N15/4/CHEMI/SP3/ENG/TZ0/XX/M

Markscheme

November 2015

Chemistry

Standard level

Paper 3

19 pages

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Assessment Centre.

-2-

N15/4/CHEMI/SP3/ENG/TZ0/XX/M

Subject Details: Chemistry SL Paper 3 Markscheme

Mark Allocation

Candidates are required to answer questions from **TWO** of the options **[2 x 20 marks]**. Maximum total = **[40 marks]**.

- **1.** A markscheme often has more marking points than the total allows. This is intentional.
- 2. Each marking point has a separate line and the end is shown by means of a semicolon (;).
- **3.** An alternative answer or wording is indicated in the markscheme by a slash (/). Either wording can be accepted.
- 4. Words in brackets () in the markscheme are not necessary to gain the mark.
- 5. Words that are <u>underlined</u> are essential for the mark.
- 6. The order of marking points does not have to be as in the markscheme, unless stated otherwise.

Option A — Modern analytical chemistry

1.	(a)	each (type of) bond absorbs a specific frequency/wavelength/wavenumber (of IR radiation); bonds absorb radiation that has same frequency as their natural frequency of vibration;	
		(frequencies/wavenumbers associated with) troughs/peaks/region (in IR spectrum) allow identification of bonds (present in molecule);	[2 max]
	(b)	(O–H) bond length changes / bonds stretch; bond angle changes / molecule bends; change in molecular/bond polarity/dipole (moment); <i>Allow [1 max] for M1 and M2 for only stating "vibrations".</i> <i>M1 and M2 can be awarded for diagrams of the</i> H ₂ O <i>molecule and correct arrows.</i>	[3]
	(c)	compound A ; contains C=O corresponding to the absorption at (about) 1760 cm ⁻¹ / 1700–1750 cm ⁻¹ (from data booklet); Accept any specific value in the range 1700–1780 cm ⁻¹ or any range given between 1680 cm ⁻¹ and 1820 cm ⁻¹ .	
		contains OH (hydrogen bonding) of a carboxylic acid corresponding to the absorption at (about) 3000 cm ⁻¹ /2500–3300 cm ⁻¹ (from data booklet) / does not contain OH in alcohol corresponding to absorption in the range 3200–3600 cm ⁻¹ (from data booklet); Accept any specific value in the range 2800–3200 cm ⁻¹ .	[3]
		Award [1 max] for answers choosing compound B because it contains C=O and OH.	
	(d)	compound C : (is the only one that) has 6 signals; compound A : has 5 signals with ratio of areas 3:2:2:2:1; compound B : has 5 signals with ratio of areas 3:3:2:1:1;	[3]
		The numbers in the ratios can be in any order. Accept "peaks" for "signals".	
		Award [1 max] for M2 and M3 for stating " A and B have 5 signals each". Award [2 max] for stating " A and B have 5 signals each and C has six signals".	
	(e)	m/z = 57 : CH ₃ CH ₂ CH ₂ CH ₂ ^{+/} C ₄ H ₉ ⁺ ; m/z = 102 : CH ₃ CH ₂ CH ₂ CH ₂ COOH ⁺ /C ₄ H ₉ COOH ⁺ /C ₅ H ₁₀ O ₂ ⁺ ; Penalize missing + charge once only.	[2]
2.	(a)	identification of metal (ions) in water/solutions/blood/urine/soil/plants/foods/pharmaceuticals/oils; determination of the concentration of metal (ions) in water/solutions/ blood/urine/soil/plants/foods/pharmaceuticals/oils; Accept specific metal ions or specific examples. Accept "detection" for "identification" or "determination".	[1 max]

(b) Fuel:

forms a combustion mixture; Accept "creates a high temperature / produces heat". Accept "(produces a flame that) atomises sample". Do not accept just "vaporizes sample".

Monochromatic detector:

determines absorbance/intensity of light absorbed (at each wavelength) / compares the intensity of the beam passing through the sample with the reference beam (for each wavelength) / converts the intensity of light (absorbed) into an electrical signal; *Accept "amount of absorption" or "amount of light absorbed" instead of "intensity of light absorbed". Do not accept just "detects absorbance/absorption".*

- 5 -

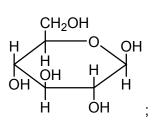
3. (a) Absorption spectra:

electrons absorb a photon/light/wavelength/frequency/energy/radiation **and** move to higher energy level(s); Accept "excited state(s)" for "higher energy level(s)".

