N15/4/PHYSI/SP3/ENG/TZ0/XX/M

Markscheme

November 2015

Physics

Standard level

Paper 3

14 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

Subject Details: Physics SL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer questions from **TWO** of the Options **[2 × 20 marks]**. Maximum total = **[40 marks]**

- **1.** A markscheme often has more marking points than the total allows. This is intentional.
- 2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- 5. Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.

[1 max]

Option A — Sight and wave phenomena

- (a) scotopic vision uses rods (not cones); the spectral response of all rods peaks at the same wavelength; so rods can only signal presence or absence of light; three types of cones respond to different peak wavelengths (allowing colour vision); [3 max] *The second and fourth marking points may be shown on a spectral response* graph.
 (b) cones found in fovea/centre allowing clear colour vision;
 - rods over rest of retina allow better night sight/motion/peripheral vision; [2]
- 2. (a) (i) third harmonic means 1.5 loops; (accept in form of a diagram) $\frac{2}{3} \times 0.27 (= 0.18);$

(ii) length is
$$\frac{3}{4}$$
 of a wavelength so $\lambda = 0.36$ m;
 $f = 940$ Hz; [2]

(b)
$$f' = 940 \left(\frac{340}{340 + 22} \right);$$

880 Hz; [2]

(b) explanation of resolving – seeing images as being from separate objects;
 idea of diffraction patterns overlapping;
 central maximum being at least as far from companion as the first minimum;
 [3]

(c) equating
$$1.22 \frac{\lambda}{b}$$
 to $\frac{x}{D}$;
0.43 (m); [2]

 use polarizing filter/Polaroid and place over display and rotate; when display becomes totally dark the Polaroids are crossed; the planes of polarization are at right angles so the display must emit plane polarized light; [3]

-4-

Option B — Quantum physics and nuclear physics

5.	(a)	light made of photons of energy $E = hf$; electrons are released immediately from the metal; if electron gains sufficient energy (from a photon);	[2 max]
	(b)	different electrons may be bound by a different amount of energy to the metal;	[1]
	(C)	insufficient photon energy to eject surface electrons; greater intensity means more photons but still none with enough energy;	[2]
	(d)	$E_{\rm max} = (1.75 \times 1.60 \times 10^{-19} =) 2.80 \times 10^{-19} \rm J;$	
		$\phi = \left(hf - E_{\max} = 6.63 \times 10^{-34} \times \frac{3.00 \times 10^8}{620 \times 10^{-9}} - 2.80 \times 10^{-19} = \right) 4.1 \times 10^{-20} \mathrm{J};$	[2]
6.	(a)	(i) only the three correct arrows on diagram; (−1.51 to −3.40, −1.15 to −13.6 and −3.40 to −13.6)	[1]
		(ii) 1.89 eV;	[1]
	(b)	 (i) photon is absorbed; electron (in a hydrogen atom) raised to higher/–3.40 eV/excited state; 	[2]
		(ii) no absorption / photon pass through;	[1]
7.	(a)	X: 26 and Y: 12; <i>(both needed for [1]) Z: v/neutrino; Do not allow the antineutrino.</i>	[2]
	(b)	total energy released is fixed; neutrino carries some of this energy; (leaving the beta particle with a range of energies)	[2]
	(C)	 the time taken for half the radioactive nuclides to decay / the time taken for the activity to decrease to half its initial value; Do not allow reference to change in weight. 	[1]
		(ii) $\lambda = \left(\frac{\ln 2}{7.2 \times 10^5}\right) 9.63 \times 10^{-7};$	
		$11.2 = 36.8e^{-(9.63 \times 10^{-7})t};$	
		$t = 1.24 \times 10^6 \text{ yr}$;	[3]

[1]

[1]

