

Markscheme

November 2015

Chemistry

Standard level

Paper 2

14 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

Subject Details: Chemistry SL Paper 2 Markscheme

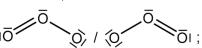
Mark Allocation

Candidates are required to answer **ALL** questions in Section A **[30 marks]** and **ONE** question in Section B **[20 marks]**. Maximum total = **[50 marks]**.

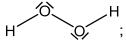
- **1.** A markscheme often has more marking points than the total allows. This is intentional.
- 2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- **5.** Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.

Section A

-4-


1.	(a)	(i)	IO_3^- to I_2 : V/+5 to 0;	
			I^{-} to I_{2} : -I/-1 to 0;	
			Accept change in oxidation number -5 and $+1$.	
			Penalize incorrect notation such as 5+ or 5 once only.	
		(ii)	Oxidizing agent: IO_3^- /iodate and Reducing agent: I^- /iodide;	[1]
	(b)	(i)	1.4 (%);	[1]
			Accept 1 (%).	
		(ii)	systematic;	
			dilute the orange juice; Accept other valid suggestions, eg compare with a standard (showing colour	[2]
			at equivalence) / look at mixture through a yellow filter / add more starch (for a	
			sharper colour change) / filter orange juice (through charcoal). Do not accept repeat the titration or alternative indicator.	
		(iii)	1.44×10 ⁻⁵ (mol);	[1]
	(C)	IO ₃ -	$: 3C_6H_8O_6 / 1:3$ mole ratio;	
		$(1.44 \times 10^{-5} \times 3 =) 4.32 \times 10^{-5}$ (mol);		
			rd [2] for the correct final answer.	
		Awa	ard [1 max] for "4.80 x 10^{-6} (mol)" obtained from reversed ratio,3:1.	
	(d)	$(4.32 \times 10^{-5} \times 176.14 =) 7.61 \times 10^{-3} (g);$		
		Accept $M_r = 176$ and mass = 7.60×10^{-3} (g).		

[1]


[2]

N15/4/CHEMI/SP2/ENG/TZ0/XX/M

2. (a) ।ō̄≡¯Ōı;

The coordinate bond may be represented as an arrow and the formal charges may be shown. Do not accept delocalized structure.

(J) ; [3]

Accept any combination of lines, dots or crosses to represent electron pairs.

- (b) O₂ < H₂O₂ and O₂ has double bond/bond order of 2 (and H₂O₂ has single bond/bond order of 1);
 Do not apply ECF from part (a).
- (c) Any value in the range 110° to <120°; Experimental value = 117°. Accept <120°. Do not accept > 109°.

3 negative charge centres/electron domains with 1 lone pair / lone pair-bond (pair) repulsion greater than bond (pair)-bond (pair) repulsion / lone pair occupies more space than bond (pair)/shared pair (so O–O–O angle reduced);

Do not apply ECF in this question.

www.xtrapapers.com

N15/4/CHEMI/SP2/ENG/TZ0/XX/M

(a) $C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g);$ 3. [1] Ignore state symbols. bonds broken: 2(C-C)/694 + 8(C-H)/3304 + 5(O=O)/2490 / 6488 (kJ); (b) bonds made: 6(C=O)/4476 + 8(O-H)/3712 / 8188 (kJ); (6488 - 8188 =) - 1700 (kJ);[3] Ignore signs in M1 and M2. Award [3] for the correct final answer. Award [2] for +1700 (kJ). Accept values from 2016 data booklet to give 6494 (kJ) for M1, 8528 (kJ) for M2, and -2034 (kJ) for M3. (C) $3C(s) + 3O_2(g) \rightarrow 3CO_2(g) / 3(-394) / -1182;$ $4H_2(g) + 2O_2(g) \rightarrow 4H_2O(g) / 4(-242) / -968$; $C_{3}H_{8}(g) \rightarrow 3C(s) + 4H_{2}(g) / +104$; $(-1182 + (-968) + 104 =) - 2046 (kJmol^{-1});$ [4] Award [4] for the correct final answer. Award **[3]** for +2046 / 2046 (kJ mol⁻¹). part (b) values are based on average (bond enthalpy) values / part (c) values are (d) for specific compounds; [1] ability of an atom to attract (a pair of) electrons in a covalent bond/molecule / 4. (a) (i) ability of an atom to attract a shared pair of electrons; [1] Do not accept nucleus/element instead of atom. do not form bonds/compounds / do not share electrons / have (full/stable) (ii) octet / have full/stable outer shell; [1] Accept (chemically) inert / do not react / stable electron arrangements/ configurations. $(Li \rightarrow Cs)$ atomic/ionic radius increases; (b) attraction between metal ions and delocalized electrons decreases; Accept metallic bonding gets weaker. $(F \rightarrow I)$ London/dispersion/instantaneous induced dipole-induced dipole forces increase: Accept vdW/van der Waals' forces for London/dispersion forces. with increasing number of electrons/molar mass/surface area/size of electron cloud; [3 max] Do not accept "with increasing size" or "with increasing mass" only.

