

Química Nivel superior Prueba 1

Viernes 13 de noviembre 2015 (tarde)

1 hora

Instrucciones para los alumnos

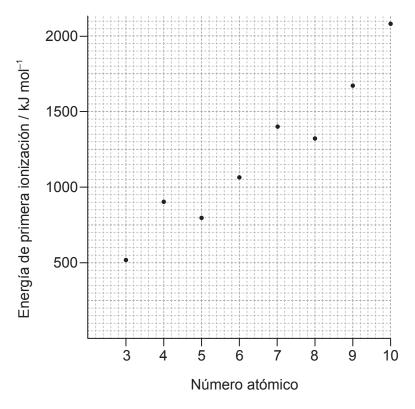
- No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [40 puntos].

Hand Hand	~	8						lab	ıla per	labla periodica	æ		ო	4	2	9	_	0
4 be 9/01 Amasa arkmica relativa Aminormatical relativa	1 H 1,01			Núm E	iero atómi	8												2 He 4,00
12 22 23 24 41 51 74 51 75<	3 Li 3,94	4 Be 9,01		EI Masa at	emento tómica rela	ativa							5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
20 21 22 23 24 25 26 27 28 29 30 31 32 34 35 Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Sp 74,92 74,92 78	11 Na 2,99	12 Mg 24,31											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 CI 35,45	18 Ar 39,95
Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn 5D 51 52 53 Sr, 62 X Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sp Te I 87,62 88,91 91,22 92,91 95,94 98,91 101,07 102,91 106,42 107,87 112,40 114,82 118,69 121,75 127,60 126,90 56 57 † 72 73 74 75 76 77 78 79 80 81 89 84 85 137,34 138,91 178,49 180,95 186,21 190,21 192,22 195,09 196,97 200,59 204,37 207,19 208,98 210) 210) 88 89 ‡ Ac Ra Ac Ac 190,27 195,09 196,97 200,59	19 K 9,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,90	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,71	29 Cu 63,55	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 As 74,92	34 Se 78,96	35 Br 79,90	36 Kr 83,80
56 57 † 72 73 74 75 76 77 78 79 80 81 82 83 84 85 Ba La Hf Ta W Re Os Ir Pt Au Hg Ti Pb Bi Po At 137,34 138,91 178,49 180,95 186,21 195,09 196,97 200,59 204,37 207,19 208,98 (210) (210) Ra Ac	37 Rb 5,47	38 Sr 87,62	39 ~ 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,94	43 Tc 98,91	44 Ru 101,07		46 Pd 106,42	47 Ag 107,87	48 Cd 112,40	49 In 114,82	50 Sn 118,69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
88 Ra (226)	55 Cs 32,91	56 Ba 137,34	57 † La 138,91	72 Hf 178,49	73 Ta 180,95	74 W 183,85	75 Re 186,21	76 0s 190,21	77 Ir 192,22	78 Pt 195,09	79 Au 196,97	80 Hg 200,59	81 TI 204,37	82 Pb 207,19	83 Bi 208,98		85 At (210)	86 Rn (222)
	87 Fr 223)	88 Ra (226)	89 ‡ Ac (227)															

Nd Pm Sm Eu Gd Tb Dy Ho 1 144,24 146,92 150,35 151,96 157,25 158,92 162,50 164,93 16 92 93 94 95 96 97 98 99 U Np Pu Am Cm Bk Cf Es 4 238,03 (237) (242) (247) (247) (251) (254) (354)	+	28	29	09	61	62	63		92	99	29	89	69	20	71
140,91 144,24 146,92 150,35 151,96 157,25 158,92 162,50 164,93 167,26 168,93 173,04 1 91 92 93 94 95 96 97 98 99 100 101 102 Pa U Np Pu Am Cm Bk Cf Es Fm Md No 231,04 238,03 (237) (242) (247) (247) (251) (254) (259) (259) (259)		ဝီ		Š	Pm	Sm	Вu		<u>م</u>	ò	우	ш	H	Υb	Ľ
91 92 93 94 95 96 97 98 99 100 101 102 Pa U Np Pu Am Cm Bk Cf Es Fm Md No 231,04 238,03 (237) (242) (243) (247) (247) (251) (251) (254) (255) (258) (259) (140,12		144,24	146,92	150,35	151,96	`	158,92	162,50	164,93	167,26	168,93	173,04	174,97
91 92 93 94 95 96 97 98 99 100 101 102															
Pa U Np Pu Am Cm Bk Cf Es Fm Md No 231,04 238,03 (237) (242) (243) (247) (247) (251) (254) (257) (258) (259) (++	06	91	92	93	94	92	96	26	86	66	100	101	102	103
231,04 238,03 (237) (242) (243) (247) (247) (251) (254) (255) (258) (259) (Ч	Ра	_	ď	Pu	Am	Cm	B	ర	Es	Fm	Md	°	בֿ
		232,04	231,04	238,03	(237)	(242)	(243)	(247)	(247)	(251)	(254)	(257)	(258)	(528)	(260)

