M15/4/PHYSI/SP2/ENG/TZ1/XX/M

Markscheme

May 2015

Physics

Standard level

Paper 2

10 pages

It is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

Subject Details: Physics SL Paper 2 Markscheme

Mark Allocation

Candidates are required to answer **ALL** questions in Section A **[25 marks]** and **ONE** question in Section B **[25 marks]**. Maximum total=**[50 marks]**.

- **1.** A markscheme often has more marking points than the total allows. This is intentional.
- 2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- 5. Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.

M15/4/PHYSI/SP2/ENG/TZ1/XX/M

Section A

www.xtrapapers.com

				- 5 -	M15/4/PHYSI/SP2/ENG/TZ1/>	XX/M
2.	(a)	arro force Do r	w vertically downwards labelle e/Fg/Fgravitational/force of gravity; not allow "gravity".	ed weight/W/mg/gr ; <i>(judge by eye)</i>	avitational	[1]
	(b)	(<i>N</i> =	=) $mg\cos\theta$ / correct substitutio	on;		
		(=7	$3 \times 9.81 \times \cos 12^{\circ} =$) 700 N;			[2]
	(c)	tens tens 214	ion = frictional force + compon- ion = $65 + mgsin\theta$; / 210 N;	ent of weight paral	lel to slope /	[2]
	(d)	(Nev velo	wton's first law states that a bo city/steady speed/uniform mo	ody remains at res otion unless externa	t or moves with) constant al/net/resultant/unbalanced force	
		clea	r link that in this case there is	constant/steady ve	elocity so no resultant force;	[2]
3.	(a)	ener incre	rgy supplied / bonds broken/h eases potential energy;	eat absorbed;		[0]
		no c	change in kinetic energy (so no	o change in tempe	rature);	[3]
	(b)	(i)	energy required to raise terr	nperature of object	by 1 K / 1°C;	[1]
			or			
			mass × specific heat capac	city;		
		(ii)	$J K^{-1} / J^{\circ}C^{-1};$			[1]
		(iii)	use of $M \times 4.2 \times 10^3 \times \Delta\theta$; $ml = 75 \times 10^{-3} \times 3.3 \times 10^5 / 2$ recognition that melted ice w temperature; 3.4° C:	24750 J; warms and water c	ools to common final	[4]

Section B

4. Energy sources

(a)	needs to be windy/high average wind speeds; space/land/room for wind turbines; ability to import oil/nuclear fuel; ability to dispose of nuclear waste:					
	comr	nent relating to need for geological stability;	[3 max]			
(b)	(i)	$\pi 4.7^2$ or 69.4 m ² ; power = 15300 to 15400 W; 470 to 490 GJ;	[3]			
	(ii)	wind must retain kinetic energy to escape or not all KE of wind can be converted to KE of blades; energy lost to thermal energy (due to friction) in generator/turbine/dynamo; turbine will suffer downtime when no wind/too much wind; <i>Allow any two relevant factors.</i>	[2 max]			
(c)	(i)	indication that energy supplied to islanders is output and chemical energy input / $\frac{8}{25}$ used; 32 % / 0.32;	[2]			
	(ii)	<u>energy/it</u> is wasted due to inefficient burning of oil / <u>thermal/heat energy</u> loss to surroundings/environment / <u>electrical energy</u> is used to run the power station's systems / <u>energy/it</u> is wasted due to frictional losses in the turbine/generator;	[1]			
	(iii)	heating of wires by electric current / inefficient transformers;	[1]			
(d)	(i)	addition of greenhouse gases/named greenhouse gas to the atmosphere; increasing the temperature of the Earth's surface/global warming;	[2]			
	(ii)	radiation emitted by Earth in (long wavelength) infrared region; frequency corresponds to resonant frequency of greenhouse gases (either vibration or difference in energy levels); radiation absorbed by greenhouse gases is (partly) re-radiated back to Earth;	[3]			
(e)	perce natur perce	entage of U-235 in naturally occurring ores is too low to support fission or ally occurring U-238 does not undergo fission; entage of U-235 (which can usefully capture thermal neutrons) is increased;	[2]			

[1]

[1]

M15/4/PHYSI/SP2/ENG/TZ1/XX/M

(f) $\begin{pmatrix} 1 & n + \frac{235}{92}U \rightarrow \frac{92}{36}Kr + \frac{141}{56}Ba + 3 & n \end{pmatrix}$ 235; 36; 3; The number of neutrons must be consistent with chosen isotope of uranium. [3]

 (g) control rods absorb neutrons; moderators slow down neutrons; both affect the rate of reaction; both rely on the neutrons colliding with their atoms/nuclei; [3 max] *Must see reference to collision/interaction for fourth marking point.*

