GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

1. Annotations

Annotation	Meaning
R	Correct response
A	Incorrect response
BOD	Omission mark
CON	Benefit of doubt given
RE	Contradiction
SF	Rounding error
ECF	Error in number of significant figures
L1	Error carried forward
L2	Level 1
L3	Level 2
NBOD	Level 3
SEEN	Benefit of doubt not given
I	Noted but no credit given

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Oreverse argument

Quest	Answer	Marks	AO element	Guidance
	Electronegativity and boiling point Boiling point/Energy increases with increased electronegativity (difference) \checkmark Type of intermolecular force HF AND NH_{3} have hydrogen bonding AND CH_{4} has London forces/induced (dipole-)dipole interactions Comparison between strength of intermolecular forces HF has stronger hydrogen bonding than NH_{3} OR hydrogen bonding is stronger than London forces \checkmark	3	AO1.1 AO1.2 AO2.1	ANNOTATE WITH TICKS AND CROSSES ALLOW ORA throughout ORA IGNORE permanent dipole interactions IGNORE IDID IGNORE HF and NH_{3} are polar/ CH_{4} is non-polar IGNORE strength of ionic and covalent bonds
(d)	A: $\quad \mathrm{Ca}_{3} \mathrm{~N}_{2}$ (formula required) \checkmark B: $\quad \mathrm{NH}_{3}$ OR ammonia C: $\quad \mathrm{Ca}(\mathrm{OH})_{2} \mathbf{O R}$ calcium hydroxide Equation: $\mathrm{Ca}_{3} \mathrm{~N}_{2}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+3 \mathrm{Ca}(\mathrm{OH})_{2} \checkmark$	4	$\begin{gathered} \mathrm{AO} 1.1 \\ \mathrm{AO} 2.7 \\ \times 2 \\ \mathrm{AO} 2.6 \end{gathered}$	IGNORE working If \mathbf{B} and \mathbf{C} labels are the wrong way round $\mathbf{O R}$ missing, award $1 / 2$ for \mathbf{B} and \mathbf{C} labels, i.e. for $\mathbf{B} \mathrm{Ca}(\mathrm{OH})_{2} \quad \mathbf{C} \mathrm{NH}_{3} \quad 1 / 2$ marks ALLOW CaO ${ }_{2} \mathrm{H}_{2}$ ALLOW multiples for equation IF C = CaO, ALLOW ECF for: $\mathrm{Ca}_{3} \mathrm{~N}_{2}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NH}_{3}+3 \mathrm{CaO}$

Quest	Answer	Marks	AO element	Guidance
(e)	```\(2 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow\) \(2 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COONa}+\mathrm{CO}_{2}+\) \(\mathrm{H}_{2} \mathrm{O}\) \(\mathrm{CO}_{2}\) and \(\mathrm{H}_{2} \mathrm{O} \mathrm{OR} \mathrm{CH} \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COONa}\) as product(s) \(\checkmark\) Balanced equation correct \(\checkmark\) \(3 \mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COOH}+\mathrm{Al} \rightarrow\left(\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}\right)_{3} \mathrm{Al}+1 \frac{1}{2} \mathrm{H}_{2}\) \(\mathrm{H}_{2} \mathrm{OR}\left(\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{COO}\right)_{3} \mathrm{Al}\) as product \(\checkmark\) Balanced equation correct \(\checkmark\)```	4	$\begin{gathered} \mathrm{AO} 2.6 \\ \times 4 \end{gathered}$	ALLOW multiples IGNORE state symbols ALLOW ions shown separately For CO_{2} AND $\mathrm{H}_{2} \mathrm{O}$, ALLOW $\mathrm{H}_{2} \mathrm{CO}_{3}$ ALLOWCOONa+ (i.e. one of charges missing) ALLOWCOO) ${ }_{3} \mathrm{Al}^{3+}$ (i.e. one of charges missing)

