

Mathematics
Higher level
Paper 3 – statistics and probability

Wednesday 18 November 2015 (afternoon)

1 hour

#### Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the **mathematics HL and further mathematics HL formula booklet** is required for this paper.
- The maximum mark for this examination paper is [60 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

# **1.** [Maximum mark: 7]

It is known that the standard deviation of the heights of men in a certain country is 15.0 cm.

(a) One hundred men from that country, selected at random, had their heights measured. The mean of this sample was 185 cm. Calculate a 95% confidence interval for the mean height of the population.

[3]

(b) A second random sample of size n is taken from the same population. Find the minimum value of n needed for the width of a 95% confidence interval to be less than  $3 \, \mathrm{cm}$ .

[4]

### **2.** [Maximum mark: 11]

The strength of beams compared against the moisture content of the beam is indicated in the following table. You should assume that strength and moisture content are each normally distributed.

| Strength         | 21.1 | 22.7 | 23.1 | 21.5 | 22.4 | 22.6 | 21.1 | 21.7 | 21.0 | 21.4 |
|------------------|------|------|------|------|------|------|------|------|------|------|
| Moisture content | 11.1 | 8.9  | 8.8  | 8.9  | 8.8  | 9.9  | 10.7 | 10.5 | 10.5 | 10.7 |

(a) Determine the product moment correlation coefficient for these data.

[2]

(b) Perform a two-tailed test, at the 5% level of significance, of the hypothesis that strength is independent of moisture content.

[5]

(c) If the moisture content of a beam is found to be 9.5, use the appropriate regression line to estimate the strength of the beam.

[4]

# **3.** [Maximum mark: 9]

Two students are selected at random from a large school with equal numbers of boys and girls. The boys' heights are normally distributed with mean  $178\,\mathrm{cm}$  and standard deviation  $5.2\,\mathrm{cm}$ , and the girls' heights are normally distributed with mean  $169\,\mathrm{cm}$  and standard deviation  $5.4\,\mathrm{cm}$ .

Calculate the probability that the taller of the two students selected is a boy.

# **4.** [Maximum mark: 22]

A discrete random variable U follows a geometric distribution with  $p = \frac{1}{4}$ .

- (a) Find F(u), the cumulative distribution function of U, for  $u = 1, 2, 3 \dots$  [3]
- (b) Hence, or otherwise, find the value of P(U > 20). [2]
- (c) Prove that the probability generating function of U is given by  $G_u(t) = \frac{t}{4-3t} \,. \tag{4}$
- (d) Given that  $U_i \sim \text{Geo}\left(\frac{1}{4}\right)$ , i=1, 2, 3, and that  $V=U_1+U_2+U_3$ , find
  - (i) E(V);
  - (ii) Var(V);
  - (iii)  $G_{\nu}(t)$ , the probability generating function of V. [6]

A third random variable W, has probability generating function  $G_w(t) = \frac{1}{\left(4 - 3t\right)^3}$ .

(e) By differentiating  $G_w(t)$ , find  $\mathrm{E}(W)$ . [4]

(f) Prove that V = W + 3. [3]

[4]

**5.** [Maximum mark: 11]

A biased cubical die has its faces labelled 1, 2, 3, 4, 5 and 6. The probability of rolling a 6 is p, with equal probabilities for the other scores.

The die is rolled once, and the score  $X_1$  is noted.

- (a) (i) Find  $E(X_1)$ .
  - (ii) Hence obtain an unbiased estimator for p.

The die is rolled a second time, and the score  ${\cal X}_{\!\scriptscriptstyle 2}$  is noted.

- (b) (i) Show that  $k(X_1 3) + (\frac{1}{3} k)(X_2 3)$  is also an unbiased estimator for p for all values of  $k \in \mathbb{R}$ .
  - (ii) Find the value for k, which maximizes the efficiency of this estimator. [7]