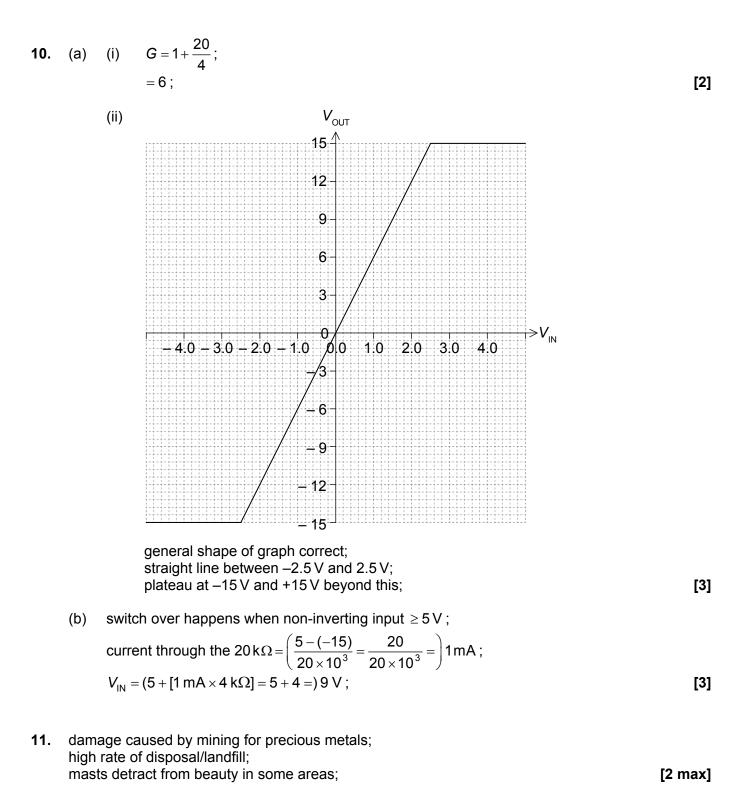
Option C — **Digital technology**

- (a) ability to make more copies easily / faster retrieval / text can be manipulated / more can be stored in the same volume;
 Allow any other sensible suggestion.
 - (b) estimation 3000 characters per page; (allow a range between 2000 and 4000) number of bits per page = $3000 \times 16 (= 48000)$;

number of pages =
$$\frac{700 \times 10^{\circ} \times 8}{3000 \times 16} = (1.17 \times 10^{5});$$
 [3]

Allow sensible answers based on estimation of characters per page.

~


9. (a) the ratio of charge to potential difference /
$$C = \frac{Q}{V}$$
 with pronumerals explained; [1]

(b) energy received by pixel =
$$1.6 \times 10^{-3} \times 2.1 \times 10^{-12} \times 0.15$$
 (= 5.04×10^{-16} J);
number of photons incident on the pixel = $\frac{5.04 \times 10^{-16}}{4.8 \times 10^{-19}}$ (= 1050);
number of electrons ejected = 0.6×1050 (= 630);

$$V = \frac{Q}{C} = \frac{630 \times 1.6 \times 10^{-13}}{170 \times 10^{-12}} \text{ or } 5.9 \times 10^{-7} \text{ V};$$
[4]

(c) digital output 1100;

N15/4/PHYSI/SP3/ENG/TZ0/XX/M

Option D — Relativity and particle physics

12.	(a)	a coordinate system; that is not accelerating / where Newton's first law applies; [2]	2]
	(b)	(i) $\gamma = \left[\frac{1}{\sqrt{1 - 0.8^2}} = \right] 1.67;$ $\Delta t_0 = \left[\frac{3}{1.67} = \right] 1.8 \text{ s};$ [2]	2]
		(ii) 1.6 <i>c</i> ;	1]
		 (iii) (one of the) postulates states that the speed of light in a vacuum is the same for all inertial observers; Galilean transformation will give a relative speed greater than the speed of light; 	2]
		(iv) $\gamma = \frac{1}{\sqrt{1 - 0.976^2}} (= 4.59);$ $l_0 = (4.56 \times 8.00 =) 36.7 \mathrm{m};$	2]
	(c)	$t = \frac{s}{v} = \frac{11.4}{0.8} = 14.25$ years;	
		$\Delta t_0 = \frac{\Delta t}{\gamma} = \frac{14.25}{1.67} = 8.6 \text{ years};$ Accept length contraction with the same result.	2]
13.	(a)	$+\frac{2}{3}-\frac{1}{3}-\frac{1}{3}=0$ for charge; any particle containing a strange quark has strangeness of -1; [2]	2]
	(b)	(i) strangeness: the <i>p</i> has a strangeness of 0; the K^- particle has a strangeness of -1;	
		baryon number. lambda and protons are baryons each having a baryon number of $+1$; the K^- meson has a baryon number of 0; [4]	4]
		 (ii) only during the weak interaction strangeness is not conserved (therefore it is a weak interaction); 	1]
		(iii) $m = \left[80.4 \mathrm{GeV}\mathrm{c}^{-2} = \frac{80.4 \times 10^9}{931.5 \times 10^6} \times 1.661 \times 10^{-27} = \right] 1.43 \times 10^{-25} \mathrm{kg};$ $R \approx \left(\frac{6.63 \times 10^{-34}}{4\pi \times 1.43 \times 10^{-25} \times 3 \times 10^8} = \right) 1.23 \times 10^{-18} \mathrm{m};$	2]