Question	Answer Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
			ALLOW $\mathrm{S}_{\mathrm{N}} 1$ mechanism First mark Dipole shown on $\mathrm{C}-\mathrm{Cl}$ bond, $\mathrm{C}^{\delta+}$ and $\mathrm{Cl}^{\delta-}$, AND curly arrow from $\mathrm{C}-\mathrm{Cl}$ bond to Cl atom Second mark Correct carbocation AND curly arrow from $\mathrm{CH}_{3} \mathrm{COO}^{-}$ to carbocation Curly arrow must be from lone pair on O of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ OR from minus on O of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ion (no need to show lone pair if curly came from - charge) Third mark Correct organic product AND $\mathrm{Cl}^{-} \checkmark$

	ues	Answer	Marks	AO element	Guidance
2	(a)	Closed system that would work (Labels not required) Reaction apparatus with tube/side arm AND gas collection apparatus AND closed system \checkmark Labels Reaction apparatus, e.g.: Conical flask, Buchner flask/conical flask with side arm, test-tube, boiling tube. AND Gas collection apparatus: (gas) syringe OR gas collection over water with labelled measuring cylinder / burette \checkmark	2	$\begin{gathered} \mathrm{AO} 3.3 \\ \times 2 \end{gathered}$	ALLOW small gaps provided there is an attempt to show closed system DO NOT ALLOW delivery tube below reaction mixture For reaction apparatus, - DO NOT ALLOW flask, volumetric flask, beaker, measuring cylinder - Delivery tube, bung does NOT need a label ALLOW labels for diagram without closed system (e.g. bung missing), i.e. 2nd mark but not 1st mark ALLOW any of these diagrams. ALLOW a single line for the tube IGNORE Sealed end of delivery tube IGNORE size of syringe/measuring cylinder/burette

Question		Answer	Marks	AO element	Guidance
3	(a)	$\begin{aligned} & n\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)=0.150 \times \frac{250}{1000} \text { OR } 0.0375(\mathrm{~mol}) \checkmark \\ & \text { Mass } \mathrm{Ba}(\mathrm{OH})_{2}=0.0375 \times 171.3=6.42375(\mathrm{~g}) \end{aligned}$ Dissolve solid in (distilled) water (less than $250 \mathrm{~cm}^{3}$) in beaker Transfer (solution) to volumetric flask AND Transfer washings (from beaker) to flask \checkmark Make up to mark/up to $250 \mathrm{~cm}^{3}$ with (distilled) water AND Invert flask (several times to ensure mixing) \checkmark	5	$\begin{gathered} \text { AO2.4 } \\ \times 2 \\ \\ \text { AO1.2 } \\ \times 3 \end{gathered}$	ALLOW ECF from incorrect $n\left(\mathrm{Ba}(\mathrm{OH})_{2}\right)$ ALLOW 6.42 up to 6.42375 correctly rounded 6.42 g subsumes 1 st mark ALLOW conical flask for beaker ALLOW graduated flask DO NOT ALLOW round-bottom or conical flask
	(b)		7	AO2.8 $\times 4$ AO3.2 $\times 1$	Use ECF throughout Intermediate values for working to at least 3 SF. TAKE CARE as value written down may be truncated value stored in calculator. Depending on rounding, either can be credited. ALLOW Mass \mathbf{D} in $25.0 \mathrm{~cm}^{3}=\frac{3.215}{4}=0.80375 \mathrm{~g}$ $\text { Molar mass }(D)=\frac{0.80375}{7.05 \times 10^{-3}}=114$

