

# Markscheme

## November 2018

## Chemistry

## **Higher level**

Paper 3



This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

## - 3 -

## Section A

| C  | Questior | Answers                                                                                                                                                 | Notes                                                                                                                                                       | Total |
|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. | а        | NO₂/NO/NO <sub>x</sub> /HNO₃/gas is poisonous/toxic/irritant <b>√</b>                                                                                   | Accept formula or name.<br>Accept "HNO <sub>3</sub> is corrosive" <b>OR</b> "poisonous/toxic gases<br>produced".<br>Accept "reaction is harmful/hazardous". | 1     |
| 1. | b        | Slope (gradient):<br>$40 \checkmark$<br>Equation:<br>absorbance = $40 \times$ concentration<br><b>OR</b><br>$y = 40x \checkmark$                        | Accept any correct relationship for slope such as $\frac{1.00}{0.025}$ .<br>Award <b>[2]</b> if equation in M2 is correct.                                  | 2     |
| 1. | c        | orange is opposite blue «in the colour wheel»<br><i>OR</i><br>the complementary colour «blue» is seen/transmitted √<br>585–647 «nm would be absorbed» √ | Accept any value or range within 550–680 «nm» for M2.                                                                                                       | 2     |

| Question |   | on                                                                      | Answers                                                                                                                                                                                             | Notes                                                                                                                      | Total |
|----------|---|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------|
| 1.       | d |                                                                         | dilute 1.00 cm <sup>3</sup> «of the standard solution with water» to 100 cm <sup>3</sup>                                                                                                            | Accept any 1:100 ratio for M1.                                                                                             |       |
|          |   |                                                                         | <i>OR</i> dilute sample of standard solution «with water» 100 times ✓                                                                                                                               | Accept "mix 1 cm <sup>3</sup> of the standard solution with 99 cm <sup>3</sup> of water" for M1.                           |       |
|          |   |                                                                         |                                                                                                                                                                                                     | Do <b>not</b> accept "add 100 cm <sup>3</sup> of water to 1.00 cm <sup>3</sup> of standard solution" for M1.               | 3     |
|          |   |                                                                         | «graduated/volumetric» pipette/pipet ✔                                                                                                                                                              | Accept "burette/buret" for M2.                                                                                             |       |
|          |   |                                                                         | volumetric flask 🗸                                                                                                                                                                                  | Accept "graduated/measuring flask" for<br>M3 but <b>not</b> "graduated/measuring<br>cylinder", "conical/Erlenmeyer flask". |       |
| 1.       | е | i concentration of copper = 0.0080 «mol dm <sup>-3</sup> » $\checkmark$ | Accept any value in range<br>0.0075–0.0085 «mol dm <sup>-3</sup> » for M1.                                                                                                                          |                                                                                                                            |       |
|          |   |                                                                         | mass of copper in 250.0 cm <sup>3</sup> = «0.0080 mol dm <sup>-3</sup> $\times$ 0.2500 dm <sup>3</sup> $\times$ 63.55 g mol <sup>-1</sup> =» 0.127 «g»                                              | Accept annotation on graph for M1.                                                                                         |       |
|          |   |                                                                         | OR                                                                                                                                                                                                  |                                                                                                                            |       |
|          |   |                                                                         | mass of brass in 1 dm <sup>3</sup> = «4 × 0.200 g =» 0.800 g <b>AND</b><br>[Cu <sup>2+</sup> ] = «0.0080 mol dm <sup>-3</sup> × 63.55 g mol <sup>-1</sup> =» 0.5084 g dm <sup>-3</sup> $\checkmark$ |                                                                                                                            | 3     |
|          |   |                                                                         | «% copper in this sample of brass = $\frac{0.127}{0.200} \times 100 =$ » 64 «%»                                                                                                                     | Award <b>[3]</b> for correct final answer.<br>Accept "65 «%»".                                                             |       |
|          |   |                                                                         | OR                                                                                                                                                                                                  | Accept 03 «70».                                                                                                            |       |
|          |   |                                                                         | «% copper in this sample of brass = $\frac{0.5084}{0.800}$ × 100 =» 64 «%» ✓                                                                                                                        |                                                                                                                            |       |
| 1.       | е | ii                                                                      | two 🗸                                                                                                                                                                                               | Do <b>not</b> apply ECF from 1(e)(i).                                                                                      | 1     |

| (  | Quest | tion | Answers                                                                                                                                                                      | Notes                                                                                                                                                                                                                                                                                                                                                                                      | Total |
|----|-------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1. | f     | i    | «since it is greater than 60 %» it will reduce the presence of bacteria «on door handles» $\checkmark$                                                                       |                                                                                                                                                                                                                                                                                                                                                                                            | 1     |
| 1. | f     | ii   | resistant to corrosion/oxidation/rusting<br>OR<br>low friction surface «so ideal for connected moving components» ✓                                                          | Accept "hard/durable", "«high tensile»<br>strength", "unreactive", "malleable" or<br>any reference to the appearance/<br>colour of brass (eg "gold-like", "looks<br>nice" etc.).<br>Do <b>not</b> accept irrelevant properties,<br>such as "high melting/boiling point",<br>"non-magnetic", "good heat/electrical<br>conductor", "low volatility", etc.<br>Do <b>not</b> accept "ductile". | 1     |
| 1. | g     |      | precipitate/copper(I) iodide/CuI makes colour change difficult to see<br><i>OR</i><br>release of I₂/iodine from starch-I₂ complex is slow so titration must be done slowly ✓ |                                                                                                                                                                                                                                                                                                                                                                                            | 1     |

