

Markscheme

November 2018

Chemistry

Standard level

Paper 2

13 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Question		on	Answers	Notes	Total
1.	а	i	$n_{CuSO4} = 0.0800 \text{ dm}^3 \times 0.200 \text{ mol dm}^{-3} = 0.0160 \text{ mol } AND$ $n_{Fe} = \frac{3.26 \text{ g}}{55.85 \text{ gmol}^{-1}} = 0.0584 \text{ mol } \checkmark$		2
			CuSO ₄ is the limiting reactant \checkmark	Do not award M2 if mole calculation is not shown.	
1.	а	11	ALTERNATIVE 1: «0.0160 mol × 63.55 g mol ⁻¹ = » 1.02 «g» √ « $\frac{0.872 \text{ g}}{1.02 \text{ g}}$ × 100 = » 85.5 «%» √ ALTERNATIVE 2: « $\frac{0.872 \text{ g}}{63.55 \text{ g mol}^{-1}}$ = » 0.0137 «mol» √ « $\frac{0.0137 \text{ mol}}{0.0160 \text{ mol}}$ × 100 = » 85.6 «%» √	Accept answers in the range 85–86 %. Award [2] for correct final answer.	2

C	uesti	on	Answers	Notes	Total
1.	b	i	ALTERNATIVE 1:		
			q = «80.0 g × 4.18 J g ⁻¹ K ⁻¹ × 7.5 K =» 2.5×10^3 «J»/2.5 «kJ» √		
			«per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0160 \text{ mol}} = -1.6 \times 10^2 \text{ kJ mol}^{-1}$ »		
			«for the reaction» $\Delta H = -1.6 \times 10^2$ «kJ» \checkmark	Award [2] for correct final answer.	
			ALTERNATIVE 2:		2
			q = «80.0 g × 4.18 J g ⁻¹ K ⁻¹ × 7.5 K =» 2.5×10^3 «J»/2.5 «kJ» ✓		
			$\label{eq:ncu} \mbox{``ncu} = \frac{0.872}{63.55} = 0.0137 \mbox{ mol} \mbox{``ncu}$		
			«per mol of CuSO ₄ = $\frac{-2.5 \text{ kJ}}{0.0137 \text{ mol}} = -1.8 \times 10^2 \text{ kJ mol}^{-1}$ »		
			«for the reaction» $\Delta H = -1.8 \times 10^2$ «kJ» \checkmark		
1.	b	ii	density «of solution» is 1.00 g cm ⁻³	The mark for "reaction goes to completion"	
			OR	in part (b)(i).	
			specific heat capacity «of solution» is $4.18 \text{ Jg}^{-1} \text{ K}^{-1}$ /that of «pure» water	Do not accept "heat loss".	
			OR		1
			reaction goes to completion		
			OR		
			iron/CuSO4 does not react with other substances \checkmark		

(continued...)

(Question 1b continued)

Question		on	Answers	Notes	Total
1.	b	111	ALTERNATIVE 1:	Accept values in the range 4.1–5.5 «kJ». Award [2] for correct final answer.	2

Question		on	Answers	Notes	Total
1.	C	i	$\int_{C} \int_{C} \int_{C} \int_{C} \int_{Time} \int_{Time} \int_{Time} \int_{C} \int_{C} \int_{C} \int_{C} \int_{Time} \int_{C} \int_{C$		2
1.	С	ii	«draw a» tangent to the curve at time = 0 \checkmark «rate equals» gradient/slope «of the tangent» \checkmark	Accept suitable diagram.	2
1.	c	111	piece has smaller surface area \checkmark lower frequency of collisions <i>OR</i>	Accept "chance/probability" instead of "frequency". Do not accept just "fewer collisions".	2
			tewer collisions per second/unit time ✓		

Question		on	Answers	Notes	Total
2.	а		CH₃CH(OH)CH₃ ✓	Accept the full or condensed structural formula.	1
2.	b			Accept answers in the range 7.99×10^{22} to 8.19×10^{22} . Award [2] for correct final answer.	2
2.	с		secondary <i>AND</i> OH/hydroxyl is attached to a carbon bonded to one hydrogen <i>OR</i> secondary <i>AND</i> OH/hydroxyl is attached to a carbon bonded to two C/R/alkyl/CH ₃ «groups» ✓	Accept "secondary AND OH is attached to the second carbon in the chain".	1
2.	d	i	«potassium/sodium» manganate(VII)/permanganate/KMnO₄/NaMnO₄/MnO₄ ⁻ <i>OR</i> «potassium/sodium» dichromate(VI)/K₂Cr₂O ₇ /Na₂Cr₂O ₇ /Cr₂O ₇ ²⁻ ✓		1
2.	d	ii	-2 🗸		1
2.	d	iii	propanone/propan-2-one/CH₃COCH₃ ✓		1