Question	Answer	Marks	AO element	Guidance
	cis stereoisomers. The drawn stereoisomers must have - Different groups attached to each C atom of $\mathrm{C}=\mathrm{C}$ - Each C of $\mathrm{C}=\mathrm{C}$ has the same group on the same side Many possibilities, e.g. ALLOW correct structural, with 'cis' part displayed OR skeletal OR displayed formula OR mixture of above as long as non-ambiguous ALLOW side chains as molecular formula, e.g. $\mathrm{C}_{3} \mathrm{H}_{7}$ for $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ OR CH $\mathrm{CH}_{2} \mathrm{CH}_{2}$ e.g. $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$ for $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ IGNORE poor connectivity to all groups		$\begin{gathered} \mathrm{AO} 3.2 \\ \times 2 \end{gathered}$	COMMON ERRORS: Up to Molar mass $=114$ (1st 4 marks) $M=456 \rightarrow 3 / 4$ marks (mol in $100 \mathrm{~cm}^{3}$ omitted) $M=\frac{3.215}{7.05 \times 10^{-3}}=456$ $M=228 \rightarrow 3 / 4$ marks (No $\times 2$ for $n(D)$) $\begin{aligned} & 3.525 \times 10^{-3} \times \frac{100}{25.0}=0.0141 \\ & M=\frac{3.215}{0.0141}=228 \end{aligned}$ $M=100.8 \rightarrow 3 / 4 \text { marks }$ 23.50 instead of 25.00 and scaling by $\times \frac{100}{23.50}$ $\begin{aligned} & 25.0 \times \frac{0.150}{1000}=3.75 \times 10^{-3} \times \\ & \rightarrow 2 \times 3.75 \times 10^{-3}=7.5 \times 10^{-3} \\ & \rightarrow 7.5 \times 10^{-3} \times \frac{100}{23.50}=0.0319 \\ & \rightarrow \frac{3.215}{0.0319} \rightarrow 100.8 \end{aligned}$ THEN ALLOW ECF for carboxylic acid closest to calculated M (alkyl group) but must be $\mathrm{C}_{n} \mathrm{H}_{2 n-1}$ e.g. For M (alkyl) $=100$, ALLOW C $_{4} \mathrm{H}_{7}$ (55) For $\boldsymbol{M}($ alkyl $)=411, ~ A L L O W ~ C_{29} \mathrm{H}_{57}(405)$ OR $\mathrm{C}_{30} \mathrm{H}_{59}$ (419) THEN judge cis isomers with closest match ALLOW 1 mark for 2 trans isomers shown instead of 2 cis isomers ECF for Same error made twice.

| Question | | Answer | Marks | AO
 element | Guidance |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: |

Question		Answer	Marks	AO element	Guidance
					Determination of k with units - Rate constant k clearly linked to initial rate OR half-life: $k=\frac{\text { rate }}{\left[\mathrm{I}_{2}\right]} \text { OR } k=\frac{\ln 2}{t_{1 / 2}}$ - $\quad k$ determined correctly from measured initial rate or measured half life with units of s^{-1}, $\text { e.g. } k=\frac{5.5 \times 10^{-6}}{0.02}=2.75 \times 10^{-4} \mathrm{~s}^{-1}$ from initial rate of $5.5 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1} \mathrm{OR}$ from $t_{1 / 2}$ of 2500 s - Typical range $2.25-3.25 \times 10^{-4}$
(c)	(i)	$\begin{aligned} & \text { Reactants for 1st step: } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{I}_{2} \checkmark \\ & \text { 2 steps that add up to overall equation: } \\ & \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHICH}_{2} \mathrm{I} \checkmark \\ & \text { e.g. } \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{I}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHICH}_{2}^{+}+\mathrm{I}^{-} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHICH}_{2}^{+}+\mathrm{I}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHICH}_{2} \mathrm{I} \end{aligned}$	2	$\begin{gathered} \mathrm{AO} 2.5 \\ \times 2 \end{gathered}$	ALLOW mechanism for electrophilic addition shown. IGNORE state symbols Must be based on slow step, i.e. 2nd mark dependent on correct slow step: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{I}_{2}$ IGNORE actual positioning of + charge ALLOW $\rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHICH}_{2}+\mathrm{I} \quad$ (no charge) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHICH}_{2}+\mathrm{I} \rightarrow$
	(ii)	Repeat experiment with [I_{2}] constant/kept the same OR use (large) excess of $I_{2} \checkmark$ Monitor/measure/plot $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]$ over time OR Monitor/measure how $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right]$ affects rate \checkmark	2	$\begin{gathered} \mathrm{AO} 3.4 \\ \times 2 \end{gathered}$	ALLOW I_{2} in (great) excess ALLOW initial rates approach of running several experiments with different concentrations of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ i.e. Measure initial rates for each experiment AND double concentration \rightarrow rate doubles

