www.xtrapapers.com

GCE

Chemistry A

H032/01: Breadth in chemistry

Advanced Subsidiary GCE

Mark Scheme for November 2020

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2020

Annotations

Annotation	Meaning
\checkmark	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	AO element	Guidance
1	С	1	1.2	
2	С	1	1.2	
3	В	1	1.1	
4	A	1	1.1	
5	A	1	2.1	
6	A	1	1.2	
7	В	1	1.2	
8	С	1	1.2	ALLOW 4
9	A	1	2.2	
10	В	1	2.6	
11	С	1	2.6	
12	D	1	1.1	
13	В	1	1.2	ALLOW 0.054(0)
14	A	1	1.2	
15	С	1	1.1	
16	С	1	1.1	
17	A	1	1.2	
18	С	1	2.8	ALLOW 36.7
19	В	1	1.2	
20	С	1	2.6	
	Total	20		

SECTION B

	Questi	on			Answer			Marks	AO element	Guidance
21	(a)		Shell Electrons Requires al	1st shell 2 I 4 number	2nd shell 8 s to be cor	3rd shell 18 rect ✓	4th shell 32	1	1.1	
	(b)		Similarities	rent numbo s:	er of) neutr of) protons		rons √	2	1.1×2	IGNORE different masses/mass numbers throughout (<i>Question asks for atomic structures</i>) ALLOW 'amount' for 'number' ALLOW 'electron configuration' for electrons
	(c)	(i)	FIRST CHE If answer = (35 × 75.76 = 35.48 (to	= 35.48 (to) + (37 × 24 100	2 DP) awa	rd 2 marks		2	1.2×2	 For 1 mark: ALLOW ECF → to 2 DP if: %s used with wrong isotopes ONCE OR transposed decimal places for ONE % AND calculated A_r is between 35 and 37
	(c)	(ii)		-	hlorine-35 4 ✓	AND chlor	rine-37√	2	3.1 3.2	

	Ques	stion	Answer	Marks	AO element	Guidance
22	(a)	(i)	(1s²)2s²2p ⁶ 3s²3p ⁶ 3d ¹⁰ 4s²4p ⁵ ✓ Look carefully at 1s²2s²2p ⁶ 3s²3p ⁶ – there may be a mistake	1	1.2	ALLOW 3d after 4s ² , e.g. 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ² 3d ¹⁰ 4p ⁵ ALLOW upper case D, etc and subscripts, e.g4S ₂ 3D ₁ DO NOT ALLOW [Ar] as shorthand for 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ IGNORE 1s ² repeated
	(a)	(ii)	$P_4 + 6Br_2 \rightarrow 4PBr_3 \checkmark$	1	2.6	ALLOW multiples
	(b)		Giant ionic ✓ In solid state/lattice, ions are fixed (in position) OR cannot move AND In liquid state, ions are mobile OR can move ✓	2	1.1	'Giant' is essential Mark independently of 1st structure mark IGNORE comments about electrons for solid IGNORE 'free' ions

Question	Answer	Marks	AO element	Guidance
(c)	FIRST CHECK ANSWER LINES If molecular formula = BrF₅ AND 174.6/175 AND working showing use of ideal gas equation Award 5 marks for calculation	5		ALLOW ECF throughout
	Rearranging ideal gas equation $n = \frac{pV}{RT} \checkmark$		2.2×4	IF $n = \frac{pV}{RT}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation.
	Unit conversion AND substitution into $n = \frac{pV}{RT}$: • $R = 8.314 \text{ OR } 8.31$ • $V = 76(.0) \times 10^{-6} \text{ (m}^3)$ • $T \text{ in } K$: 373 K e.g. $\frac{1.00 \times 10^5 \times 76.0 \times 10^{-6}}{8.314 \times 373} \checkmark$ Calculation of n using p, V, R AND T $n = 2.45 \times 10^{-3} \text{ (mol) } \checkmark$			ALLOW conversion of V into dm ³ AND p in kPa Gives same answer in powers of 10 Calculator value: from 8.314 = $2.450725899 \times 10^{-3}$ from 8.31 = $2.45190555 \times 10^{-3}$ IGNORE figures after 5 in 2.45
	Calculation of M $M = \frac{0.428}{2.45 \times 10^{-3}} = 174.6 \checkmark$			ALLOW ECF from a value of <i>n</i> that has been derived from $pV = nRT$ e.g. 0.174.6 OR 0.175 from 2.45
	<i>Molecular formula</i> BrF₅ OR F₅Br ✓		3.2	ALLOW ECF matching ECF <i>M</i> from <i>pV</i> = <i>nRT</i>
Use of 24 dm ³				
	3.17×10^{-3} BrF ₃ \checkmark ECF			