- 1. ¿Qué compuesto tiene la misma fórmula molecular y empírica?
 - A. C_2H_5OH
 - B. CH₃COOH
 - $C. C_6H_6$
 - D. C₈H₁₈
- 2. La ecuación para la combustión **completa** del propeno, C₃H₆, se muestra a continuación.

$$2C_3H_6(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$$


¿Qué mezcla, cuando se enciende, conduce a una combustión **incompleta** y a la formación de CO (g)?

- A. 2 dm³ de propeno y 10 dm³ de oxígeno
- B. 0,5 dm³ de propeno y 2,3 dm³ de oxígeno
- C. 1 dm³ de propeno y 4 dm³ de oxígeno
- D. 3 dm³ de propeno y 14 dm³ de oxígeno
- 3. ¿Cuál es el rendimiento porcentual cuando se obtiene 1,1 g de etanal, CH₃CHO, a partir de 4,6 g de etanol, CH₃CH₂OH? M_r (CH₃CH₂OH) = 46; M_r (CH₃CHO) = 44

$$CH_3CH_2OH(l) + [O] \rightarrow CH_3CHO(l) + H_2O(l)$$

- A. $\frac{1,1\times46\times100}{44\times4,6}$
- B. $\frac{1,1\times100}{4,6}$
- C. $\frac{4,6 \times 44 \times 100}{4,6 \times 1,1}$
- $D. \qquad \frac{1,1\times46}{44\times4,6}$

- **4.** ¿Qué etapa de la operación del espectrómetro de masas sigue inmediatamente a continuación de la ionización?
 - A. Aceleración
 - B. Deflexión
 - C. Detección
 - D. Vaporización
- **5.** ¿Qué enunciado sobre las energías de primera ionización de los elementos consecutivos de la siguiente gráfica es correcto?

[Fuente: Valores de Nuffied Advance Science - Book of Data, Revised Edition (1984)]

- A. La gráfica disminuye entre el Be y el B porque hay un electrón en el tercer nivel energético.
- B. La gráfica aumenta del B al N porque el radio atómico aumenta.
- C. La gráfica aumenta del Li al Ne porque el número de electrones aumenta.
- D. La gráfica disminuye entre el Be y el B porque el electrón externo del B está en un subnivel p.

6.	¿Qu	é elemento tiene la mayor energía de primera ionización?
	A.	Al
	B.	Ar
	C.	Cl
	D.	Cs
7.	¿Qu	é elementos están en el mismo grupo de la tabla periódica?
	A.	Ca, Na, Rb, Sr
	B.	Al, Ar, Cl, S
	C.	Au, Hg, Pb, Pt
	D.	As, Bi, P, Sb
8.	Quخ	é propiedad de los metales de transición les permite comportarse como catalizadores?
	A.	Elevado punto de fusión
	B.	Número de oxidación variable
	C.	Elevada densidad
	D.	Desdoblamiento de los subniveles d
9.	Quخ	é enunciado describe mejor la estructura de red del cloruro de sodio sólido?
	A.	Cada ion sodio está rodeado por un ion cloruro.
	B.	Cada ion cloruro está rodeado por dos iones sodio.
	C.	Cada ion cloruro está rodeado por cuatro iones sodio.
	D.	Cada ion sodio está rodeado por seis iones cloruro.
10.	¿Qu	é compuesto es más probable que contenga enlace iónico?
	A.	ClO ₂
	B.	CsCl
	C.	SCl ₂
	D.	SiCl ₄