Question			Answer	Marks	AO	Guidance
5	(a)	(i)	Reduction: $\mathrm{Na}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Na} \checkmark$ Oxidation: $2 \mathrm{~N}_{3}-\rightarrow 3 \mathrm{~N}_{2}+2 \mathrm{e}^{-} \checkmark$ ALLOW 1 mark for 2 correct equations but wrong way round	2	A01.2	ALLOW multiples $\text { e.g. } 2 \mathrm{Na}^{+}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Na}$ IGNORE state symbols
		(ii)	FIRST CHECK ANSWER ON ANSWER LINE IF mass = 34.5 (g) AND working using ideal gas equation Award 5 marks for calculation Rearranging ideal gas equation $n=\frac{p V}{R T} \checkmark$ Unit conversion AND substitution into $n=\frac{p V}{R T}$: - $R=8.314$ OR 8.31 - $V=16(.0) \times 10^{-3}$ - Tin K: 290 K e.g. $\frac{1.20 \times 10^{5} \times 16.0 \times 10^{-3}}{8.314 \times 290}$ Calculation of \boldsymbol{n} $n=0.796(\mathrm{~mol}) \checkmark$ Calculation of mass $\begin{aligned} & n\left(\mathrm{NaN}_{3}\right)=\frac{2}{3} \times 0.796=0.531(\mathrm{~mol}) \\ & \text { mass } \mathrm{NaN}_{3}=0.531 \times 65=34.5(\mathrm{~g}) \\ & 3 \mathrm{SF} \text { required } \end{aligned}$	5	$\begin{gathered} \mathrm{AO} 2.4 \\ \times 5 \end{gathered}$	TAKE CARE as value written down may be truncated value stored in calculator. IF $n=\frac{p V}{R T}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation. Calculator: 0.7963302448 From unrounded 0.7963302448 , $n\left(\mathrm{NaN}_{3}\right)=0.5308868299$ $\begin{aligned} & \text { mass }=0.5308868299 \times 65=34.50764394 \\ & \rightarrow 34.5 \text { to } 3 \text { SF } \end{aligned}$ COMMON ERROR 51.7 OR $51.8 \rightarrow 4$ marks $\quad(2 / 3$ omitted depending on intermediate rounding $0.796 \times 65=51.7 \text { OR } 51.8$ $54.4 \rightarrow 4$ marks (inverted gas equation) $n=\frac{R T}{p V} \rightarrow 1.255760417 \rightarrow 0.8371736111$ $\rightarrow 54.4$ (g) CARE with intermediate rounding 81.6 OR $81.7 \rightarrow 3$ mks (as above but no 2/3)

