

GCE

Chemistry A

Unit H032/01: Breadth in chemistry

Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
X	Incorrect response
	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

SECTION A

Question	Answer	Marks	Guidance
1	С	1	
2	C	1	
3	В	1	
4	C	1	
5	Α	1	
6	C	1	ALLOW +6
7	D	1	
8	С	1	
9	Α	1	
10	D	1	
11	В	1	
12	В	1	
13	C	1	
14	В	1	
15	D	1	
16	C	1	ALLOW 3
17	Α	1	
18	D	1	
19	С	1	
20	D	1	
	Total	20	

Mark Scheme

June 2018

SECTION B

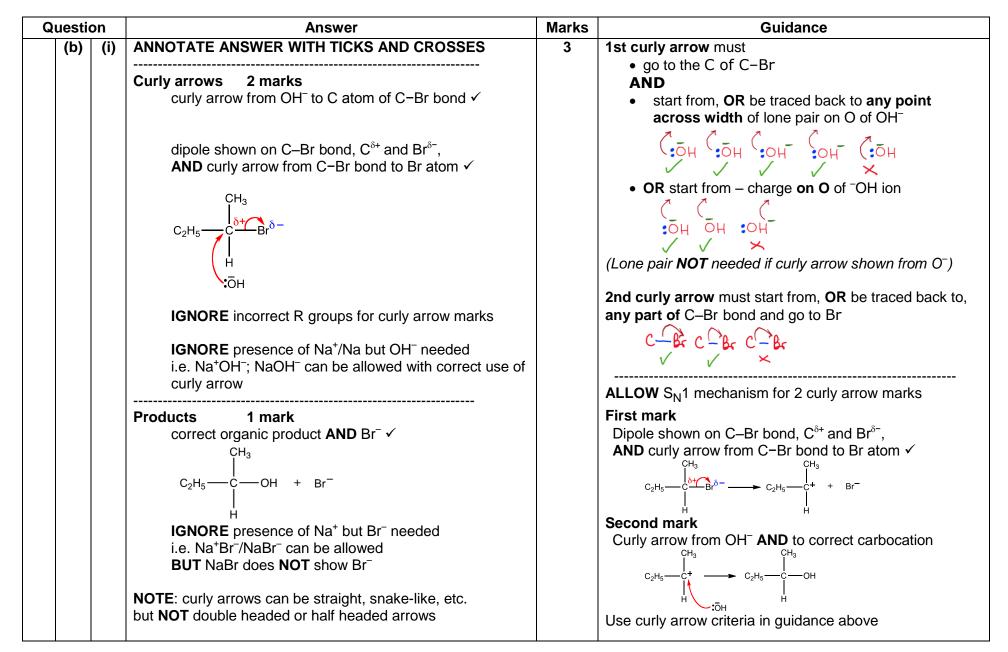
	Ques	tion				Answe	r		Marks	Guidance
21	(a)	(i)		²⁹ Si	Protons 14	Neutrons 16	Electrons 14	✓	1	
	(a)	(ii)	IF a <u>(28</u> OR	nswer <u>× 92.2</u> 28.108	[.] = 28.11 (t	o 2 DP) awa 4.68) + (30 >)	HE ANSWER ard 2 marks ≪ 3.09)	LINE	2	 For 1 mark: ALLOW ECF → to 2 DP if: %s used with wrong isotopes ONCE OR transposed decimal places for ONE %
	(b)	(i)		• Cl (>	neck that lo		<i>Cl and O are</i> electrons (3 L ons (2 LPs)		1	NOTE: O and CI electrons MUST be shown differently from C electrons (e.g. expected answer) IGNORE inner shells ALLOW diagram with missing C, O or CI symbols. For C=O bond, ALLOW sequence ×ו• ALLOW non-bonding electrons unpaired

Question	Answer	Marks	Guidance
(b) (ii)	Shape Trigonal planar ✓	3	ALLOW bp for bonded pair
	 Number of bonded regions (C has) 3 electron (dense) regions OR 3 bonding regions ✓ Electron pair repulsion (Seen anywhere) electron pairs/bonded pairs/bonded regions repel OR electron pairs move as far apart as possible 		 ALLOW 3 bonded pairs (BOD) OR 3 sigma bonds OR 2 bonded pairs and 1 double bond OR 4 bonded pairs including a double bond IGNORE bonded atoms IGNORE just 3 bonds ALLOW alternative phrases/words for repel e.g. 'push apart'
	OR bonds repel ✓		IGNORE electrons repel <i>(pairs needed)</i> DO NOT ALLOW atoms repel
(C)	Highest energy electron(s) in a p orbital/p sub-shell ✓	1	 ALLOW outer electron(s) in a p orbital/sub-shell BUT IGNORE p shell ALLOW electron configuration ends in p OR the last electron is in a p orbital ALLOW valence electron(s) in p orbital/sub-shell
	Total	8	