## Section B

#### Option A — Materials

| C  | uestic | on | Answers                                                                                                                                                 | Notes                                                                                                                                             | Total |
|----|--------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 2. | а      |    | $\Delta \chi = 0.7$ <b>AND</b> average $\chi = 1.7$ $\checkmark$                                                                                        | Accept "EN" for " $\chi$ ".                                                                                                                       |       |
|    |        |    | bonding between metallic and ionic<br><i>OR</i><br>more than one type of bonding present<br><i>OR</i>                                                   | Accept "bond is ionic but close to<br>several regions/several types/other<br>named bonding type(s) (eg covalent,<br>metallic and covalent etc.)". |       |
|    |        |    | bond type difficult to determine as close to several regions/several types/named bonding types <i>«eg</i> ionic and covalent <i>etc.»</i>               | Do <b>not</b> accept just "bond is ionic".                                                                                                        | 2     |
|    |        |    | OR                                                                                                                                                      |                                                                                                                                                   |       |
|    |        |    | bond is mostly covalent «based on % covalent scale on diagram»<br><b>OR</b><br>bond has « $\frac{0.7}{3.2} \times 100 =$ » 22% ionic character <b>√</b> | Accept any value for % ionic character<br>in range 15–24% or % covalent<br>character in range 76–85%.                                             |       |

| C  | Question |   | Answers                                                                                                                                                                                                                                                                                         | Notes                                                                                                                | Total |
|----|----------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------|
| 2. | b        |   | <i>Thermoplastic polymer:</i><br>PMA <i>AND</i> «weak» intermolecular forces/IMFs/London/dispersion/van der<br>Waals/vdW/dipole-dipole forces «between layers/chains»<br><i>OR</i>                                                                                                              | Do <b>not</b> accept "hydrogen bonding" for M1.                                                                      |       |
|    |          |   | <ul> <li>PMA AND no/few cross-links «between layers/chains» √</li> <li><i>Thermosetting polymer:</i></li> <li>Bakelite<sup>®</sup> AND «strong» covalent bonds «between layers/chains»</li> <li>OR</li> <li>Bakelite<sup>®</sup> AND extensive cross-links «between layers/chains» √</li> </ul> | Award <b>[1 max]</b> for correct reasons for both polymer classes even if named polymers are incorrectly classified. | 2     |
| 2. | C        |   | pores/cavities/channels/holes/cage-like structures «in zeolites» have specific<br>shape/size ✓<br>only reactants «with appropriate size/geometry» fit inside/go through/are<br>activated/can react ✓                                                                                            |                                                                                                                      | 2     |
| 2. | d        | i | amino <i>AND</i> carboxyl <b>√</b>                                                                                                                                                                                                                                                              | Do <b>not</b> accept "carbonyl", "hydroxyl".                                                                         | 1     |

(continued...)

(Question 2d continued)

| Q  | uestic | on  | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Notes                                                  | Total |
|----|--------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------|
| 2. | d      | ii  | H O<br>  / –NH(CH <sub>2</sub> ) <sub>5</sub> CO– /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Continuation bonds at NH and CO are required for mark. |       |
|    |        |     | $\dot{N}$ $$ $CH_2$ $ CH_2$ | Ignore any brackets and n.                             |       |
|    |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        | 1     |
| 2. | d      | iii | Name and reason:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Accept "PET/PETE <b>AND</b> peak for C–O «at           |       |
|    |        |     | PET/PETE <b>AND</b> peak for C=O «at 1700–1750 cm <sup>−1</sup> » <b>√</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1050–1410 cm <sup>-1</sup> »" for M1.                  |       |
|    |        |     | RIC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Accept "PET/PETE <b>AND</b> peak(s) for COO" for M1.   | 2     |
|    |        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Accept name or abbreviation for polymer.               |       |
|    |        |     | 1 🗸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No ECF for M2.                                         |       |

| 3. | а | positive ions/cations/Pb <sup>2+</sup> | Accept "ions" <b>OR</b> "charged species/particle". |   |
|----|---|----------------------------------------|-----------------------------------------------------|---|
|    |   | OR                                     |                                                     | 1 |
|    |   | free electrons 🗸                       |                                                     |   |

| Question |   | on | Answers                                                                                                                                                              | Notes                               | Total |
|----------|---|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-------|
| 3.       | b | i  | $[Pb^{2+}] = 0.50 \times 10^{-6} / 5.0 \times 10^{-7} \text{ sg dm}^{-3} \text{ s} \checkmark$                                                                       |                                     |       |
|          |   |    | $[Pb^{2+}] = \frac{0.50 \times 10^{-6} \text{ g dm}^{-3}}{207.20 \text{ g mol}^{-1}} = 2.4 \times 10^{-9} \text{ (mol dm}^{-3} \text{ s} \checkmark$                 | Award [2] for correct final answer. | 2     |
| 3.       | b | ii | $K_{sp} = 1.43 \times 10^{-20}$                                                                                                                                      |                                     |       |
|          |   |    | ALTERNATIVE 1:                                                                                                                                                       |                                     |       |
|          |   |    | «Q = [Pb <sup>2+</sup> ] [OH <sup>−</sup> ] <sup>2</sup> = $2.4 \times 10^{-9} \times (1.0 \times 10^{-2})^2$ » = $2.4 \times 10^{-13}$ ✓                            |                                     |       |
|          |   |    | $Q > K_{sp}$ <b>AND</b> precipitate will form                                                                                                                        |                                     |       |
|          |   |    | OR                                                                                                                                                                   |                                     |       |
|          |   |    | 2.4 × 10 <sup>-13</sup> > 1.43 × 10 <sup>-20</sup> <b>AND</b> precipitate will form ✓                                                                                |                                     |       |
|          |   |    | ALTERNATIVE 2:                                                                                                                                                       |                                     |       |
|          |   |    | critical [Pb <sup>2+</sup> ] for hydroxide solution «= $\frac{K_{sp}}{[OH^-]^2} = \frac{1.43 \times 10^{-20}}{(1.0 \times 10^{-2})^2}$ » = 1.4 × 10 <sup>-16</sup> ✓ |                                     | 2     |
|          |   |    | initial concentration > critical concentration <b>AND</b> precipitate will form <b>OR</b>                                                                            |                                     |       |
|          |   |    | $2.4 \times 10^{-9}$ > 1.4 × 10 <sup>-16</sup> <b>AND</b> precipitate will form ✓                                                                                    |                                     |       |
|          |   |    | If value given is used:                                                                                                                                              |                                     |       |
|          |   |    | ALTERNATIVE 3:                                                                                                                                                       |                                     |       |
|          |   |    | <b>«</b> Q = [Pb <sup>2+</sup> ] [OH <sup>−</sup> ] <sup>2</sup> = $2.4 \times 10^{-4} \times (1.0 \times 10^{-2})^2$ <b>»</b> = $2.4 \times 10^{-8}$ <b>√</b>       |                                     |       |
|          |   |    | $Q > K_{sp}$ <b>AND</b> precipitate will form                                                                                                                        |                                     |       |
|          |   |    | OR                                                                                                                                                                   |                                     |       |
|          |   |    | $2.4 \times 10^{-8}$ > 1.43 × 10 <sup>-20</sup> <b>AND</b> precipitate will form ✓                                                                                   |                                     |       |