- 6 -

Section B

5.	(a)	(i)	Increasing the pressure, at constant temperature: decreases; more (gas) molecules/moles on the right / fewer (gas) molecules/moles on the left;	
			Increasing the temperature, at constant pressure: increases; (forward) reaction is endothermic;	[4]
		(ii)	(increasing) temperature and (<i>K</i> _c) increases; Award [0] if both temperature and pressure stated.	[1]
		(iii)	equilibrium reached faster; no change in the concentration of reactants/products/yield (at equilibrium) / position of equilibrium is not affected; rates of forward and reverse reactions increase (equally); reduces activation energy;	
			no change in K_c ;	[3 max]
	(b)	(i)	Reaction A: base and accepts a proton/H ⁺ ; Accept donates a pair of electrons.	
			<i>Reaction B</i> : acid and donates/loses a proton/H ⁺ ;	[2]
			Award [1] if base and acid identified correctly without reasons.	
		(ii)	Acid Base	
			Conjugate acid-base pair $1/2$ H_2CO_3 and HCO_3^- ;	
			Conjugate acid-base pair $2/1$ HCO ₃ ⁻ and CO ₃ ²⁻ ;	
			Conjugate acid-base pair $1/2$ H_3O^+ and H_2O ;	[2 max]
	(C)	(i)	<i>strong acid:</i> (assumed to be) completely/100 % dissociated/ionized and <i>weak acid:</i> partially dissociated/ionized;	[1]
		(ii)	Similarity: bubbling/effervescence/gas / heat/increase in temperature / solid dissolves;	
			<i>Difference:</i> strong acid more vigorous / faster reaction / greater temperature increase; <i>Accept converse statements for weak acid.</i>	[2]
		(iii)	10⁴(:1) / 10 ⁻¹ :10 ⁻⁵ / 1:10 ⁻⁴ ; Do not accept inverse ratio, 1:10⁴.	[1]

[2]

(d) (i) Na **and** Mg: basic Al: amphoteric Do not accept amphiprotic.

> Si **to** Cl: acidic Ar: no oxide ;; Award **[2]** for three or four correct, award **[1]** for two correct. Award **[1]** for stating oxides become more acidic towards the right/chlorine or more basic towards the left/sodium. Do not penalize incorrect formulas of oxides.

(ii) $Na_2O(s) + H_2O(l) \rightarrow 2NaOH(aq) / Na_2O(s) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_2O(l);$ Accept a correct equation with any acid or acidic oxide.

 $SO_3(l) + H_2O(l) \rightarrow H_2SO_4(aq) / SO_3(l) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + H_2O(l);$ [2] Accept a correct equation with any metal hydroxide, metal oxide, metal carbonate or metal hydrogen carbonate. Do not accept equation with SO₂.

Ignore state symbols. Accept ionic equations for M1 and/or M2. 6.

 (a) (i) use of colorimeter/colorimetry; measure change/decrease in intensity of (purple) colour; recording of colour intensity at regular time intervals / recording time needed for colour to disappear; calibration curve with known concentration; Accept any three points.

OR

use of (analytical) balance/scale; change/decrease in mass of reaction mixture; recording of mass at regular time intervals / recording time needed for mass to become constant;

-9-

OR

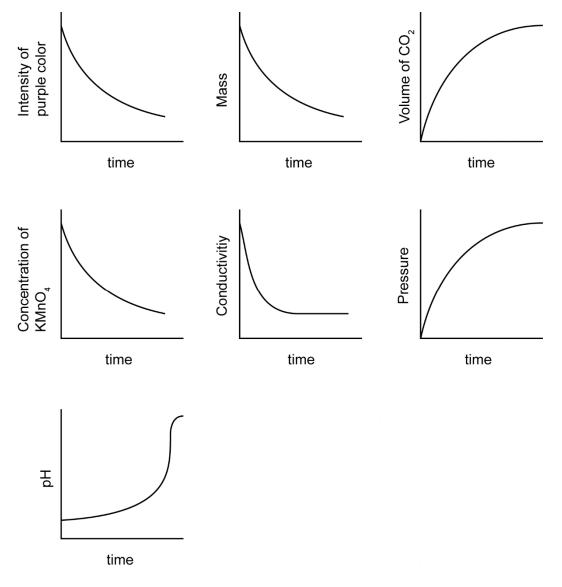
use of gas syringe / inverted gas tube; change/increase volume of carbon dioxide; recording of volume at regular time intervals / recording time needed for volume to become constant;