Q	uesti	on	Answer	Marks	Guidance
22	(a)	(i)	Oxidised AND (Mg) transfers/loses/donates 2 electrons ✓ 2 essential	1	ALLOW Mg loses 6 electrons: 3 Mg in equation ALLOW Mg \rightarrow Mg ²⁺ + 2e ⁻ IGNORE oxidation numbers (even if wrong)
	(a)	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 2.26 (3 SF) award 3 marks $n(H_3PO_4) = \frac{1.24 \times 50.0}{1000} = 0.062(0) \text{ (mol) } \checkmark$ $n(Mg) = \frac{3}{2} \times 0.062(0) = 0.093(0) \text{ (mol) } \checkmark$ mass of Mg = 0.0930 × 24.3 = 2.26 (g) \checkmark 3 SF required	3	At least 3SF needed throughout BUT ALLOW no trailing zeroes (e.g. 0.062 for 0.0620) ALLOW ECF from $n(H_3PO_4)$ ALLOW ECF from $n(Mg)$ COMMON ERRORS for 2 marks 3:2 ratio omitted $\rightarrow n(Mg) = 0.062(0) \rightarrow 1.51$ (g) Inverted 2:3 ratio $\rightarrow n(Mg) = 0.0413 \rightarrow 1.00$ (g)
	(a)	(iii)	Separation of solid Filter to obtain solid/precipitate ✓ Requires realisation that solid is filtered off. Solid may be stated within in 'removal of water' Removal of water Dry (solid) OR Evaporate (water/solution/liquid) ✓	2	ALLOW Removal of water Evaporate/ distil water/solution/liquid ✓ IGNORE 'distil' if product OR H₂ is distilled Collection of remaining solid ✓ Requires realisation that solid remains IGNORE 'Leave to crystallise' (already solid)
	(a)	(iv)	Formula MgO OR Mg(OH) ₂ OR MgCO ₃ OR soluble Mg salt \checkmark Equation $3MgO + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 3H_2O$ OR $3Mg(OH)_2 + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 6H_2O$ OR $3MgCO_3 + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 3CO_2 + 3H_2O \checkmark$	2	In equation: NO ECF from incorrect formula ALLOW multiples IGNORE state symbols (even if incorrect) Soluble Mg salts include MgCl ₂ , MgSO ₄ , Mg(NO ₃) ₂ , MgBr ₂ , Mgl ₂ If unsure, check with TL e.g. $3MgCl_2 + 2H_3PO_4 \rightarrow Mg_3(PO_4)_2 + 6HCl$