| Question |   | on | Answers                                                                                                                                                                                                                                                                                                                                                                                               | Notes                                                                                                                           | Total |
|----------|---|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------|
| 3.       | C |    | «Faraday's constant, $F = 9.65 \times 10^4 \text{ C mol}^{-1}$ and $1 \text{ A} = 1 \text{ C s}^{-1}$ »<br>$Q \ll 0.0500 \text{ mol} \times 2 \times 96500 \text{ C mol}^{-1}$ » = 9650 «C» $\checkmark$<br>$t \ll \frac{Q}{I} = \frac{9650 \text{ C}}{1.34 \text{ C s}^{-1}} \approx 7200 \text{ s}$ so $\frac{7200 \text{ s}}{60 \times 60 \text{ s} \text{ h}^{-1}}$ » = 2.00 «hours» $\checkmark$ | Award <b>[2]</b> for correct final answer.                                                                                      | 2     |
| 3.       | d | i  | <ul> <li>Any one of:</li> <li>two «or more» lone/non-bonding pairs on different atoms</li> <li>OR</li> <li>two «or more» atoms/centres that act as Lewis bases ✓</li> <li>form «at least» two coordination/coordinate bonds</li> <li>OR</li> <li>«at least» two atoms can form coordination/coordinate bonds ✓</li> </ul>                                                                             | Reference to "on <b>DIFFERENT</b> atoms"<br>required.<br>Accept "dative «covalent» bond" for<br>"coordination/coordinate bond". | 1 max |
| 3.       | d | ii | increase in entropy<br>OR<br>$\Delta S > 0/\Delta S$ positive $\checkmark$                                                                                                                                                                                                                                                                                                                            | Ассерt "ДG < 0" but <b>not</b> "ДН < 0".                                                                                        | 1     |

| C  | Question | Answers                                                                                                                                                                                                                                                                                             | Notes                                                                                               | Total |
|----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|
| 4. | а        | <i>Any two of:</i><br>cloudy/foggy/hazy phase «at first melting point» ✓<br>clear liquid phase «at second melting point/higher temperature» ✓                                                                                                                                                       |                                                                                                     | 2 max |
|    |          | two «different» melting points <i>OR</i> new phase observed over a wide temperature range ✓                                                                                                                                                                                                         | Accept "exhibit both liquid and solid properties at the same time" for M3.                          |       |
| 4. | b        | <ul> <li>ALTERNATIVE 1:<br/>«bulky/long» C₅H<sub>11</sub>/R/alkyl «group/chain» AND prevents molecules from packing closer together «to form solid state» √</li> <li>ALTERNATIVE 2:<br/>biphenyl «fragment»/two benzene rings/two aromatic rings AND «makes molecule» rigid/rod-shaped √</li> </ul> | Accept "rigid/rod-shaped molecule, so<br>aligns with other molecules" for<br><b>ALTERNATIVE 2</b> . | 1     |
| 4. | C        | <pre>«average» oxidation state of C in C<sub>6</sub>H<sub>12</sub>/cyclohexane = -2 AND in CNTs = 0 OR oxidation state of C in CNTs is higher than in C<sub>6</sub>H<sub>12</sub>/cyclohexane OR loss of H's/hydrogens ✓ «oxidation at» positive/+ «electrode»/anode ✓</pre>                        | Accept "oxidation number" for "oxidation state".                                                    | 2     |

| C  | Questi | on | Answers                                                                                                                                                                              | Notes                                               | Total |
|----|--------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|
| 5. | а      | i  | face-centred cube/fcc<br><i>OR</i><br>cubic close packed/ccp √                                                                                                                       |                                                     | 1     |
| 5. | а      | ii | $\frac{1}{2}$ «atom per face» × 6 «faces per cube» = 3 «atoms» <i>AND</i> $\frac{1}{8}$ «atom per corner» × 8 «corners per cube» = 1 «atom» ✓<br>«atoms per unit cell = 3 + 1 =» 4 ✓ | Award <b>[1 max]</b> for "4" without working shown. | 2     |
| 5. | b      |    |                                                                                                                                                                                      | Award <b>[3]</b> for correct final answer.          | 3     |