OR

use of pH meter/probe; change/increase in pH of reaction mixture; recording of pH at regular time intervals / recording time needed for pH to become constant;

OR

use of conductivity meter/probe; change/decrease in conductivity of reaction mixture; recording of conductivity at regular time intervals / recording time needed for conductivity to become constant;

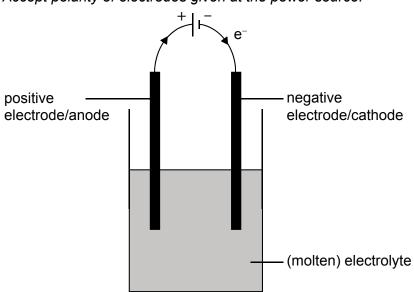

OR

use of pressure sensor; change/increase in pressure of gas; recording of pressure at regular time intervals / recording time needed for pressure to become constant; (ii) axes labelled correctly; Units not required for axes.

> correct shape of curve; Curve must have a slope of a gradually decreasing magnitude (except the pH curve) but does not have to show the end of the reaction/plateau. Accept curve to start or end at zero or non-zero. Accept slight initial horizontal line for mass, volume and pressure curves due to slight solubility of CO_2 released. Accept zero-order graphs. M2 can only be scored if M1 correct.

– 10 –

Examples of graph:



- (iii) rate = slope/gradient of tangent;
- (iv) (rate increases due to) increase in (average) <u>kinetic</u> energy/speed of the particles; increase in frequency of collisions/collisions per unit time; greater proportion/number of particles have energy $\geq E_a$;

[2]

[1]

- (b) (i) Pb < Ni < Fe < Zn ;; Award [2] for the correct order. Award [1] for Zn > Fe > Ni > Pb as metals not listed in order of increasing reactivity. Award [1] if one error in the order.
 - (ii) Pb²⁺ / lead(II) (ions); Do not accept Pb/lead.
- (c) power source and direction of e⁻ movement;
 labelled +/positive electrode/anode and -/negative electrode/cathode and (molten) electrolyte/NiBr₂ (l);
 Accept polarity of electrodes given at the power source.

Negative electrode (cathode) : $Ni^{2+} + 2e^- \rightarrow Ni(l)$; Positive electrode (anode): $2Br^- \rightarrow Br_2(g) + 2e^- / Br^- \rightarrow \frac{1}{2}Br_2(g) + e^-$;

Award **[1 max]** for M3 and M4 if equations are given at wrong electrodes. Ignore state symbols and reversible sign. Allow e instead of e⁻.

- (d) (i) ionization and (bombardment) by high energy/fast moving electrons/electron gun (to form positive ions); acceleration and passing through electric field/potential difference/oppositely charged plates; deflection and passing through magnetic field/electromagnet; [3] Award [1] for naming 3 processes (ionization, acceleration, deflection) in the correct order with incorrect details.
 - to avoid collision with other particles (in the atmosphere) / allows ions to pass through unhindered (by air molecules);
 Reference must be made to interaction with other particles.

[1]

[2]

[4]

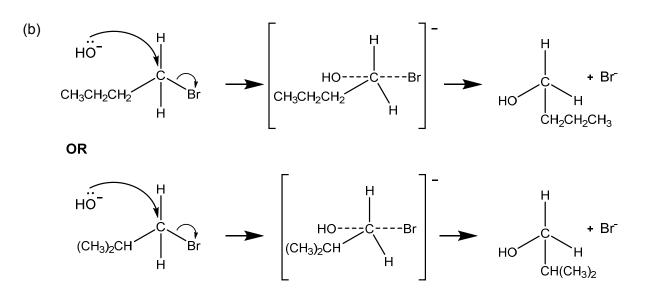
7. (a) (i)
$$\operatorname{RBr}(l) + \operatorname{NaOH}(aq) \rightarrow \operatorname{ROH}(aq) + \operatorname{NaBr}(aq) / \operatorname{RBr}(l) + \operatorname{OH}^{-}(aq) \rightarrow \operatorname{ROH}(aq) + \operatorname{Br}^{-}(aq);$$
 [1]
Ignore state symbols.