	Questi	on	Answer	Marks	AO element	Guidance
23	(a)		</th <th>3</th> <th>3.1×2</th> <th>ALLOW ECF throughoutALLOW use of 171 within working (Use of A_r: Ba 137 rather than 137.3)Calculator: 0.02270869819 IGNORE figures after 7 in 0.0227ALLOW working with ×10 before ×2 Use of ×10Use of ×10= 10 × 0.0227 = 0.227 (mol) ✓</br></th>	3	3.1×2	ALLOW ECF throughoutALLOW use of 171 within working (Use of A_r : Ba 137 rather than 137.3)Calculator: 0.02270869819 IGNORE figures after 7 in 0.0227ALLOW working with ×10 before ×2 Use of ×10Use of ×10= 10 × 0.0227
			Use of ×10 = 10×0.0454 Concentration of OH ⁻ = 0.454 (mol dm ⁻³) \checkmark 3 SF required		3.2	Use of $\times 2$ Concentration of OH ⁻ = 2×0.227 = $0.454 \pmod{\text{mol dm}{-3}} \checkmark$ 3 SF required <u>Common error</u> 0.227 no $\times 2$ 2 marks
	(b)	(i)	(Titres that agree) within 0.1 cm ³ ✓	1	2.3	ALLOW within 0.05 cm ³ ALLOW ml for cm ³ If cm ³ units are absent, ASSUME cm ³ BUT DO NOT ALLOW incorrect units, e.g. dm ³ ; mol dm ⁻³

Ques	tion	Answer	Marks	AO element	Guidance
(b)	(ii)	FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 0.0856 (mol dm ⁻³) award 3 marks	3		Use ECF throughout
		$n(\text{HNO}_3) = 0.160 \times \frac{26.75}{1000} = 4.28 \times 10^{-3} \text{ (mol) } \checkmark$		2.8×2	DO NOT ALLOW 4.3×10^{-3} BUT remaining marks available by ECF e.g.
		n(Ba(OH) ₂) in 25.0 cm ³ = $\frac{4.28 \times 10^{-3}}{2}$ = 2.14 × 10 ⁻³ (mol) ✓			4.3 × 10 ⁻³ ÷ 2 = 2.15 × 10 ⁻³ ✓ ECF 2.15 × 10 ⁻³ × $\frac{1000}{25}$ = 0.086 ✓ ECF
		Concentration = $2.14 \times 10^{-3} \times \frac{1000}{25}$ = 0.0856 (mol dm ⁻³) \checkmark		2.4	$2.15 \times 10^{-3} \times \frac{10^{-3}}{25} = 0.086 \vee ECF$
(c)		Route 1 Reactant: Add water (to Ba) OR H₂O in equation ✓	4	3.3	ALLOW multiples in equations
		Balanced equation: Ba + 2H ₂ O \rightarrow Ba(OH) ₂ + H ₂ \checkmark		2.6	Balanced equation automatically collects 2 marks for Route 1
		Route 2 Balanced equation with O_2 2Ba + $O_2 \rightarrow 2BaO \checkmark$		3.3	ALLOW 1 mark for BOTH reactants in route 2: i.e. React with O ₂ AND then with H ₂ O
		Balanced equation with H₂O BaO + H₂O → Ba(OH)₂ ✓		3.3	NOTE 3 correct balanced equations \rightarrow 4 marks