## Option B — Biochemistry

| C  | Question |  | Answers                                                                                  | Notes                                                    | Total |
|----|----------|--|------------------------------------------------------------------------------------------|----------------------------------------------------------|-------|
| 6. | а        |  | catabolism «of food/nutrients»                                                           | Accept "ATP" but <b>not</b> "burning of food/nutrients". |       |
|    |          |  | OR                                                                                       |                                                          | 1     |
|    |          |  | «cellular» respiration ✓                                                                 |                                                          |       |
| 6. | b        |  | not enough sunlight/UV light «for synthesis of vitamin D in the skin» $\checkmark$       |                                                          | 1     |
| 6. | С        |  | cannot be metabolized/broken down                                                        |                                                          |       |
|    |          |  | OR                                                                                       |                                                          |       |
|    |          |  | not biodegradable                                                                        |                                                          |       |
|    |          |  | OR                                                                                       |                                                          | 2     |
|    |          |  | accumulates in lipid/fat tissues ✔                                                       |                                                          |       |
|    |          |  | increased concentration as one species feeds on another «in the food chain» $\checkmark$ |                                                          |       |

| C  | uestic | on | Answers                                                                                                                                                                                                                                                                                                                                                                                                                     | Notes                 | Total |
|----|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------|
| 7. | а      |    | <ul> <li>«triplet» sequence/«specific» order of «nitrogenous» bases</li> <li>OR</li> <li>codon ✓</li> </ul>                                                                                                                                                                                                                                                                                                                 |                       | 1     |
| 7. | b      |    | <ul> <li>Any one of:</li> <li>long-term «health» effects unknown ✓</li> <li>can cause allergic reactions ✓</li> <li>possible transfer of genetic material to other/wild species ✓</li> <li>concern that power over farming is concentrated in hands of multinationals</li> <li>OR</li> <li>dependent on multinationals ✓</li> <li>labelling differences between countries «means informed choice not possible» ✓</li> </ul> | Accept "outcrossing". | 1 max |

| C  | Question | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Notes                                                                                                                                                                                                              | Total |
|----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8. | a        | hydrogen bonding ✔<br>between C=O and H–N «groups» ✔                                                                                                                                                                                                                                                                                                                                                                                                    | Accept a diagram which shows hydrogen bonding for M1 and<br>shows the interaction between O of C=O and H of NH for M2.<br>Accept "between amido/amide/carboxamide" but <b>not</b> "between<br>amino/amine" for M2. | 2     |
| 8. | b        | Enzyme action:<br>Any two of:<br>substrate binds to active site ✓<br>weakens bonds in substrate ✓<br>lowers activation energy<br>OR<br>provides alternate pathway ✓<br>increases rate of reaction<br>OR<br>acts as catalyst ✓<br>substrate specific ✓<br>Limitation:<br>Any one of:<br>temperature dependent ✓<br>pH dependent ✓<br>can be sensitive to heavy metal ions ✓<br>sensitive to denaturation ✓<br>can be inhibited ✓<br>substrate specific ✓ | Accept "favourable orientation/conformation of the substrate<br>«enforced by enzyme»" for M1.                                                                                                                      | 3 max |

| Q  | Questio | n                            | Answers                                                                                                                                         | S                                                               | Notes                                                                                                                                                                                                      | Total |
|----|---------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8. | С       | Non-competiti<br>Competitive | Action of inhibitor         /e       allosteric site occupied         OR       active site shape         changed ✓       active site occupied √ | Effect on Vmax         lower       AN         no effect       A | Award <b>[1]</b> for each action.<br>Award <b>[1]</b> for <b>any two</b> effects stated<br>correctly.<br>Award <b>[2 max]</b> if both actions and<br>effects are switched to incorrect<br>inhibitor types. | 4     |

| 9. | а | ALTERNATIVE 1:                                                                                                                                   |                                     |   |
|----|---|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|---|
|    |   | 4 C=C bonds/4 carbon to carbon double bonds ✓                                                                                                    |                                     |   |
|    |   | mass of iodine per mole of acid = $(4 \times 253.80 \text{ g mol}^{-1}) = 1015.2 \text{ (g mol}^{-1}) \text{ (g mol}^{-1}) \text{ (g mol}^{-1})$ |                                     |   |
|    |   | iodine number «= $\frac{1015.2 \text{ g mol}^{-1}}{276.46 \text{ g mol}^{-1}} \times 100 \text{ w} = 367 \checkmark$                             | Award [3] for correct final answer. |   |
|    |   |                                                                                                                                                  |                                     | 3 |
|    |   | ALTERNATIVE 2:                                                                                                                                   |                                     |   |
|    |   | 4 C=C bonds/4 carbon to carbon double bonds $\checkmark$                                                                                         |                                     |   |
|    |   | $ \frac{100 \text{ g}}{276.46 \text{ g mol}^{-1}} \times 4 = 31.447 \text{ mol of } I_2 \text{ «reacts with } 100 \text{ g} $ √                  |                                     |   |
|    |   | iodine number «= 1.447 mol × 253.80 g mol⁻¹» = 367 ✔                                                                                             |                                     |   |

| C  | Questi | on | Answers                                                                                                                                                                                                       | Notes                                                                                                                                                                                                                                                                                                                     | Total |
|----|--------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 9. | b      |    | Any two of:<br>«structural» components of cell membranes ✓<br>energy storage/utilization ✓<br>«thermal/electrical» insulation ✓<br>transport «of lipid-soluble molecules» ✓<br>hormones/chemical messengers ✓ | Accept other specific functions, such as<br>"prostaglandin/cytokine/bile acid<br>synthesis", "cell differentiation/growth",<br>"myelination", "storage of<br>vitamins/biomolecules", "signal<br>transmission", "protection/padding of<br>organs", "precursors/starting materials<br>for the biosynthesis of other lipid". | 2 max |
| 9. | c      |    | Any one of:<br>atherosclerosis/cholesterol deposition «in artery walls» ✓<br>heart/cardiovascular disease ✓<br>stroke ✓                                                                                       | Accept "arteries become blocked/<br>walls become thicker".                                                                                                                                                                                                                                                                | 1 max |