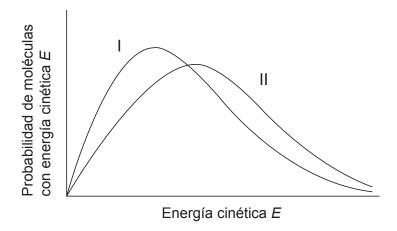
- 11. ¿Qué molécula es polar?
 - A. C_2H_6
 - B. CH₂Cl₂
 - C. CO₂
 - D. CCl₄
- **12.** ¿Cuál es la forma del ion hexacianoferrato(III), [Fe(CN)₆]³⁻?
 - A. Cuadrada plana
 - B. Hexagonal
 - C. Octaédrica
 - D. Bipirámide trigonal
- **13.** ¿Qué opción contiene dos o más especies con electrones π deslocalizados?
 - A. CH₃CH₃, H₂C=CH₂, H₂C=O
 - B. NaCl, C_6H_6 , $H_2C=O$
 - C. CO_3^{2-} , C_6H_6 , C_6H_{12}
 - D. O₂, CH₃COCH₃, CH₃COOCH₃
- 14. ¿Cuáles de los siguientes cambios son exotérmicos?
 - I. $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$
 - II. $2C_8H_{18}(g) + 17O_2(g) \rightarrow 16CO(g) + 18H_2O(g)$
 - III. $C_8H_{18}(g) \rightarrow C_8H_{18}(l)$
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- **15.** ¿Qué cambio representa la variación de entalpía estándar de formación?
 - A. La formación de 1 mol de un compuesto en su estado estándar a partir de sus átomos gaseosos
 - B. La formación de 1 mol de un compuesto en su estado estándar a partir de sus elementos
 - C. La formación de 1 mol de un compuesto en su estado estándar a partir de sus átomos gaseosos en sus estados estándar
 - D. La formación de 1 mol de un compuesto en su estado estándar a partir de sus elementos en sus estados estándar
- 16. ¿Qué ecuación representa la a inidad electrónica?

A.
$$C(g) + e^- \rightarrow C^-(g)$$

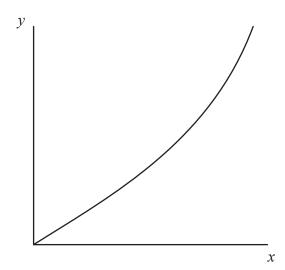
B.
$$Na^+ (aq) + e^- \rightarrow Na (s)$$

C.
$$\frac{1}{2} \operatorname{Cl}_2(g) + e^- \rightarrow \operatorname{Cl}^-(g)$$


D.
$$B(g) + e^{-} \rightarrow B^{+}(g) + 2e^{-}$$

17. ¿Qué combinación produce un compuesto iónico con la mayor magnitud de entalpía de red?

	Suma de los radios iónicos	Cargas iónicas
A.	pequeña	grandes
B.	grande	grandes
C.	grande	pequeñas
D.	pequeña	pequeñas


- **18.** ¿En qué condiciones una muestra de la misma masa de dióxido de carbono tiene el **menor** valor de entropía?
 - A. Sólido a elevada temperatura
 - B. Sólido a baja temperatura
 - C. Gas a elevada temperatura
 - D. Gas a baja temperatura

19. Las curvas I y II representan muestras del mismo gas a presión constante pero a diferentes temperaturas. Las áreas debajo de las curvas I y II son iguales. ¿Qué representa la curva II?

- A. La curva II es a la temperatura más baja y hay menos moléculas en la muestra.
- B. La curva II es a la temperatura más baja y hay el mismo número de moléculas en las muestras.
- C. La curva II es a la temperatura mayor y hay más moléculas en la muestra.
- D. La curva II es a la temperatura mayor y hay el mismo número de moléculas en las muestras.