Questio	Answer	Marks	AO element	Guidance
24 (a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = -46 (kJ mol ⁻¹) award 3 marks Use of $\Delta_c H$ values and balancing numbers $\pm (+180 + (3 \times -286)) \text{ OR } \pm 678$ AND $\pm (2 \times -293) \text{ OR } \pm 586 \text{ seen anywhere } \checkmark$ Correct subtraction using ΔH (-678) - (-586) $= -92 (kJ mol^{-1}) \checkmark$ Calculation of $\Delta_f H(\text{NH}_3)$ formation $\Delta t H(\text{NH}_3) = \frac{-92}{2} = -46 (kJ mol^{-1}) \checkmark$	3	2.6×3	FULL ANNOTATIONS MUST BE USEDALLOW ECF throughoutCOMMON ERRORS -92 omission of $\div 2$ for $\Delta t H(NH_3)$ $(+)46$ Incorrect subtraction $(+)92$ Incorrect subtraction & no $\div 2$ $(+)92$ Incorrect subtraction & no $\div 2$ $(+)92$ Incorrect subtraction $\oplus no \div 2$ $(+)92$ Incorrect subtraction $\oplus no \div 2$ $(+)480$ no $\times 2$ for -293 $(+)480$ no $\times 3$ for -286 and no $\div 2$ $(+)480$ no $\times 3$ for -286 and no $\div 2$ $(+)187$ no $\times 3$ for -286 AND no $\times 2$ for -293 AND no $\div 2$ $(+)93.5$ no $\times 3$ for -286 AND no $\times 2$ for -293 $(+)93.5$ no $\times 3$ for -286 AND no $\times 2$ for -293 $(+)93.5$ no $\times 3$ for -286 AND no $\times 2$ for -293 $(+)93.5$ no $\times 3$ for -286 AND no $\times 2$ for -293 $(+)93.5$ no $\times 3$ for -286 AND no $\times 2$ for -293 $(+)93.5$ no $\times 3$ for -286 AND no $\times 2$ for -293 $(+)93.5$ no $\times 3$ for -286 AND no $\times 2$ for -293
(b)	Boltzmann distribution (seen anywhere) 2 marks (Number of) molecules Curve Curve Curve starts close to origin (ALLOW flexibility) AND curve does not touch x axis at high energy ✓ Labels (Number of) molecules/particles AND Energy ✓	5	1.1×2	FULL ANNOTATIONS THROUGHOUT NOTE: Look for marking criteria within annotations on Boltzmann distribution diagram IGNORE slight inflexion on the curve IGNORE small increase at end of curve For labels, ALLOW kinetic energy IGNORE number of atoms IGNORE enthalpy for energy

Question	Answer	Marks	AO element	Guidance
	Curves for two temperatures 1 mark		1.2×3	TemperatureDrawing of two labelled curvesAND higher temperature peakat higher energyAND lower on moleculesIGNORE curves meeting at higher energyHigher temperature curve must cross overASSUME that T2 is higher temperature than T1
	Catalyst and activation energy 1 mark			Catalyst Ec shown at lower energy than Ea on Boltzmann distribution IGNORE catalyst provides a lower activation energy Boltzmann distribution not used
	 Explanation At higher temperature OR in presence of catalyst More molecules/particles/collisions have energy above activation energy OR have enough energy to overcome E_a ✓ Could be shown on diagram(s) using shaded area with annotations 			ALLOW more molecules have energy to react ALLOW <i>E</i> ^a for activation energy ALLOW <i>E</i> ^c for activation energy with catalyst IGNORE more successful collisions OR collide more frequently

Question	Answer	Marks	AO element	Guidance
25 (a)	polymerisation HBr HBr HBr HBr HBr HBr HBr H CH ₃ H H H CH ₃ H CH ₃	3	2.5×3	 ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous For repeat unit, 'side bonds' required on either side of repeat unit from C atoms DO NOT ALLOW > one repeat unit IGNORE brackets IGNORE n ALLOW in either order
(b)	$H \qquad \qquad$	4	1.2	 ANNOTATE ANSWER For curly arrows, ALLOW straight or snake-like arrows and small gaps (see examples) 1st curly arrow must go to a Br atom of Br-Br AND start from, OR be traced back to any point across width of C=C C = C C C = C C C =

Question	Answer	Marks	AO element	Guidance
Question	Answer3rd curly arrow Correct carbocation with + charge on C with 3 bonds AND curly arrow from Br- to C+ of carbocationDO NOT ALLOW δ + on C of carbocationHHHHHCH3 	Marks	-	Guidance $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$
	each successive member differs by $CH_2 \checkmark$			formula Differs by CH ₂ is not sufficient (<i>no successive</i>) ALLOW differs by CH ₂ each time AW

H032/01	
---------	--

Q	Question		Answer	Marks	AO element	Guidance
	(c)	(ii)	CnH2n-2 ✓	1	3.2	ALLOW CnH2(n-1)
	(c)	(iii)	$H_{3}C - C \equiv C - H + 2Br_{2} \longrightarrow H_{3}C - C - C - H$	2		ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
			Br Br Left-hand side, i.e. Reactants, balanced with 2Br₂ ✓ Right-hand side, i.e. Product ✓		2.5 2.6	ALLOW C ₃ H ₄ for H ₃ CC=CH Questions asks only for structure of product ALLOW H ₃ CCBr ₂ CHBr ₂ OR H ₃ CCBr ₂ CBr ₂ H
	(c)	(iv)	Any 2 structures from: $H_3C - C \equiv C - CH_3$ $H_2C = C - C = C - CH_2$ $H_2C = C - CH_3$ $H_2C = C - C - CH_2$ $H_2C = C - CH_3$ $H_2C = C - CH_3$	2	3.2×2	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous
	(c)	(v)	$\begin{array}{c} CH_{3} & CH_{3} \\ \\ H_{3}C - C \\ H \\ H \\ C \end{array} C = C \\ C \\ H \\ C \\ C$	1	2.5	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