| C   | Question |    | Answers                                                                                                                                                                                                                                                                                                                    | Notes                                                                                                                                                                         | Total |
|-----|----------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 10. | а        |    | «1,4-»glycosidic ✓                                                                                                                                                                                                                                                                                                         | Do <b>not</b> accept "glucosidic".                                                                                                                                            | 1     |
| 10. | b        |    | H and OH are reversed/in different positions on C-4 ✓                                                                                                                                                                                                                                                                      | C-4 must be specified.<br>Do <b>not</b> penalize if reference is made to H<br>and OH above and below ring/in alpha and<br>beta positions on C-4 incorrectly.                  | 1     |
| 10. | С        | i  | Starch: α«-glucose/links»<br>AND<br>Cellulose: β«-glucose/links» √                                                                                                                                                                                                                                                         | Accept "Starch: coiled/spiral structure <b>OR</b><br>cross-links <b>AND</b> Cellulose: uncoiled <b>OR</b><br>straight chains/linear polymer <b>OR</b> no/few<br>cross-links". | 1     |
| 10. | C        | ii | Any two of:         helps food pass through intestine         OR         adds bulk/dietary fibre ✓         reduces appetite         OR         helps prevent obesity ✓         prevents constipation         OR         reduces risk of hemorrhoids/diverticulosis/Crohn's disease/irritable bowel syndrome/bowel cancer ✓ |                                                                                                                                                                               | 2 max |

| Ques  | stion | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Notes                                                                                                 | Total |
|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------|
| 11. a |       | <ul> <li>binding of oxygen/O₂ «to one active site» affects shape of Hb/other active sites</li> <li>OR</li> <li>binding of one oxygen/O₂ «molecule» affects binding of other oxygen/O₂ «molecules» √</li> <li>increasing affinity of Hb to oxygen/O₂</li> <li>OR</li> <li>enhanced binding of «further» oxygen/O₂ «molecules»</li> <li>OR</li> <li>cooperative binding √</li> </ul>                                                                                                                                    |                                                                                                       | 2     |
| 11. b |       | Toxicity:         carboxyhemoglobin/Hb–CO does not readily dissociate         OR         CO + Hb $\rightleftharpoons$ Hb–CO AND forward reaction favoured         OR         affinity of carbon monoxide/CO for hemoglobin is «200 times/much» higher than that of oxygen/O2         OR         competitive inhibitor of oxygen/O2 binding ✓         Treatment:         moving patient to fresh air         OR         «in severe cases» inhaling pure oxygen/O2         OR         high pressure oxygen/O2 chamber ✓ | Accept "move away from carbon<br>monoxide/CO source" <b>OR</b> "remove<br>carbon monoxide/CO source". | 2     |

## Option C — Energy

| C   | Question |    | Answers                                                                                                                                                               | Notes                                                                                         | Total |
|-----|----------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------|
| 12. | а        |    | small/lighter <u>nuclei</u> combine to form larger/heavier <u>nuclei</u> ✔<br>product has higher binding energy «per nucleon» ✔                                       | Accept binding energy curve with explanation.                                                 | 2     |
| 12. | b        | i  | converts non-fissile « <sup>238</sup> U» material into fissile « <sup>239</sup> Pu» material<br><i>OR</i><br>produces more fissile material than it consumes <b>√</b> |                                                                                               | 1     |
| 12. | b        | ii | $^{239}Pu + {}^{1}n \rightarrow {}^{133}Xe + {}^{103}Zr + 4{}^{1}n \checkmark$                                                                                        | Accept equation with correct atomic numbers included.<br>Accept notation for neutrons of "n". | 1     |
|     |          |    |                                                                                                                                                                       | Accept a correctly described equation in words.                                               |       |
| 12. | С        |    | ALTERNATIVE 1:                                                                                                                                                        | Award <b>[2]</b> for correct final answer.                                                    | 2     |
|     |          |    | <i>ALTERNATIVE 2:</i><br>$\lambda = \left(\frac{0.693}{30}\right) = 0.023 \checkmark$<br>% remaining = $(100 \times e^{-0.023 \times 240}) = 0.39 \%$ √               |                                                                                               |       |

| [:                                                                                                                     | Accept any combination of dots, crosses and<br>lines to represent electrons.<br>Do <b>not</b> penalize missing brackets. |                                                                           |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| [:;;;;]_ <b>√</b>                                                                                                      | Penalize missing negative charge.                                                                                        | 1                                                                         |
| highly reactive<br><i>OR</i><br>start redox reactions ✓<br>damage/mutate DNA<br><i>OR</i><br>cause cancer<br><i>OR</i> |                                                                                                                          | 2                                                                         |
|                                                                                                                        | <ul> <li>OR</li> <li>start redox reactions ✓</li> <li>damage/mutate DNA</li> <li>OR</li> <li>cause cancer</li> </ul>     | OR   start redox reactions ✓   damage/mutate DNA   OR   cause cancer   OR |

| Q   | uestio | n Answers                                                                                                                                                                                                                                                           | Notes                                                                                               | Total |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|
| 13. | а      | ALTERNATIVE 1:<br>$2C(s) + 2H_2O(g) \rightarrow CH_4(g) + CO_2(g) \checkmark$                                                                                                                                                                                       | Accept "3C (s) + $2H_2O(g) \rightarrow CH_4(g) + 2CO(g)$ ".                                         | 1     |
|     |        | $\begin{array}{l} \textbf{ALTERNATIVE 2:}\\ C\left(s\right)+H_{2}O\left(g\right)\rightarrow CO\left(g\right)+H_{2}\left(g\right)\textbf{AND} \ \ 3H_{2}\left(g\right)+CO\left(g\right)\rightarrow CH_{4}\left(g\right)+H_{2}O\left(g\right) \checkmark \end{array}$ |                                                                                                     | I     |
| 13. | b      |                                                                                                                                                                                                                                                                     | Accept "hydrogen/H₂ produces «nearly»<br>three times more energy than<br>methane/CH₄ «per mass/g»". | 1     |
| 13. | С      | $m_{\text{octane}} \ll 72.0 \text{ dm}^3 \times 703 \text{ g dm}^{-3} \gg 5.06 \times 10^4 \text{ gm}/50.6 \text{ kgm} \checkmark$ $m_{\text{carbon dioxide}} \ll \frac{8 \times 44.01}{114.26} \times 50.6 \gg 156 \text{ kgm} \checkmark$                         | Award <b>[2]</b> for correct final answer.                                                          | 2     |