Question	Answer		Guidance	
(b) (i)	FIRST CHECK ANSWER ON THE ANSWER LINE IF answer = 315 (cm ³) award 4 marks	4	If there is an alternative answer, check to see if there is any ECF credit possible	
	Amount of PH ₃ $n(PH_3) = \frac{3.20 \times 10^{-2}}{4}$ OR $8(.00) \times 10^{-3}$ (mol) \checkmark		ALLOW ECF throughout	
	Unit conversions		Common Errors (3 marks)	
	$p \text{ conversion} \rightarrow Pa = 100 \times 10^3 \text{ (Pa)}$ AND $T \text{ conversion} \rightarrow K = 473 \text{ (K)} \checkmark$		Use of $n(H_3PO_4) = 3.20 \times 10^{-2}$ (Very common) $V = \frac{3.2(0) \times 10^{-2} \times 8.314 \times 473}{100 \times 10^3} \times 10^{6}$	
	Evidence of use of rearranged gas equation		= 1258.40704 cm ³ (1260 to 3 SF) No temperature conversion from ^o C to K	
	OR $V = \frac{nRT}{p}$ OR $V = \frac{8(.00) \times 10^{-3} \times 8.314 \times 473}{100 \times 10^{3}}$ OR $V = 3.15 \times 10^{-4} \checkmark$		$V = \frac{8(.00) \times 10^{-3} \times 8.314 \times 200}{100 \times 10^{3}} \times 10^{6}$ = 133 cm ³	
	$Calculator: = 3.1460176 \times 10^{-4}$		<i>No p conversion from kPa to Pa</i> $V = \frac{8(.00) \times 10^{-3} \times 8.314 \times 473}{100} \times 10^{6}$	
	V conversion of $m^3 \rightarrow cm^3$ $V = 3.15 \times 10^{-4} \times 10^6 = 315 \text{ cm}^3 \checkmark$		$v = 100 \times 10$ = 315000 cm ³	
	<i>Calculator from unrounded cm</i> ³ : 314.60176 cm ³ <i>Requires 3 OR MORE SF, correctly rounded</i>		No volume conversion from m^3 to cm^3 $V = 3.15 \times 10^{-4}$	
	ALLOW use of R = 8.31 \rightarrow 314.4504 \rightarrow 314 to 3SF		IGNORE use of 24/24000 for molar volume e.g. 3.2(0) × 10^{-3} × 24000 = 768 scores zero 8(.00) × 10^{-3} × 24000 = 292 scores 1st mark only	
(b) (ii)	$4PH_3 + 8O_2 \rightarrow P_4O_{10} + 6H_2O \checkmark$	1	ALLÓW multiples	
	Total	13		

Quest	tion	Answer	Marks	Guidance		
23 (a)) (i)	(i) FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta_r H = -457$ OR -458 (kJ mol ⁻¹) award 4 marks IF $\Delta_r H = \pm 229$ OR 457 (kJ mol ⁻¹) award 3 marks	4	FULL ANNOTATIONS MUST BE USED		
		Energy released in J OR kJ = 25.0 × 4.18 × 28.0 = 2926 (J) OR 2.926 (kJ) \checkmark Correctly calculates n(AgNO ₃) = 0.512 × $\frac{25.0}{1000}$ = 1.28 × 10 ⁻² (mol) \checkmark		ALLOW ECF throughout ALLOW 2930 J OR 2.93 kJ DO NOT ALLOW < 3 SF IGNORE any sign and units <i>i.e. ALLOW correctly calculated number in J OR kJ</i>		
		$\Delta H \text{ per mole } AgNO_3 \text{ in } \text{kJ } AND \text{ 3 } \text{SF}$ Answer MUST divide energy by $n(AgNO_3)$ $\pm \frac{2.926}{1.28 \times 10^{-2}} = \pm 228.59375$ $= \pm 229 \text{ (kJ) } \checkmark$ 3 SF needed Sign NOT needed $\Delta H \text{ for 2 mol } AgNO_3 \text{ AND - sign } AND \text{ 3 } \text{SF}$ $\Delta H_r = 2 \times -228.59375 = -457 \text{ (kJ mol}^{-1})$ OR $2 \times -229 = -458 \text{ (kJ mol}^{-1}) \checkmark$		Alternative approach using 1 mol Mg Energy released = 2926 (J) OR 2.926 (kJ) \checkmark $n(AgNO_3)$ = 1.28 × 10 ⁻² (mol) \checkmark $n(Mg) = \frac{1.28 \times 10^{-2}}{2}$ = 6.4 × 10 ⁻³ (mol) \checkmark $\Delta H_r = \frac{2.926}{6.4 \times 10^{-3}}$ = -457 (kJ mol ⁻¹) \checkmark - sign AND 3 SF needed		
(a)) (ii)	Ag⁺(aq) + Cl⁻(aq) → AgCl(s) ✓ State symbols required	2	ALLOW AgNO ₃ (aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO ₃ (aq)		
		White precipitate AND AgNO₃/Ag ⁺ NOT ALL reacted OR NO white precipitate AND AgNO₃/Ag ⁺ ALL reacted ✓		Observation needs to be linked to conclusion		