Emission spectra:

(excited) electrons move down to lower energy level(s) **and** release a photon/light/wavelength/frequency/energy/radiation; *Accept "state" for "level" throughout.*

Award **[1 max]** if the movement between energy levels is described correctly but the involvement of a photon/light/wavelength/frequency/energy/radiation is omitted. Accept suitable diagrams.


 (b) electric discharge is passed through the sample / high voltage/potential applied (under reduced pressure) / sample is heated strongly; sample emits a photon/light/wavelength/frequency/radiation/energy that is passed through a prism/diffraction grating (to separate the wavelengths);

[2]

[2]

Option B — Human biochemistry

4. (a) (i)

[1]

[1]

[1]

[2]

- (α-glucose) OH/hydroxyl on C₁ is below the ring;
 Accept "alcohol/hydroxy" for "OH/hydroxyl" but not "hydroxide". Penalize this once only on paper.
- (β-)1,4 glycosidic;
 Accept "(β-)1,4 glycoside".
 Accept "1-4" for "1,4".
- (a) vitamin C more soluble as it has four/several/more OH/hydroxyl groups; forms hydrogen bonds with water; Accept converse argument for vitamin D. Accept "alcohol/hydroxy (groups)" for "OH/hydroxyl (groups)" but not "hydroxide". Penalize this only once on paper.

Award [1 max] for stating "Vitamin C is water-soluble and Vitamin D is fat-soluble".

 (b) (eating) fresh foods/fruits / foods rich in vitamins/minerals; adding nutrients missing in commonly consumed foods / (vitamin/mineral) fortification; providing nutritional supplements; Accept any specific examples.

genetic modification of food; educating the population in healthy eating/taking a balanced diet / better labelling of food with more information on products / *OWTTE*; [3 max]

6.

(a)

Type of interaction		Atoms or groups joined by the	
		interaction	
hydrogen bonds	and	OH/C=O/NH and OH/NH (in polar	
		side chains)	;
vdW/van der		non-polar/hydrophobic/hydrocarbon	
Waals'/London/dispersion	and	side chains	;
forces/instantaneous induced			
dipole-induced dipole			
disulphide bridges	and	bonds between two S atoms (in	
		cysteine)	;
ionic/electrostatic	and	charged side chains / cation and	
		anion / NH₃⁺ and COO⁻	;

[2 max]

Award **[1 max]** for two types of interaction **OR** two atoms or groups joined by the interaction.

Do not accept "interaction between O and H" OR "N and H" alone.

N15/4/CHEMI/SP3/ENG/TZ0/XX/M

(b) At its isoelectric point:

$$H_3 N - CH - COO^-$$

 $H_2 - CH_2 - CH_2 - CH_2 - NH_2$

Accept alternate structure where B-C has NH_2 and NH_3^+ is at the end of carbon chain.

-7-

At a pH well below its isoelectric point:

$$H_{3}N - CH - COOH$$

$$\downarrow \\ CH_{2} - CH_{2} - CH_{2} - CH_{2} - \dot{N}H_{3};$$
[2]

Accept
$$H_3 \overset{+}{\mathsf{N}} \overset{-}{-} CH \overset{-}{-} COOH \overset{+}{\mathsf{CH}_2} \overset{-}{-} CH_2 \overset{-}{-} CH_2 \overset{-}{-} CH_2 \overset{-}{-} NH_2.$$

Accept alternate structure where β –C has NH₂ and NH₃⁺ is at the end of carbon chain.

7.	(a)	(mass I_2 reacting with 208.45 g of fatty acid =) $\frac{180 \times 280.45}{100} = 505g$;	
		(moles $I_2 = \frac{505}{253.8} = 2$ hence number of C=C bonds =) 2;	[2]

Award **[1 max]** for correct answer with incorrect working.

- (b) (i) (behenic acid) 41.11 (kJ g^{-1}) and (sucrose) 16.40 (kJ g^{-1}); [1] Ignore negative signs.
 - (ii) behenic acid contains less oxygen/less oxidised than sucrose; [1] Accept converse argument for sucrose.

8. (a) Progesterone:

(two) carbonyl (groups) **and** alkene; Accept "ketone **and** alkenyl/carbon–carbon double bond".

Estradiol:

(two) hydroxyl (groups) **and** benzene ring/aromatic ring; Accept "alcohol", "hydroxy" for "hydroxyl", "phenol" for "benzene ring/aromatic ring" but not "hydroxide", "benzene" or "phenyl". Penalize this once only on paper. Award **[1 max]** for one different functional group identified for both hormones.