| Question | Answers                                                                                                                                                                                                                                                                                                                                                                | Notes                                                                                                                                                                                                                       | Total |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 14. a    | Advantage:         renewable «energy source»         OR         does not produce greenhouse gases         OR         can be installed «almost» anywhere         OR         low maintenance costs √                                                                                                                                                                     | Accept "can be used for passive/active heating",<br>"can be converted to electric energy".<br>Accept any specific greenhouse gas name or<br>formula for "greenhouse gases".                                                 |       |
|          | Disadvantage:<br>widely dispersed/not concentrated «form of energy»<br>OR<br>geography/weather/seasonal dependent<br>OR<br>not available at night<br>OR<br>energy storage is difficult/expensive<br>OR<br>toxic/hazardous materials used in production<br>OR<br>concerns about space/aesthetics/environment where installed<br>OR<br>need to be «constantly» cleaned √ | Accept "solar cells require large areas", "solar<br>cell manufacture produces pollution/greenhouse<br>gases", "higher cost of solar cells «compared<br>with traditional sources such as fossil fuels or<br>hydroelectric»". | 2     |

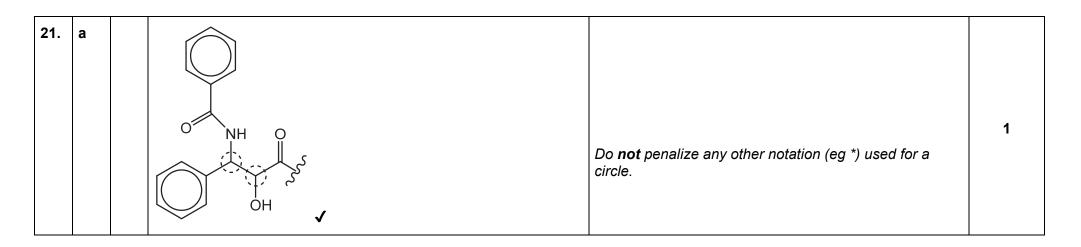
| Question |   | tion | Answers                                                                                                                                                                                                                                                                                                                      | Notes                                                                                                       | Total |
|----------|---|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------|
| 14.      | b | i    | high viscosity ✔                                                                                                                                                                                                                                                                                                             | Accept "low volatility", just "viscous/viscosity"<br><b>OR</b> "does not flow easily".                      | 1     |
| 14.      | b | ii   | convert to esters of monoatomic alcohols <i>OR</i>                                                                                                                                                                                                                                                                           | Accept "convert to shorter «carbon chain» esters" <b>OR</b> "transesterification".                          |       |
|          |   |      | react with short-chain alcohols «in the presence of acid or base» $\checkmark$                                                                                                                                                                                                                                               | Accept specific alcohols, such as methanol or ethanol.                                                      | 1     |
| 14.      | с |      | carbon dioxide/CO₂ more/most abundant «GHG than methane/CH₄»<br><i>OR</i><br>carbon dioxide/CO₂ has «much» longer atmospheric life «than<br>methane/CH₄» ✓                                                                                                                                                                   | Accept "carbon dioxide/CO <sub>2</sub> contributes more to global warming «than methane/CH <sub>4</sub> »". |       |
|          |   |      | methane/CH <sub>4</sub> «much» better/more effective at absorbing IR radiation «than carbon dioxide/CO <sub>2</sub> » <i>OR</i>                                                                                                                                                                                              |                                                                                                             | 2     |
|          |   |      | <ul> <li>methane/CH<sub>4</sub> has a greater greenhouse factor «than carbon dioxide/CO<sub>2</sub>»</li> <li>OR</li> <li>methane/CH<sub>4</sub> has a greater global warming potential/GWP «than</li> </ul>                                                                                                                 |                                                                                                             |       |
|          |   |      | carbon dioxide/CO <sub>2</sub> » ✓                                                                                                                                                                                                                                                                                           |                                                                                                             |       |
| 14.      | d |      | $CO_2(g) + H_2O(l) \rightleftharpoons H^+(aq) + HCO_3^-(aq)$<br><i>OR</i>                                                                                                                                                                                                                                                    | Accept " $H_2CO_3$ (aq)" for " $CO_2$ (aq) + $H_2O$ (l)".<br>Equilibrium arrows required for M1.            |       |
|          |   |      | $\operatorname{CO}_2(g) \rightleftharpoons \operatorname{CO}_2(\operatorname{aq}) \operatorname{\textbf{AND}} \operatorname{CO}_2(\operatorname{aq}) + \operatorname{H}_2\operatorname{O}(\operatorname{I}) \rightleftharpoons \operatorname{H}^+(\operatorname{aq}) + \operatorname{HCO}_3^-(\operatorname{aq}) \checkmark$ | State symbols required for $CO_2(g) \rightleftharpoons CO_2(aq)$ equation only for M1.                      | 2     |
|          |   |      | «increasing [CO₂(g)]» shifts equilibrium/reaction to right <b>AND</b> pH decreases <b>√</b>                                                                                                                                                                                                                                  | Accept "concentration of H <sup>+</sup> /[H <sup>+</sup> ] increases <b>AND</b> pH decreases" for M2.       |       |