Question		Answer	Marks	AO element	Guidance
(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=2.75$ award 2 marks $\begin{aligned} {\left[\mathrm{H}^{+}\right]^{2}=} & \left.K_{a} \times\left[\mathrm{HN}_{3}\right]\right)=2.51 \times 10^{-5} \times 0.125 \\ {\left[\mathrm{H}^{+}\right]=} & \sqrt{ }\left(K_{a} \times\left[\mathrm{HN}_{3}\right]\right) \\ & {\left[\mathrm{H}^{+}\right]^{2}=2.51 \times 10^{-5} \times 0.125 } \\ & \mathrm{OR}\left[\mathrm{H}^{+}\right]=\sqrt{ }\left(2.51 \times 10^{-5} \times 0.125\right) \\ & \mathrm{OR}\left[\mathrm{H}^{+}\right]=1.77 \ldots \times 10^{-3}\left(\mathrm{~mol} \mathrm{dm}^{-3}\right) \checkmark \\ \mathrm{pH}= & -\log 1.77 \ldots \times 10^{-3}=2.75 \text { (Must be to 2DP) } \checkmark \end{aligned}$	2	$\begin{gathered} \mathrm{AO} 2.2 \\ \times 2 \end{gathered}$	ALLOW ECF throughout IGNORE error with HN_{3} shown as NH_{3} ALLOW pH mark by ECF ONLY if $2.51 \times 10^{-5} \times 0.125$ used AND pH <7 Common errors (Must be to 2 DP) $\mathrm{pH}=5.50 \rightarrow 1$ mark (No square root) $\begin{aligned} & {\left[\mathrm{H}^{+}\right]=6.26 \times 10^{-4} \text { from } \sqrt{ }\left(2.51 \times 10^{-5}\right) \times 0.125} \\ & \mathrm{pH}=3.20 \rightarrow 1 \text { mark } \\ & {\left[\mathrm{H}^{+}\right]=8.87 \times 10^{-6} \text { from } \sqrt{ }(0.125) \times 2.51 \times 10^{-5}} \\ & \mathrm{pH}=5.05 \rightarrow 1 \text { mark } \end{aligned}$
	(ii)	- Correct equation \checkmark - Correct acid-base pair labels for correct equation \checkmark	2	$\begin{gathered} \mathrm{AO} 1.2 \\ \times 2 \end{gathered}$	ALLOW 1 mark for one correct acid-base pair WITH correct labels

Question		Answer	Marks	AO element	Guidance
(c)*		Please refer to the marking instructions on page 6 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of E,F,G, H, I and J There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of $\mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}$ and \mathbf{J} There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Reaches a simple conclusion to determine the correct formulae of some of E, F, G, H, I and J There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.	6	$\begin{gathered} \mathrm{AO} 3.1 \\ \times 2 \\ \\ \mathrm{AO} 3.2 \\ \times 4 \end{gathered}$	Indicative scientific points may include: Identify of E, F, G, H, I and J - E Cu/copper - $\mathbf{F}: \mathrm{H}_{2} \mathrm{O} /$ water - G: $\mathrm{N}_{2} /$ nitrogen - H: $\mathrm{CH}_{3} \mathrm{COCl}$ OR ClCH $\mathrm{CHO}_{2} \mathrm{OR} \mathrm{C} \mathrm{C}_{2} \mathrm{OCl}$ - I: $\mathrm{CH}_{3} \mathrm{CONH}_{2}$ OR $\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CHO}$ - J: $\mathrm{NH}_{4} \mathrm{Cl} /$ ammonium chloride Examples of reasoning Working $\begin{aligned} & n(\mathrm{CuO})=\frac{4.77}{(63.5+16)}=0.06(\mathrm{~mol}) \\ & M(\mathbf{E})=3.81 \div 0.06=63.5 \\ & n(\mathbf{G})=\frac{480}{24000}=0.02 \\ & M(\mathbf{G})=\frac{0.560}{0.02}=28\left(\mathrm{~g} \mathrm{~mol}^{-1}\right) \end{aligned}$ Infrared spectrum I contains - $\mathrm{C}=\mathrm{O}\left(\sim 1700 \mathrm{~cm}^{-1}\right)$ - $\mathrm{NH}_{2}\left(\sim 3200-3400 \mathrm{~cm}^{-1}\right)$ Equations $3 \mathrm{CuO}+2 \mathrm{NH}_{3} \rightarrow 3 \mathrm{Cu}+3 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2}$ $\mathrm{CH}_{3} \mathrm{COCl}+2 \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{CONH}_{2}+\mathrm{NH}_{4} \mathrm{Cl}$ OR $\mathrm{ClCH}_{2} \mathrm{CHO}+2 \mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{CHO}+\mathrm{NH}_{4} \mathrm{Cl}$

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