C	Questi	ion	Answers	Notes	Total
3.	а	i	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵ <i>OR</i> [Ar] 4s ² 3d ¹⁰ 4p ⁵ ✓	Accept 3d before 4s.	1
3.	a	II	Aber Aber Aber Aber Aber Aber Aber Aber	Accept double-headed arrows.	1
3.	b		$ \begin{vmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots &$	Accept dots, crosses or lines to represent electron pairs.	1

Q	uestic	on	Answers	Notes	Total
3.	С		Geometry: trigonal/pyramidal ✓ <i>Reason:</i> three bonds <i>AND</i> one lone pair <i>OR</i> four electron domains ✓ <i>O</i> - <i>Br</i> - <i>O</i> angle: 107° ✓	Accept "charge centres" for "electron domains". Accept answers in the range 104–109°.	3
3.	d	i	BrO ₃ ⁻ (aq) + 6e ⁻ + 6H ⁺ (aq) → Br ⁻ (aq) + 3H ₂ O (l) correct reactants and products \checkmark balanced equation \checkmark	Accept reversible arrows.	2
3.	d	ii	$BrO_3^-(aq) + 6Fe^{2+}(aq) + 6H^+(aq) \rightarrow Br^-(aq) + 3H_2O(l) + 6Fe^{3+}(aq) \checkmark$		1

Question		on	Answers	Notes	Total	
4.	а		nuclear charge/number of protons/Z _{eff} increases «causing a stronger pull on the outer electrons» ✓	Accept "atomic number" for "number of protons".	2	
	_		same number of snells/«outer» energy level/snielding 🗸			
4.	b	i	isoelectronic/same electronic configuration/«both» have 2.8 ✓			
			more protons in Na⁺ ✔		2	
4.	b	ii	Any one of:	Do not accept soluble in water.		
			brittle 🗸			
			high melting point/crystalline/solid «at room temperature» ✔			
			low volatility ✔	Ignore any chemical properties.	1 max	
			conducts electricity when molten \checkmark			
			does not conduct electricity at room temperature \checkmark			

5.	a	all «species» are in same phase ✔	Accept "all species are in same state". Accept "all species are gases".	1
5.	b	«reaction quotient/Q =» $\frac{[SO_3]^2}{[SO_2]^2 [O_2]} / \frac{0.500^2}{0.200^2 \times 0.300} / 20.8 \checkmark$ reaction quotient/Q/20.8/answer < K_c /280 <i>OR</i> mixture needs more product for the number to equal $K_c \checkmark$ reaction proceeds to the right/products ✓	Do not award M3 without valid reasoning.	3

C	Questio	on	Answers	Notes	Total
6.	а		Butanoic acid: CH ₃ CH ₂ CH ₂ COOH (aq) + H ₂ O (l) \rightleftharpoons CH ₃ CH ₂ CH ₂ COO ⁻ (aq) + H ₃ O ⁺ (aq) ✓ Ethylamine: CH ₃ CH ₂ NH ₂ (aq) + H ₂ O (l) \rightleftharpoons CH ₃ CH ₂ NH ₃ ⁺ (aq) + OH ⁻ (aq) ✓		2
6.	b		Any two of: butanoic acid forms more/stronger hydrogen bonds ✓ butanoic acid forms stronger London/dispersion forces ✓ butanoic acid forms stronger dipole–dipole interaction/force ✓	Accept "butanoic acid forms dimers" Accept "butanoic acid has larger M,/hydrocarbon chain/number of electrons" for M2. Accept "butanoic acid has larger «permanent» dipole/more polar" for M3.	2 max
6.	С		CH ₃ CH ₂ NH ₃ ⁺ CH ₃ CH ₂ CH ₂ COO ⁻ <i>OR</i> CH ₃ CH ₂ CH ₂ COO ⁻ CH ₃ CH ₂ NH ₃ ⁺ <i>OR</i> CH ₃ CH ₂ CH ₂ COO ⁻ H ₃ N ⁺ CH ₂ CH ₃ \checkmark	The charges are not necessary for the mark.	1

Question		n Answers	Notes	Total
7.	а	«electrophilic» addition/A _E	Accept "hydrogenation".	
		OR		1
		reduction 🗸		
7.	b	«(-286 kJ) + (-1411 kJ) =» -1697 «kJ» ✓		1
7.	с	≪–1697 kJ + 1561 kJ =» −136 «kJ»		
		OR		1

Question		on	Answers	Notes	Total
7.	d		Accurate:		
			no approximations were made in the cycle		
			OR		
			values are specific to the compounds		
			OR		
			Hess's law is a statement of conservation of energy		
			OR		
			method is based on a law		
			OR		
			data in table has small uncertainties 🗸		
			Approximate:		2
			values were experimentally determined/had uncertainties		
			OR		
			each value has been determined to only three/four significant figures		
			OR		
			different sources have «slightly» different values for enthalpy of combustion		
			OR		
			law is valid until disproved		
			OR		
			law of conservation of energy is now conservation of mass-energy		
			OR		
			small difference between two quite large terms «leads to high percentage uncertainty» \checkmark		