| Q   | uestion | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Notes                                                                                                                                        | Total |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 15. | а       | <ul> <li>«redox» reaction in rechargeable battery is reversible «but not in a primary cell»</li> <li>OR</li> <li>secondary cells need to be charged before use</li> <li>OR</li> <li>secondary cells have greater rate of self-discharge √</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Accept "primary cells cannot be<br>recharged/reused", "primary cells can be<br>used only once" <b>OR</b> "lithium batteries may<br>explode". | 1     |
| 15. | b       | Anode (negative electrode):Li (graphite) $\rightarrow$ Li <sup>+</sup> (electrolyte) + e <sup>-</sup> ORLiC <sub>6</sub> (s) $\rightarrow$ 6C (s) + Li <sup>+</sup> (electrolyte) + e <sup>-</sup> $\checkmark$ Cathode (positive electrode):Li <sup>+</sup> (electrolyte) + e <sup>-</sup> + MnO <sub>2</sub> (s) $\rightarrow$ LiMnO <sub>2</sub> (s)ORLi <sup>+</sup> (electrolyte) + e <sup>-</sup> + NiO <sub>2</sub> (s) $\rightarrow$ LiNiO <sub>2</sub> (s)ORLi <sup>+</sup> (electrolyte) + e <sup>-</sup> + CoO <sub>2</sub> (s) $\rightarrow$ LiCoO <sub>2</sub> (s)ORLi <sup>+</sup> (electrolyte) + e <sup>-</sup> + 2CoO <sub>2</sub> (s) $\rightarrow$ Co <sub>2</sub> O <sub>3</sub> (s) + Li <sub>2</sub> O (s) $\checkmark$ | Accept "polymer" for "electrolyte".<br>Award <b>[1 max]</b> if electrodes are reversed.<br>Do <b>not</b> accept "CO" for "Co".               | 2     |

| Q   | Questi | on  | Answers                                                                                                          | Notes                                                | Total |
|-----|--------|-----|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------|
| 15. | c      |     |                                                                                                                  |                                                      | 2     |
|     |        |     | [Cd <sup>2+</sup> ] = 0.020 «mol dm <sup>-3</sup> » ✓                                                            | Award [2] for correct final answer.                  |       |
| 15. | d      | i   | <ul> <li>«extensive» conjugation</li> <li>OR</li> <li>«extensive» alternate single and double bonds √</li> </ul> | Accept "delocalization".                             | 1     |
| 15. | d      | ii  | electrons excited/released «from dye» √                                                                          | Accept "photooxidation/oxidizes dye".                | 1     |
| 15. | d      | 111 | transfers e⁻ to external circuit ✔                                                                               | Accept "provides large surface area".                | 1     |
| 15. | d      | iv  | $I_{3^-}(aq) + 2e^- \rightarrow 3I^-(aq) \checkmark$                                                             | Accept " $3I_2(aq) + 2e^- \rightarrow 2I_3^-(aq)$ ". | 1     |

## Option D — Medicinal chemistry

| G   | uestion |                                                                                                                                                                                                                                                  | Answers                                | Notes                                                                                                                                                                                   | Total |
|-----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 16. | a       | Bond angleβ-lactam ring90° $\checkmark$ sp²120°sp³109.5° $\checkmark$                                                                                                                                                                            |                                        | Accept "109°".                                                                                                                                                                          | 2     |
| 16. | b       | <ul> <li>«irreversibly» binds/bonds to e</li> <li>OR</li> <li>inhibits enzyme/transpeptidase</li> <li>OR</li> <li>prevents cross-linking of bacte</li> <li>cells absorb water AND burst</li> <li>OR</li> <li>cells cannot reproduce √</li> </ul> | «in bacteria» that produces cell walls | Accept "reacts with" for "bonds to" for M1.Do not accept "cell membrane" for "cell wall"for M1.Accept "cells burst due to osmotic pressure"for M2.Accept "bacteria" for "cells" for M2. | 2     |
| 16. | с       | «modify» side-chain <b>√</b>                                                                                                                                                                                                                     |                                        | Accept "«modify» R".                                                                                                                                                                    | 1     |
| 16. | d       | no cell walls<br><i>OR</i><br>humans do not have transpept                                                                                                                                                                                       | dase <b>√</b>                          |                                                                                                                                                                                         | 1     |


| Q   | uestion | Answers                                                                                                                                                                                                                 | Notes                                                                                                                                                 | Total |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 17. | а       | blood-brain barrier is hydrophobic/non-polar/made of lipids ✓<br>morphine has hydroxyl/OH «groups»/is more polar <b>AND</b> diamorphine has<br>ester/ethanoate/OCOCH₃/acetate «groups»/is less polar/is lipid soluble ✓ | Accept "fats" for "lipid(s)".<br>Accept "alcohol/hydroxy" for "hydroxyl" but <b>not</b><br>"hydroxide".<br>Accept "non-polar" for "less polar" in M2. | 2     |
| 17. | b       | fraction/proportion/percentage of «administered dosage» that enters blood/plasma/circulation ✓                                                                                                                          | Accept "fraction/proportion/percentage of<br>«administered dosage» that reaches target «part<br>of human body»".                                      | 1     |

| 18. | a | ALTERNATIVE 1:                                                                                           |                                              |   |
|-----|---|----------------------------------------------------------------------------------------------------------|----------------------------------------------|---|
|     |   | Using: $pH = pK_a + log\left(\frac{[A^-]}{[HA]}\right)$                                                  |                                              |   |
|     |   | p <i>K</i> <sub>a</sub> = 10.32 <b>√</b>                                                                 |                                              |   |
|     |   | $pH = \ll 10.32 + \log\left(\frac{0.0200}{0.0100}\right) = \gg 10.62 \checkmark$                         | Award [2] for correct final answer.          | 2 |
|     |   | ALTERNATIVE 2:                                                                                           |                                              |   |
|     |   | $[H^+] \ll \mathcal{K}_a \times \left(\frac{0.0100}{0.0200}\right) \gg = 2.4 \times 10^{-11} \checkmark$ | Accept answers for M2 between 10.6 and 10.7. |   |
|     |   | pH = 10.62 ✓                                                                                             | Award <b>[1 max]</b> for pH = 10.02.         |   |