Question	Answer	Marks	Guidance
(b)	Boltzmann distribution 3 marks	4	FULL ANNOTATIONS MUST BE USED THROUGHOUT NOTE: Look for marking criteria within annotations on Boltzmann distribution diagram
	Curve Curve Starts within one small square of origin AND curve does not touch x axis at high energy AND curve does not increase by more than one small square at higher energy ✓ Labels Axes labels correct:		IGNORE slight inflexion on the curve For labels, ALLOW number of particles ALLOW amount of molecules/particles IGNORE number of atoms
	 Number of molecules AND Energy ✓ Curves for two temperatures Drawing of two curves with higher and lower temperature clearly identified in diagram or text 		ALLOW kinetic energy IGNORE enthalpy for energy IGNORE curves meeting at higher energy BUT DO NOT ALLOW crossing over by more than one small
	 AND higher <i>T</i> maximum to right AND at least one small square lower than lower <i>T</i> max ✓ <i>Explanation</i> 1 mark More molecules have energy greater than E_a OR 		square ALLOW more molecules have the energy to react IGNORE more successful collisions OR collide more frequently
	Greater area under curve above $E_a \checkmark$ Could be in diagram	10	DO NOT ALLOW explanation is in terms of two activation energies (i.e. 'catalyst explanation)

Mark Scheme

Quest	stion	Answer	Marks	Guidance
24 (a))	Structural isomers:1 markDifferent structural formulaeAND same molecular formula ✓	5	For 'structural': ALLOW different structure OR different displayed/ skeletal formula DO NOT ALLOW any reference to spatial/space/3D Same formula is not sufficient (no 'molecular')
		Common molecular formula: 1 mark C_5H_{12} for all 3 hydrocarbons \checkmark		Different arrangement of atoms is not sufficient (no 'structure'/'structural') ALLOW 5 carbons and 12 hydrogens
				ALLOW for 2 marks: Different structural formulae AND same molecular formula ✓ of C ₅ H ₁₂ ✓
		 Boiling point and branching: 1 mark Boiling point decreases with more branching OR more methyl/alkyl groups/side chains OR shorter carbon chain ✓ 		 Comparisons needed throughout ORA throughout ALLOW comparison between any alcohols, e.g. A is least branched and has highest b pt C is most branched and has lowest b pt
		Branching and London forces:1 markCould be seen anywhere within response1 markMore branching gives less (surface) contact1AND fewer/weaker London forces ✓1		ALLOW induced dipole(–dipole) interactions IGNORE van der Waals'/vdw forces ALLOW SA for surface area
		Energy and intermolecular forces: 1 mark Less energy to break London forces/ intermolecular forces/intermolecular bonds/ ✓		ALLOW 'harder to overcome intermolecular forces ALLOW more energy to separate the molecules IGNORE just 'bonds' <i>intermolecular/London forces required</i>

Question	Answer	Marks	Guidance
(b) (i)	Radical substitution ✓	1	ALLOW Free radical substitution
(b) (ii)	$ \begin{array}{c cc} A & B \\ \hline 3 \checkmark & 4 \checkmark \end{array} $	2	
(b) (iii)	Structure of D Structure of a trichloro isomer of A , e.g. CI CI CI CI CI CI CI CI CI CI	2	ALLOW correct structural OR displayed OR skeletal formula OR mixture of the above (as long as unambiguous) IGNORE molecular formula
	Equation C ₅ H ₁₂ + 3Cl ₂ → C ₅ H ₉ Cl ₃ + 3HCl ✓ Molecular formulae required NO ECF from incorrect structure of D		ALLOW multiples, e.g. $2C_5H_{12} + 6Cl_2 \rightarrow 2C_5H_9Cl_3 + 6HCl$
	Total	10	

Q	uesti	on	Answer	Marks	Guidance
25	(a)	(i)	$H_{3}C \longrightarrow H$ H H H H H H H H H	3	ALLOW correct structural OR displayed OR skeletal formulae OR mixture of the above (as long as unambiguous) IGNORE molecular formula ALLOW CH ₃ –
	(a)	(ii)	2-methylpropan-1-ol ✓ Both numbers required	1	IGNORE absence of hyphen or use of dots or commas as separators DO NOT ALLOW 2-methylprop-1-ol OR 2-methpropan-1-ol OR 2-methypropan-1-ol

Mark Scheme

Q	Question		Answer	Marks	Guidance
	(b)	(ii)	Disappearance of peak at 500–800 cm ⁻¹ OR C–Br peak ✓	2	ALLOW value within range 500–800 cm ⁻¹
			Appearance of peak at 3200–3600 cm ⁻¹ OR alcohol O–H peak ✓		ALLOW value within range 3200–3600 cm ⁻¹
					DO NOT ALLOW responses that only describe the spectrum shown
			Total	9	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

© OCR 2018