Option E — **Astrophysics**

- **14.** (a) the star is (much) closer than the other star (and close enough to Earth) / parallax effect has been observed;
 - (b) (i) θ

[1]

[1]

Award **[1]** if all three (d, D, θ) are shown correctly. Accept D as a line from Earth to the star.

(ii) $\sin\frac{\theta}{2} = \frac{d}{2D} \mathbf{or} \tan\frac{\theta}{2} = \frac{d}{2D} \mathbf{or} \theta = \frac{d}{D};$

consistent explanation, eg: small angle of approximation yields $\theta = \frac{d}{D}$; [2]

- (iii) any angular unit quoted for θ and any linear unit quoted for D; [1]
- (c) (yes) star is close enough (in local galaxy) to determine spectral characteristics; [1]

[2]

[2]

- (a) HR diagram refers to real stars / absolute magnitude depends on (inherent) properties of the star / absolute magnitude is a measure of brightness at a distance of 10 pc; any relevant info about apparent magnitude, *eg*: apparent magnitude depends on distance;
 - (b) to cover a wide range of orders of magnitude; smaller values would be lost on a linear scale / the logarithmic scale allows more stars to be shown on the diagram (making the diagram more relevant);

(c)
$$\frac{L_{\rm V}}{L_{\rm S}} = \left(\frac{\sigma A_{\rm V} [T_{\rm V}]^4}{\sigma A_{\rm S} [T_{\rm S}]^4} = \right) \frac{\sigma [r_{\rm V}]^2 [T_{\rm V}]^4}{\sigma [r_{\rm S}]^2 [T_{\rm S}]^4};$$

$$\frac{1.54 \times 10^{28}}{3.85 \times 10^{26}} = \frac{[r_{\rm V}]^2}{[r_{\rm S}]^2} \times \frac{9600^4}{5800^4};$$

$$r_{\rm V} = \left(\sqrt{\frac{1.54 \times 10^{28}}{3.85 \times 10^{26}} \times \frac{5800^4}{9600^4}} r_{\rm S}} = \right) 2.3 r_{\rm S};$$

[3]

(d) obtain the spectrum of the star; measure the position of the wavelength corresponding to maximum intensity;

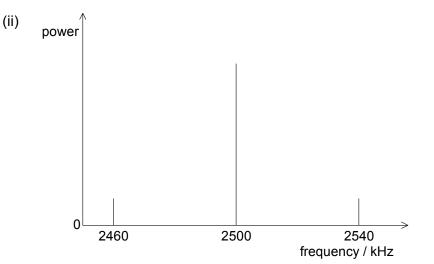
use Wien's law (to determine temperature); (allow quotation of Wien's equation [3]

Award **[3 max]** for referring to identification of temperature via different ionizations of different elements.

16. (a)
$$T = \frac{2.90 \times 10^{-3}}{\lambda_{\text{max}}} = \frac{2.90 \times 10^{-3}}{1.06 \times 10^{-3}};$$

= 2.7K; [2]

(b) current low temperature observed is a result of expansion;
 (expansion) has caused cooling from high temperatures;
 [2]


N15/4/PHYSI/SP3/ENG/TZ0/XX/M

Option F — **Communications**

17.	(a)	the modification/change of a carrier wave by	/ addition of a signal wave/information;	[1]	1

– 11 –

 (b) (i) (voice signal only requires) low quality; AM has lower band width requirement than FM; simpler (more reliable) circuits; range greater than FM / can bounce off the ionosphere; [2 max]

central band drawn at correct position; shorter side bands at correct positions;

(iii)
$$\left(\frac{0.4 \times 10^6}{80 \times 10^3}\right) = 5;$$

[2]

[1]

[4]

(c) geostationary: [2 max]