5. Part 1 Thermistor circuit

- (a) (i) the work done per unit charge in moving a quantity of charge completely around a circuit / the power delivered per unit current / work done per unit charge made available by a source;
 - (ii) place voltmeter across battery;

(b) (i)
$$V_x = 7.5 \text{ V};$$

 $I\left(=\frac{4.5}{100 \times 10^3}\right) = 4.5 \times 10^{-5} \text{ A or } \frac{V_x}{V_R} = \frac{R_x}{R_R};$
 $R_x\left(=\frac{7.5}{4.5 \times 10^{-5}}\right) = 1.67 \times 10^5 \Omega \text{ or } R_x\left(=\frac{7.5}{4.5} \times 100 \times 10^3\right) = 1.67 \times 10^5 \Omega;$
 $T = -37 \text{ or } -38 ^{\circ}\text{C};$
[4]

- (ii) -50 to (up to) -30 °C / at low temperatures;
- (iii) as the temperature decreases R_x increases; same <u>current</u> through R and X so the ratio increases **or** V_x increases <u>and</u> V_R decreases so the ratio increases; [2]

Part 2 Vibrations and waves

(C)	(periodic) motion in which acceleration/restoring force is proportional to the displacement from a fixed point; directed towards the fixed point / in the opposite direction to the displacement;		
(d)	(i)	$\omega = (2\pi f = 2\pi \times 1250)7854 \text{ rad s}^{-1};$ $a_0 = (-\omega^2 x_0 = -7854^2 \times 0.85 \times 10^{-3} =) (-)5.2 \times 10^4 \text{ m s}^{-2};$	[2]
	(ii)	correct substitution into $E_{\tau} = \frac{1}{2}m\omega^2 x_0^2$ irrespective of powers of 10; 0.14 to 0.15 J;	[2]
(e)	(i)	0.264 m;	[1]
	(ii)	longitudinal; progressive / propagate (through the air) / travels with constant speed (through the air); series of compressions and rarefactions / high and low (air) pressure;	[3]
(f)	(i)	S leads L / idea that the phase of L is the phase of S minus an angle; $\frac{1}{8}$ period / 1 × 10 ⁻⁴ s / 0.1 ms; $\frac{\pi}{4}$ / 0.79 rad / 45 degrees;	[3]
	(ii)	agreement at all zero displacements; maxima and minimum at correct times; constant amplitude of 1.60 mm;	[3]
	2.00 - 1.50 -		

[3]

[1]

6. Part 1 Kinematics and gravitation

or

- upwards (or away from the Moon) is taken as positive / downwards (or towards the Moon) is taken as negative / towards the Earth is positive;
 [1]
- (b) (i) tangent drawn to curve at 0.80 s; correct calculation of gradient of tangent drawn; -1.3 ±0.1 m s⁻¹ or 1.3 ±0.1 m s⁻¹ downwards;

correct coordinates used from the graph; substitution into a correct equation; $-1.3 \pm 0.1 \text{ m s}^{-1}$ or $1.3 \pm 0.1 \text{ m s}^{-1}$ downwards;

(ii) any correct method used; correct reading from graph; 1.6 to 1.7 m s⁻²; [3]

- (c) values for masses, distance and correct G substituted into Newton's law; see subtraction (*ie r* value = $3.84 \times 10^8 - 1.74 \times 10^6 = 3.82 \times 10^8$ m); F = 5.4 to 5.5×10^{-4} N / $a = 2.7 \times 10^{-3}$ m s⁻²; comment that it's insignificant compared with ($0.2 \times 1.63 =$) 0.32 to 0.33 N / 1.63 m s⁻²; [4]
- (d) 7.7 m s⁻¹;
- (e) curve permanently below Moon curve; smooth parabola; *(judge by eye)*line passing through s = -3.00 m, t = 0.78 s or s = -3.50 m, t = 0.84 s (±1 mm); [3]

[3]

Part 2 Radioactivity

- (f) Ca-40 has 20 protons and 20 neutrons, Ca-47 has 20 protons and 27 neutrons / Ca-47 has 7 additional neutrons; mention of strong/nuclear and coulomb/electrostatic/electromagnetic forces; excess neutrons/too high a neutron-to-proton ration leads to the coulomb/electrostatic' electromagnetic force being greater than the strong/nuclear force (so the nucleus is unstable); *Award* [1 max] for an answer stating that Ca-47 has more neutrons so is bigger and less stable.
- six half-lives occurred; (g) 1.6 % remaining; 98.4 / 98 % decayed; [3] (h) (electron) anti-neutrino / \overline{v} ; [1] (i) (ii) 46.95455 u - (46.95241 u + 0.00055 u) = 0.00159 u; 1.48 MeV; [2] does not account for energy of (anti) neutrino/gamma ray photons; (iii) [1]