20. La gráfica representa una reacción con cinética de segundo orden. ¿Cómo se deberían rotular los ejes?

	Eje-x	Eje-y
A.	concentración	tiempo
B.	tiempo	concentración
C.	velocidad	concentración
D.	concentración	velocidad

- **21.** ¿Qué factores afectan la constante de velocidad, k, de una reacción?
 - I. Catalizador
 - II. Concentración de los reactivos
 - III. Temperatura
 - A. Solo I y II
 - B. Solo I y III
 - C. Solo II y III
 - D. I, II y III

- 22. ¿Cuál describe mejor una reacción en estado de equilibrio?
 - A. Las velocidades de las reacciones directa e inversa son iguales a cero y las concentraciones de los productos y los reactivos son iguales.
 - B. La velocidad de la reacción directa iguala a la velocidad de la reacción inversa y las concentraciones de los productos y los reactivos son iguales.
 - C. Las velocidades de las reacciones directa e inversa son iguales a cero y las concentraciones de los productos y los reactivos son constantes.
 - D. La velocidad de la reacción directa iguala a la velocidad de la reacción inversa y las concentraciones de los productos y los reactivos son constantes.
- 23. Las concentraciones en el equilibrio de X, Y, Z y W son 1, 2, 4 y 2 mol dm⁻³ respectivamente.

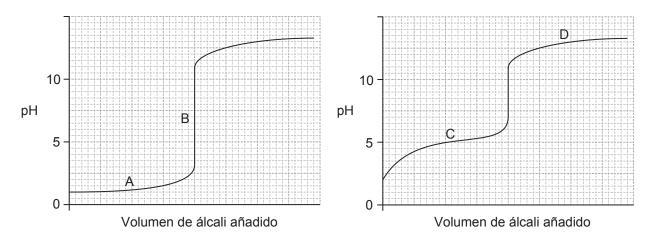
$$X(g) + 2Y(g) \rightleftharpoons Z(g) + W(g)$$

¿Cuál es el valor de la constante de equilibrio, K_c ?

- A. 0,25
- B. 0,5
- C. 2
- D. 4
- **24.** ¿Cuál de las siguientes moléculas puede actuar como ácido de Lewis, pero no como ácido de Brønsted–Lowry?
 - A. BF₃
 - B. PCl₃
 - C. NH₃
 - D. H₂O
- **25.** ¿Cuál es una solución 0,001 mol dm⁻³ de un ácido débil?

	Conductividad	рН
A.	baja	5
B.	elevada	7
C.	baja	10
D.	elevada	3

26. ¿Cuál es el orden creciente de fuerza ácida? Se dan los valores aproximados de K_a y p K_a a 298 K.


	K _a
CICH ₂ COOH	1×10 ⁻³
CH ₃ CH ₂ COOH	1×10 ⁻⁵

	p <i>K</i> _a
C ₆ H ₅ OH	10,0
C ₆ H ₅ NH ₃ ⁺	4,6

- A. $ClCH_2COOH < CH_3CH_2COOH < C_6H_5NH_3^+ < C_6H_5OH$
- B. $C_6H_5OH < C_6H_5NH_3^+ < CICH_2COOH < CH_3CH_2COOH$
- C. $C_6H_5OH < C_6H_5NH_3^+ < CH_3CH_2COOH < CICH_2COOH$
- D. $C_6H_5OH < CH_3CH_2COOH < C_6H_5NH_3^+ < CICH_2COOH$
- **27.** ¿Qué soluciones, mezcladas en iguales concentraciones y volúmenes, forman una solución tampón (*buffer*) ácida?
 - A. HCl(aq) + NaCl(aq)
 - B. $CH_3CO_2H(aq) + CH_3CO_2Na(aq)$
 - C. $CH_3CO_2H(aq) + NaOH(aq)$
 - D. $CH_3CO_2H(aq) + CH_3CH_2CO_2H(aq)$
- 28. ¿Qué sal forma la solución más ácida cuando se disuelve en agua?

	Sal	Radio iónico del catión / 10 ⁻¹² m
A.	CrCl ₃	63
B.	FeCl ₂	76
C.	MgCl ₂	65
D.	NaCl	98

29. ¿Cuál es la región tampón (buffer) en las curvas de titulación ácido-base de abajo?