(b) Medical use:

increase/recover muscle mass / induce (delayed) male puberty / treat hormone disorders/sex change; Do not accept just "gains weight".

Example of abuse: taken as performance enhancing drugs/PED (in sports to gain unfair advantage) / OWTTE; Do not accept "increase/recover muscle mass" or just "overuse" for abuse.

[2]

[2]

Option C — Chemistry in industry and technology

9. (a) Negative electrode (anode): cadmium (metal);

Electrolyte: (aqueous) potassium hydroxide; *Accept "(aqueous) sodium hydroxide" or "(aqueous) lithium hydroxide".*

Names required not chemical symbols.

(b) Negative electrode (cathode): $Cd(OH)_2(s) + 2e^- \rightarrow Cd(s) + 2OH^-(aq)$

and

Positive electrode (anode): $Ni(OH)_2(s) + OH^-(aq) \rightarrow NiO(OH)(s) + H_2O(l) + e^-$; [1] Ignore state symbols. Accept anode half-equation balanced with $2e^-$. Accept e for e^- .

(c) Any one for **[1 max]** from:

both convert chemical energy to electrical energy; *Accept "both are voltaic/galvanic cells".*

both involve spontaneous reactions;

both have anode acting as negative electrode / both have cathode acting as positive electrode / both have reduction taking place at positive electrode/anode;

Any two for [2 max] from:

fuel cells work non-stop while rechargeable batteries cannot work while recharging;

fuel cells have longer operating life;

fuel cells need a constant supply of reactants/fuel (producing electrical energy as long as fuel is provided to cell) while rechargeable batteries have stored chemical energy providing power until chemicals are used up;

fuel cells convert energy and rechargeable batteries store energy;

fuel cell products must be constantly removed (but not for rechargeable batteries); fuel cells have inert/inactive electrodes/components while rechargeable have active/non-inert electrodes;

fuel cells run at higher temperatures (compared to rechargeable batteries); fuel cells require pumps/cooling systems (while rechargeable batteries do not); chemicals in rechargeable batteries are pollutants / chemicals in fuel cells are not pollutants;

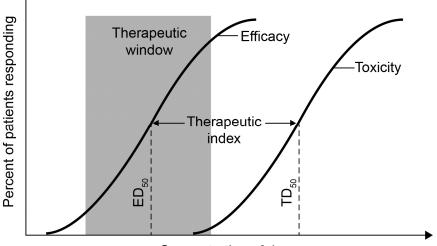
Accept "fuel cells are more expensive (than rechargeable batteries)".

[3]

- 8 -

10. in a nanotube all atoms are held together by (strong) covalent bonds; (a) in graphite there are (weak) intermolecular/London/dispersion/instantaneous induced dipole-induced dipole forces between layers; [2] Accept "vdW/van der Waals' forces" for "London forces". (b) hazards/long term effects associated (with small airborne particles) are not known: nanoparticles have potential to penetrate skin/cell membranes (resulting in unintended effects) / nanoparticles can affect lung tissue/cause breathing problems / workers can be exposed to inhalation of large amounts of nanoparticles / nanoparticles can cause tumours/cancer (by changing genetic material) / nanoparticles can cause heart problems; human/animal immune system may be defenceless against new nanoscale products; may not be covered by current toxicology/toxicity regulations (as properties depend on the size of the particle); [2 max] Accept "nanoparticles can be toxic". 11. (a) Any two from: $2C + O_2 \rightarrow 2CO;$ Allow $C + O_2 \rightarrow CO_2$. $S + O_2 \rightarrow SO_2$; $Si + O_2 \rightarrow SiO_2$; $2Mn + O_2 \rightarrow 2MnO$; $4P + 5O_2 \rightarrow P_4O_{10} / P_4 + 5O_2 \rightarrow P_4O_{10};$ Accept P_2O_5 instead of P_4O_{10} . $CaO + SiO_2 \rightarrow CaSiO_3$; $6CaO + P_4O_{10} \rightarrow 2Ca_3(PO_4)_2$; $FeO + CO \rightarrow Fe + CO_2 / FeO + C \rightarrow Fe + CO / FeO + Mn \rightarrow Fe + MnO /$ $2\text{FeO} + \text{Si} \rightarrow 2\text{Fe} + \text{SiO}_2 / 10\text{FeO} + P_4 \rightarrow 10\text{Fe} + P_4O_{10};$ $Mn + S \rightarrow MnS;$ $Mn + FeS \rightarrow MnS + Fe$; [2 max] Ignore state symbols. (b) high-carbon steel is less malleable/less ductile/harder/more brittle (than low-carbon steel); high-carbon steel is stronger (than low-carbon steel); high-carbon steel has a lower melting point (than low-carbon steel); high carbon steel is less resistant to corrosion (than low-carbon steel); [2 max] Accept converse points for low-carbon steel. road building/construction / hard core / furnace lining; (C) landfill (for land reclamation projects); raw material for sinter plants; soil conditioner:

[2 max]


12.