| Question |   | n Answers                                                                                                                                                                                                                                                                                           | Notes                                                                                                                                | Total |
|----------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------|
| 18.      | b | $\begin{aligned} &CaCO_3\left(s\right) + 2HCl\left(aq\right) \to CaCl_2\left(aq\right) + H_2O\left(l\right) + CO_2\left(g\right) \\ & \boldsymbol{OR} \\ & CaCO_3\left(s\right) + 2H^+\left(aq\right) \to Ca^{2+}\left(aq\right) + H_2O\left(l\right) + CO_2\left(g\right)\checkmark \end{aligned}$ |                                                                                                                                      | 1     |
| 18.      | c | <pre>«back» titration OR thermal decomposition OR atomic absorption/AA ✓</pre>                                                                                                                                                                                                                      | Accept "gravimetric analysis".<br>Do <b>not</b> accept description of a technique<br>without proper term given for the<br>technique. | 1     |

| 19. | Any two of:                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                   |       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
|     | prevents virus attaching to host cell ✓<br>alters cell's genetic material/DNA «so that virus cannot use it to multiply» ✓<br>blocks enzyme activity in the host cell «so that virus cannot use it to multiply» ✓<br>prevents removal of protein coat/capsid ✓<br>prevents injection of viral DNA/RNA into cell ✓<br>prevents release of «replicated» viruses from host cell ✓ | Accept "prevents synthesis of virus by<br>host cell".<br>Accept "alters RNA/DNA/genetic material<br>of virus".<br>Do <b>not</b> accept just "mimics nucleotides". | 2 max |

| Question |  | Answers                                     | Notes                                    | Total |
|----------|--|---------------------------------------------|------------------------------------------|-------|
| 20.      |  | Any two of:                                 |                                          |       |
|          |  | «weak» C–Cl bonds break/produce radicals 🗸  |                                          |       |
|          |  | contribute to ozone depletion ✓             |                                          |       |
|          |  | contribute to «photochemical» smog <b>√</b> |                                          |       |
|          |  | cause cancers ✓                             |                                          | 2 max |
|          |  | damage respiratory system ✔                 |                                          |       |
|          |  | cause organ failure ✔                       |                                          |       |
|          |  | produce toxic chemicals/phosgene/dioxins 🗸  | Accept "chlorinated solvents are toxic". |       |



| C   | uestion | Answers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Notes | Total |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| 21. | b       | <ul> <li>chiral auxiliary creates stereochemical condition necessary to follow a certain pathway</li> <li>OR</li> <li>stereochemical induction</li> <li>OR</li> <li>existing chiral centre affects configuration of new chiral centres ✓</li> <li>chiral molecule/auxiliary/optically active species is used/added/connected to the starting molecule «to force reaction to follow a certain path»</li> <li>OR</li> <li>«after new chiral centre created» chiral auxiliary removed «to obtain desired product» √</li> </ul> |       | 2     |
| 21. | C       | Any two of:         immiscible solvents ✓         partitioning of Taxol between the two solvents ✓         Taxol more soluble in one solvent ✓         extraction carried out multiple times «to improve extraction» ✓         shaking/stirring the mixture ✓         separating the two layers ✓         evaporation of the solvent from the final solution «to obtain pure Taxol» ✓                                                                                                                                       |       | 2 max |

| Q   | Question |    | Answers                                                                                                | Notes                                                                               | Total |
|-----|----------|----|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------|
| 22. | а        |    | «alpha emitter» carried to/selectively absorbed by cancer cells «by antibody, carrier drug, protein» ✓ | Do <b>not</b> accept just "targets cancer cells and does not affect healthy cells". |       |
|     |          |    | low penetrating power                                                                                  |                                                                                     | 2     |
|     |          |    | OR                                                                                                     |                                                                                     |       |
|     |          |    | short range <b>√</b>                                                                                   |                                                                                     |       |
| 22. | b        | i  | ALTERNATIVE 1:                                                                                         |                                                                                     |       |
|     |          |    | $ \frac{48}{6.0} = 8 \frac{t_1}{2} $ /8 half-lives «required» ✓                                        |                                                                                     |       |
|     |          |    | % remaining = «(0.5) <sup>8</sup> × 100 =» 0.39 «%» <b>√</b>                                           | Award [2] for correct final answer.                                                 | 2     |
|     |          |    | ALTERNATIVE 2:                                                                                         |                                                                                     | -     |
|     |          |    | $\lambda = \ll \frac{0.693}{6.0} = 0.1155 \checkmark$                                                  |                                                                                     |       |
|     |          |    | % remaining = «100 × <i>e</i> <sup>−0.1155 × 48</sup> =» 0.39 «%» √                                    | Accept "0.32 «%»" in <b>ALTERNATIVE 2</b> .                                         |       |
| 22. | b        | ii | removed by excretion $\checkmark$                                                                      | Accept any method of excretion.                                                     | 1     |

| Question |   | Answers                                                                                                                                                                                                                                 | Notes                                                                                                                                                                                                                                         | Total |
|----------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 23.      | a | gas chromatography/GC<br><i>OR</i><br>high performance liquid chromatography/HPLC √                                                                                                                                                     | Accept "chromatography", "TLC/thin-layer chromatography",<br>"paper chromatography" <b>OR</b> "extraction".<br>Do <b>not</b> accept just "mass spectrometry/MS" but do <b>not</b> penalize<br>any reference to MS with HPLC or GC (eg GC-MS). | 1     |
| 23.      | b | ALTERNATIVE 1:Any two of:wblow through tube of> acidified «orange» potassium<br>dichromate(VI)/K2Cr2O7/dichromate/Cr2O72- Cr(VI)/Cr6+/Cr2O72- reduced to Cr(III)/Cr3+ colour changes «from orange» to greenORcolour change is monitored |                                                                                                                                                                                                                                               | 2 max |
|          |   | ALTERNATIVE 2:<br>oxygen reduced to water<br>OR<br>ethanol oxidized to ethanoic/acetic acid √<br>current measured √                                                                                                                     | Accept "ethanol oxidized to ethanal/acetaldehyde".                                                                                                                                                                                            |       |