30. ¿Qué elemento sufre reducción en la siguiente reacción?

$$(NH_4)_2Cr_2O_7(s) \rightarrow N_2(g) + 4H_2O(l) + Cr_2O_3(s)$$

- A. Cr
- B. H
- C. N
- D. O
- **31.** ¿Cuál describe mejor la reducción?
 - A. Aumento del número de oxidación y ganancia de electrones
 - B. Aumento del número de oxidación y pérdida de electrones
 - C. Disminución del número de oxidación y ganancia de electrones
 - D. Disminución del número de oxidación y pérdida de electrones

32. ¿Cuál es el valor de E^{Θ} , en V, para la siguiente reacción?

$$VO^{2+}(aq) + 2H^{+}(aq) + V^{2+}(aq) \rightarrow 2V^{3+}(aq) + H_{2}O\left(l\right)$$

	Potencial de electrodo estándar, <i>E</i> [⊖] / V
$V^{2+}(aq) + 2e^- \rightleftharpoons V(s)$	-1,18
$V^{3+}(aq) + e^- \rightleftharpoons V^{2+}(aq)$	-0,26
$VO^{2+}(aq) + 2H^{+}(aq) + e^{-} \rightleftharpoons V^{3+}(aq) + H_{2}O(l)$	+0,34
$VO_2^+(aq) + 2H^+(aq) + e^- \rightleftharpoons VO^{2+}(aq) + H_2O(l)$	+1,00

- A. -0,60
- B. +0,08
- C. +0,60
- D. +1,26
- **33.** ¿Qué producto se forma en el electrodo positivo (ánodo) cuando se electroliza H₂SO₄(aq) 0,001 mol dm⁻³?
 - A. Hidrógeno
 - B. Oxígeno
 - C. Azufre
 - D. Dióxido de azufre
- **34.** ¿Qué par de compuestos se puede diferenciar haciéndolos reaccionar con agua de bromo diluida en la oscuridad?
 - A. CH₃CH₂COOH y CH₃CH₂CHO
 - B. CH₃CH₂CHCHCH₃ y CH₃CH₂CH₂CH₂CH₃
 - C. CH₃CH₂CH(CH₃)₂ y CH₃CH₂CH₂CH₂CH₃
 - D. CH₃CH₂CH₂CHBrCH₃ y CH₃CH₂CHBrCH₂CH₃

				– 14 –	N15/4/CHEMI/HPM/SPA/T
35.	¿Qu	é com	puesto es más soluble en agu	ua?	
	A.	CH ₃	CH₂CHO		
	B.	CH ₃	CH ₂ CH ₂ CHO		
	C.	CH ₃	CH ₂ CO ₂ H		
	D.	CH ₃	CH ₂ CH ₂ CO ₂ H		
36.	¿Cu	áles s	on características de los suce	esivos miembros de una	serie homóloga?
		l. II. III.	Propiedades químicas simila La misma fórmula general Difieren en un –CH ₂ –	ares	
	A.	Solo	lyll		
	B.	Solo	l y III		
	C.	Solo	ıl y III		
	D.	I, II y	/ III		
37.	¿Qu	é fórn	nula representa al propanonitr	ilo?	
	A.	CH ₃	CH₂CN		

¿Qué haluro de alquilo reacciona más rápido con NaOH (aq) caliente?

B. CH₃CH₂CH₂CN

C. CH₃CH₂CH₂NH₂

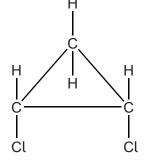
(CH₃)₃CCl

C. CH₃CH₂CH₂CH₂Cl

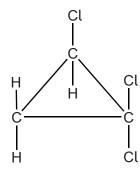
 $\mathsf{D.} \quad \mathsf{CH_3CH_2CH_2CH_2Br}$

B. (CH₃)₃CBr

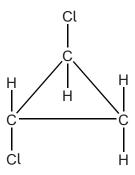
CH₃CH(NH₂)CH₃


D.

A.

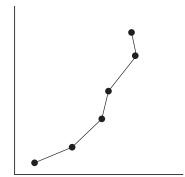

38.

39. ¿Cuál es el isómero geométrico del *cis*-1,2-diclorociclopropano?

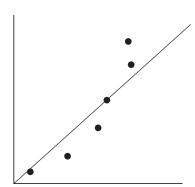

Α.


В.

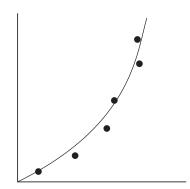
C.



D.



40. ¿Cuál es la línea de ajuste o la curva de ajuste para los puntos representados en la gráfica?


A.

В.

C.

D.

