimum point and D is a maximum point.

Complete the following table, noting whether f'(x) is positive, negative or zero at the (a) given points.

	A	В	Е
f'(x)			

Complete the following table, noting whether f''(x) is positive, negative or zero at the (b) given points.

	A	С	Е
f''(x)			

The velocity, $v \text{ m s}^{-1}$, of a moving object at time t seconds is given by $v = 4t^3 - 2t$. When $t = 2$, the displacement, s , of the object is 8 metres.					
Find an expression for s in terms of t .					

12.

13. The following diagram shows a circle with radius r and centre O. The points A, B and C are on the circle and $\hat{AOC} = \theta$.

The area of sector OABC is $\frac{4}{3}\pi$ and the length of arc ABC is $\frac{2}{3}\pi$.

Find the value of r and of θ .			

Let $f(x) = a \sin b(x-c)$. Part of the graph of f is given below. 14.

Given that a , b and c are positive, find the value of a , of b and of c .				

15. Let $f(x) = 3\sin 2x$, for $1 \le x \le 4$ and $g(x) = -5x^2 + 27x - 35$ for $1 \le x \le 4$. The graph of f is shown below.

- (a) On the same diagram, sketch the graph of g.
- (b) One solution of f(x) = g(x) is 1.89. Write down the other solution.
- (c) Let h(x) = g(x) f(x). Given that h(x) > 0 for p < x < q, write down the value of p and of q.

.....

.....