Allow one advantage plus argument:

always above the same point of the Earth / no tracking dish required / allows for continuous communication / outside Earth's atmosphere so last longer in orbit / can be positioned permanently in sunlight for its power supply; evidence of the mentioned / any relevant argument;

or

Allow any **two** advantages: always above the same point of the Earth; no tracking dish required; allows for continuous communication; outside Earth's atmosphere so last longer in orbit; can be positioned permanently in sunlight for its power supply;

polar-orbiting: [2 max]

Allow **one** advantage plus argument: lower orbit / less power required at both ground station and satellite / cheaper to put into orbit / coverage of whole planet over a number of orbits; evidence of the mentioned / any relevant argument;

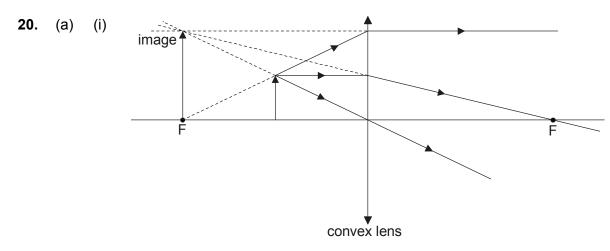
or

Allow any **two** advantages: lower orbit; less power required at both ground station and satellite; cheaper to put into orbit; coverage of whole planet over a number of orbits; [4 max]

- (a) (i) (a digital) signal is split up for transmission and recombined at the end of the process / the signal is transmitted in pulses; other signals can be transmitted in the spaces between the pulses; [2]
 - (ii) the bit rate is higher / more data sent per unit time; faster transmission of data; making use of empty space between samples;
 [1 max]
 - (b) time between samples = $\frac{1}{4000}$ = 250 µs; duration of sample = 8 bit × 8 µs = 64 µs; number of samples transmitted = $\frac{250}{64}$ = 3.9 signals; so three signals maximum;
 - (c) attenuation = $0.08 \times 30.0 (= 2.4 \text{ dB})$; $2.4 = 10 \log \left(\frac{I_1}{2 \text{ mW}} \right)$; $I_1 = 3.5 \text{ mW}$; [3]

[3]

[3]


Option G — Electromagnetic waves

19. (a) sky is blue due to scattering of light from Sun (by particles, nitrogen molecules); blue scatters better / as the atmosphere (becomes) less dense less scattering occurs;

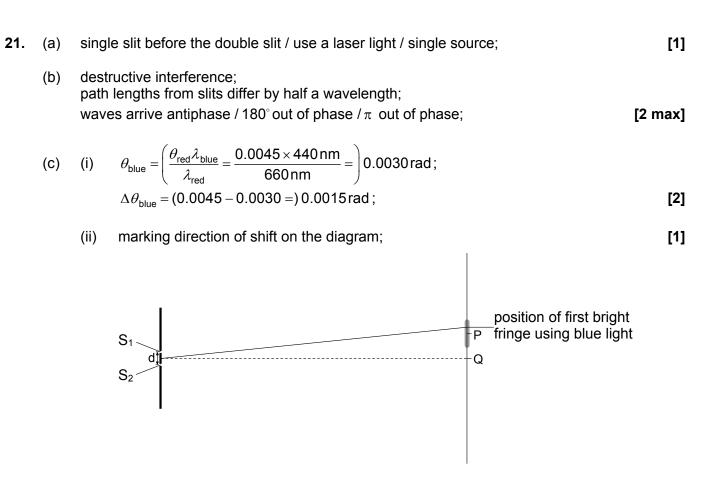
(finally) the sun's light is not scattered and "the sky" is black (meaning no light between point light sources);

(b) natural frequency of carbon dioxide = $\left(\frac{1}{5 \times 10^{-14}}\right) 2 \times 10^{13}$ Hz;

infrared from the Sun is well outside this value so transmitted; infrared from the Earth is close to this value so absorbed/scattered/trapped;

any correct ray out of the three shown above; second ray correct; image correctly located and labelled;

[2]


[3]

- (ii) the image is virtual; no light rays pass through this point;
- (b) $\frac{1}{u} = \frac{1}{f} \frac{1}{v};$ $u = \frac{20}{3};$ $m = \left(-\frac{v}{u} = -\frac{60}{20}\right)(-3);$

[3]

www.xtrapapers.com

N15/4/PHYSI/SP3/ENG/TZ0/XX/M

- 14 -