- 12 -

(ii)
$$(1.35 \times 10^{-2} - 7.36 \times 10^{-3} =) 6.14 \times 10^{-3} / 6.1 \times 10^{-3}$$
 (mol); [1]

(iii) (molar mass =
$$\frac{0.842}{6.14 \times 10^{-3}}$$
 =) 137 (g mol⁻¹); [1]

Accept 138.


- (iv) $(137 - 80 = 57 \text{ which corresponds to } C_4H_9, \text{ hence molecular formula}) C_4H_9Br;$ [1] Do not accept ECF from 7a(iii) for an impossible molecular formula, such as $C_4H_{10}Br$. Accept correct structural formula of one of the isomers as the molecular formula.
- (v) CH₃CH₂CH₂CH₂Br and primary; (CH₃)₂CHCH₂Br and primary; CH₃CHBrCH₂CH₃ and secondary; (CH₃)₃CBr and tertiary; If primary, secondary or tertiary not stated, award [3] for four correct, [2] for three correct and [1] for two correct structural formulas. Penalize missing hydrogens once only. Accept either full or condensed structural formulas.

If C₅H₁₁Br was used, accept any correct structural formulas. CH₃CH₂CH₂CH₂CH₂Br and primary; (CH₃)₂CHCH₂CH₂Br **and** primary; CH₃CH₂CH(CH₃)CH₂Br **and** primary; (CH₃)₃CCH₂Br and primary: CH₃CHBrCH₂CH₂CH₃ and secondary; CH₃CH₂CHBrCH₂CH₃ and secondary; CH₃CHBrCH(CH₃)₂ and secondary; CH₃CH₂C(CH₃)₂Br and tertiary; [4] If primary, secondary or tertiary not stated, award [3] for four correct, [2] for three correct and [1] for two correct structural formulas. Penalize missing hydrogens once only. Accept either full or condensed structural formulas.

7

www.xtrapapers.com

N15/4/CHEMI/SP2/ENG/TZ0/XX/M

- 13 -

curly arrow going from lone pair/negative charge on O in HO⁻ to C; Do not allow curly arrow originating on H in HO⁻ but do not penalize OH⁻.

curly arrow showing Br leaving; Accept curly arrow either going from bond between C and Br to Br in bromobutane or in the transition state.

representation of transition state showing negative charge, square brackets and partial bonds; Do not penalize if OH and Br are not at 180° to each other.

formation of products CH₃CH₂CH₂CH₂OH/(CH₃)₂CHCH₂OH and Br⁻;

Penalize incorrect side-chain, missing hydrogens and/or incorrect bond linkages (eg OH–C instead of HO–C) only once in this question. Do not penalize missing hydrogens if already penalized in part 7 (a)(v). Award **[2 max]** if S_N 1 mechanism is given. [4]

[2]

N15/4/CHEMI/SP2/ENG/TZ0/XX/M

- (c) (i) CH₃CH₂CH₃ < CH₃CHO < CH₃CH₂OH < CH₃COOH;; Award [2] for correct order. Award [1] if one error in the order. Award [1] for CH₃COOH > CH₃CH₂OH > CH₃CHO > CH₃CH₂CH₃ as compounds are not listed in order of increasing boiling point.
 - (ii) CH₃CH₂CH₃ London/dispersion/instantaneous induced dipole-induced dipole forces
 CH₃CHO dipole-dipole forces (and London/dispersion forces)
 CH₃CH₂OH H-bonding (and dipole-dipole and London/dispersion forces)
 CH₃COOH H-bonding (and dipole-dipole and London/dispersion forces) ;;
 Award [2] for all four correct.
 Award [1] for two or three correct.

- 14 -

H-bonding strongest / London/dispersion forces weakest / dipole-dipole stronger than London/dispersion / dipole-dipole weaker than H-bonding;

Accept vdW/van der Waals' forces for London/dispersion forces.

CH₃COOH forms more/stronger H-bonds than CH₃CH₂OH / CH₃COOH is more polar than CH₃CH₂OH; [4] Accept CH₃COOH has more electrons/higher molar mass than CH₃CH₂OH.

(iii) CH₃COOH; Accept either full or condensed structural formula.

orange to green;