(a)	thermotropic are pure substances and lyotropic are solutions; thermotropic exhibit liquid crystal properties in a certain temperature range and lyotropic exhibit liquid crystal properties in a certain concentration range; <i>Award</i> [1 max] for a full description of only one type of liquid-crystal material.	[2]
(b)	rod-like/rigid molecules have random positions/are distributed without positional order; (on average) align in same direction/parallel / have directional order (due to their polarity);	[2]

Option D — Medicines and drugs

13. (a) *Therapeutic window:*

range of concentration/dosage over which a drug provides the therapeutic effect without causing adverse effects (to patients) / range of concentration/dosage of drug (able to treat disease successfully) staying within safety limit; *M1 may be scored from a correctly labelled diagram.*

Concentration of drug

Accept "levels for "doses". Accept "is the relative margin of safety of the drug".

Tolerance:

patient needs to take larger amounts of a drug to have the original effect / OWTTE; Do not accept just "body adapts to action of the drug" / OWTTE. Accept the more precise medical definition of tolerance from the American Academy of Pain Medicine ie, "tolerance is a state of adaptation in which exposure to a drug induces changes that result in a diminution of one or more of the drug's effects over time".

(b) Advantage:

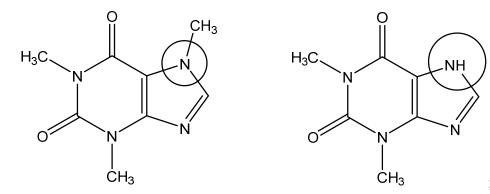
convenient/easy to self-administer;

Disadvantage:

drug action is slower / drug may be digested and be ineffective/less potent / the drug (in the tablet) can be deactivated / easy to take too few tablets / easy to take too many tablets (causing an overdose) / hard to swallow (large tablets);

N15/4/CHEMI/SP3/ENG/TZ0/XX/M

 14. (a) hydroxyl; Accept hydroxy/alcohol/phenol but not hydroxide.
 [1]


 (b) condensation / esterification/acetylation; Accept "diesterification/diacetylation".
 [1]

- 12 -

(c) *Diamorphine:* temporarily binds to/blocks/interferes with receptor sites in the brain / prevents transmission of pain impulses within the CNS/central nervous system;

Mild analgesics: intercept the pain stimulus at source / blocks/interferes with production of prostaglandins/compounds that cause pain/swelling/fever / inhibits/blocks/interferes with enzyme at site of pain; *Do not award M2 if prostaglandin is said to be an enzyme.*

15. (a)

Both circles required for the mark. Do not accept the imine.

(b) increase (mental) alertness/brain activity; Do not accept just "increase concentration".

> relax air passages; reduce appetite; (in large amounts) can cause restlessness/sleeplessness/insomnia/delusions/hallucinations/fits; cause palpitations/tremors; increase blood pressure / constricts blood vessels; increase heart rate; [2 max] For (mental) alertness/brain activity, blood pressure and heart rate there must be reference to an increase in these. Do not accept "increase in sweating". Do not accept "addiction".

[2]

[1]

N15/4/CHEMI/SP3/ENG/TZ0/XX/M

16.	(a)	alter cell's genetic material; (change cell membrane so that they) inhibit virus entry/binding to cell; prevent virus from leaving cell (after reproduction); become part of DNA of virus / alter virus / block enzyme (polymerase) which builds DNA;	
		prevent virus from using cell to multiply/reproduce/replicate;	[2 max]
	(b)	mutation of virus/HIV; virus/HIV metabolism linked to that of host cell / drugs harm host cell as well as virus/HIV;	
		virus/HIV destroys (helper/T) cells of immune system;	[1 max]
	(C)	leads to resistance/makes antibiotics less effective; destroys useful/beneficial bacteria; destroyed bacteria replaced by more harmful bacteria; resistant bacteria grow/pass on their immunity/mutation to next generation;	[2 max]
		Do not accept "increased cost of developing antibiotics".	
17.	(a)	Colour change: orange to green; Accept "yellow to green".	
		<i>Type of reaction:</i> redox / oxidation and reduction;	[2]
	(b)	Infrared: absorption of C–H / 2850–3100 cm ⁻¹ measured; Accept any specific wavenumber within this range. Accept "absorption of C–O / 1050–1410 cm ⁻¹ measured".	
		compare absorption/height/size of peak/intensity to standard/reference;	
		OR	
		<i>Fuel cell:</i> ethanol is oxidised (to CO ₂ and H ₂ O); current/voltage/potential is proportional to ethanol concentration/level;	[2]

– 13 –

Option E — Environmental chemistry

18.	(a)	(as the concentration/amount of air/oxygen increases) CO emissions decrease; as CO is oxidized/reacts with oxygen (to form CO_2) / more complete combustion occurs (in engine);	[2]
	(b)	N ₂ /nitrogen and O ₂ /oxygen react to produce NO _x /nitrogen oxides; (as air to fuel ratio increases) amount of air (in engine) increases; more NO _x /nitrogen oxides produced (as a result); at very large air to fuel ratios/lean engine temperature in engine drops (less fuel	
		burning); (reaction between N_2 /nitrogen and O_2 /oxygen) requires high temperatures;	[4 max]
19.	(a)	nitrogen oxides/NO _x / halons / 1,1,1-trichloroethane / tetrachloromethane/CCl ₄ ;	[1]
	(b)	Advantage: do not deplete ozone as they do not contain Cl/C–Cl bonds; Disadvantage: absorb IR radiation/are greenhouse gases hence contribute to global warming / more expensive to produce; Do not accept just "HFCs do not contain Cl".	[2]
20.	(a)	Award [1] for any two from: requires less energy than extracting metals preserves ores/raw materials reduces amounts of waste / waste metals occupy space in landfills reduces CO ₂ emissions that cause global warming reduces damage to landscape/soil caused by mining reduces water/air pollution caused by extraction (alloys can be used) reducing the need for complete purification of the metal dumping of metals is an environmental hazard;	[1]
	(b)	Award [1] for any two from: plastics glass paper textiles electronics;	[1]
21.	(a)	due to irrigation; salts (in irrigation water) accumulate in soil as water evaporates; poor drainage;	[2 max]
	(b)	source of nutrients; contributes to resilience of soil; improves structural stability of soil; improves water-retention; alters soil's thermal properties; enhances the ability of soil to buffer pH changes; forms stable complexes with cations; contributes to cation-exchange capacity/CEC / ability to hold nutrient ions; binds to contaminants/heavy metals/pesticides (reducing their effect) / binds to organic (and inorganic) substances; <i>For last marking point there must be a reference to "binding" / OWTTE.</i>	[3 max]

– 14 –

22. (a) Award [1] for any two from: food animal waste dead animals/plants; Accept "organic material/sewage".

(b) as oxygen-demanding wastes are high at the farm BOD is high / decay of excess plant growth at farm causes high BOD; oxygen-demanding wastes broken down downstream from farm decreasing BOD; oxygen levels decrease as oxygen is used up in the decomposition (of plants); oxygen levels increase further down as more oxygen dissolves from air/less BOD; respiration of plants (at night) causes decrease in dissolved oxygen; [3 max]

[1]

[3]

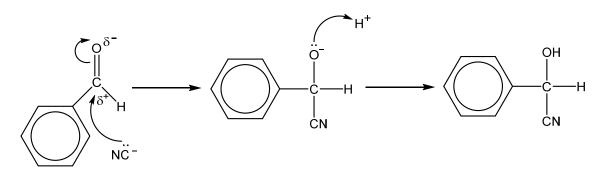
Option F — Food chemistry

23.

Characteristic	Nutrient
Contains an ester group	fats/oils/lipids/triglycerides; Accept "vitamin C/ascorbic acid".
Made up of monosaccharides	carbohydrates; Accept specific correct examples of disaccharides, polysaccharides.
Essential for healthy bones	calcium (ion) / vitamin D/calciferol; Accept other nutrients such as "phosphorus", "magnesium" or "protein" but not just vitamins.

Accept names, structures of chemical formulas.

24.	(a) elaidic acid; Do not accept molecular formula.		•	[1]	
	(b)	closer packing (of fatty acids) for <i>trans</i> isomer / has a greater surface area / greater distortion of electron cloud; greater London/dispersion/instantaneous induced dipole-induced dipole forces (in <i>trans</i> isomer); Accept "vdW/van der Waals' forces" for "London forces". Accept greater intermolecular forces (in trans isomer). Accept converse arguments for cis isomer.			
	 (c) increase levels of LDL cholesterol / decrease levels of HDL cholesterol / less effective as an energy source / accumulates in fatty tissue / difficult to metabolize/digest / are difficult to excrete from the body; Accept greater risk of cardiovascular disease/atherosclerosis. Do not accept "increases level of bad cholesterol" or "decreases level of good cholesterol". 				
25.	(a)	(i)	bad/disagreeable smell/appearance/texture/taste;	[1]	
		(ii)	<i>Type:</i> oxidative;		
			Explanation: addition of oxygen/O ₂ ; to C=C bond/ <u>carbon–carbon</u> double bond;	[3]	
			Do not award M2 if M1 is incorrect.		
	(b)	more	er salt content leads to) higher water content; microbial spoilage/activity / more reactions involving micro-organisms will place;	[2]	


N15/4/CHEMI/SP3/ENG/TZ0/XX/M

26.	26. (a) carotenoids; Do not accept "carotenes". Accept "Lycopene: carotene and zeaxanthin: carotenoid".		[1]
	(b)	 (i) absorb light in the visible region of the spectrum / absorb visible light; transmit the complementary light; Accept "reflect" for transmit" but not "emit". 	[2]
		Accept explanations based on pigments having extensive conjugation and needing less energy to excite the electrons so absorption occurs in the visible region of the spectrum / OWTTE.	
		 (ii) Award [1] for any two from: temperature Accept heat/heating. 	
		pH light effects of oxidative compounds / oxidation presence of metal ions;	[1]
27.	(a)	(kinetically) stable mixture of one phase in another (largely) immiscible phase;	[1]
	(b)	hydrophobic/non-polar end attracts oils/fats and hydrophilic/polar/ionic end attracts water; lecithin acts as an interface/surface between phases (in the dispersed system);	[2]

– 17 –

Option G — Further organic chemistry

28. (a)

curly arrow going from lone pair/negative charge on C in CN⁻ to carbonyl C **and** curly arrow going from bond in C=O to O; Do not allow curly arrow originating on N of CN⁻. Partial charges not required.

representation of intermediate anion with negative charge on O; Lone pair on O not required.

curly arrow going from	lone pair/negative charge on O of intermediate ar	nion to H ⁺ ;	[3]

- (b) (i) CH₃MgBr/CH₃MgI; Accept "CH₃MgCl".
 - (ii) magnesium/Mg **and** bromomethane/CH₃Br/iodomethane/CH₃I; *Accept "chloromethane/CH₃Cl" for haloalkane.*

ether/diethyl ether/ethoxyethane / dry/absence of water; Accept "non-polar solvent".

(c) Type of reaction: elimination/dehydration; Reagent: (conc) phosphoric acid/H₃PO₄; Accept "(conc) sulfuric acid/H₂SO₄".

> *Condition:* heat/reflux/180 °C; *Accept any specific value in the range of 150–250 °C.*

[3]

[1]

29. (a)

Rr

[1]

Accept either a condensed or full structural formula.

(b) $(CH_3)_2C^+CH_2CH_3;$ more electron-releasing/electron-donating groups in tertiary / inductive effect of alkyl groups pushes electron-density onto positive carbocation in tertiary / OWTTE: tertiary carbocation more stable than secondary carbocation / OWTTE; [3] Do not award marks for reference to Markovnikov's rule without explanation. Accept structure of secondary carbocation for M1 if consequent converse argument is then conveyed (eg M3: secondary less stable than tertiary). 30. For the Cl atoms directly attached to the ring: C-Cl bonds stronger/less polar owing to delocalization of lone pair on Cl (with the pi electrons in benzene ring) / pi electrons in benzene ring repel OH-/nucleophile / benzene ring/electron cloud prevents OH- attacking from opposite direction to C-Cl bond; For the Cl atoms attached to the $-C_2H_4$ -group: OH⁻/nucleophile attacks the electron-deficient/ δ^+ C atom attached to Cl: [2] 31. CH₃ is electron-releasing/donating / positive inductive effect; (a) N is more electron-rich / positive ion/CH₃NH₃⁺ more stable; N more likely to accept/attract a proton / CH₃NH₃⁺ less likely to lose H⁺; [2 max] sodium/potassium/lithium hydroxide; [1] (b) Accept any other strong base. 32. condensation/addition-elimination: butanone/CH₃COCH₂CH₃; [2]