

GCE

Chemistry B

H033/02: Chemistry in depth

Advanced Subsidiary GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
×	Incorrect response
^	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Q	Question		Answer	Mark	AO element		
1	(a)	(i)	$C_{10}H_{22} \rightarrow C_4H_8 + C_6H_{14} \checkmark$	1	1.2	Molecular formulae of both products required	
1	(a)	(ii)		1	2.5	IGNORE non-skeletal representation used as working and not rubbed out if a correct skeletal representation is present	
1	(b)		Collecting tube must be full of water ✓	4	3.3	ALLOW answers drawn and/or written onto the diagram	
			(otherwise) gaseous products/gas will not collect in tube		3.4	ulagram	
			Bung is required to hold delivery tube in heated tube ✓		3.3		
			(otherwise) gaseous products/gas will escape (into atmosphere) ✓		3.4		
1	(c)		Propene ✓	1	2.1	ALLOW propylene	
1	(d)		There is a lack of free rotation about the C=C ✓ The groups on each carbon atom (of the double bond) are different ✓	2	1.1 x 2	ALLOW no rotation DO NOT ALLOW 'movement' unless qualified by 'rotational' IGNORE 'E/Z'	
1	(e)		$CH_{3}CH_{2}CH=CH_{2}+I^{\delta+}-CI^{\delta-}\rightarrow CH_{3}CH_{2}C^{+}HCH_{2}I+CI^{-}$ $CH_{3}CH_{2}C^{+}HCH_{2}I+CI^{-}\rightarrow CH_{3}CH_{2}CHCI^{\prime}CH_{2}I$ $\checkmark \text{ for partial charges and curly arrow on ICI}$	3	1.2 x 3	Curly arrows should start (when projected back if necessary) on the relevant bond (or the minus charge or lone pair of Cl ⁻) and end (when projected forward if necessary) on the atom concerned or the bond about to be formed. ALLOW Cl: with or without lone pair in step 1	
			✓ for full charges ✓ for other two curly arrows				

поэс	7 02		IVIAIN SC	Jui			
Q	Question		Answer		rk AO element	Guidance	
1	(f)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 23.3 (dm ³) to 3 or more s.f. (23.2642) award 4 marks	4		ALLOW 2 or more sf ALLOW ECF	
			M_r of $C_8H_{18} = 114$ n of $C_8H_{18} = (3.42/114) = 0.03$ mol n of CO_2 and $H_2O = (17 \times 0.03) = 0.51$ mol (mark is for $0.51 -$ working not required) \checkmark		2.6		
			pV = nRT V = nRT/p (mark is for changing subject of equation – can be implied by substitution of numbers, even before T conversion) ✓		2.6		
			V = 0.51 x 8.314 x (550+273)/150000 (mark is for T conversion) ✓		2.6		
			$V = 2.33 \times 10^{-2} \text{ m}^3$ $V = 23.3 \text{ dm}^3$ (mark is for V conversion from m³ to dm³) \checkmark		2.2		
1	(g)	(i)	Identity of compound: Ethanol/C₂H₅OH/CH₃CH₂OH ✓	1	3.1	ALLOW displayed formula IGNORE molecular formula of C ₂ H ₆ O	
		(ii)	Evidence from mass spectrum: Molecular ion peak at $m/z = 46$ OR $M_r = 46$ \checkmark	1	3.2		
		(iii)	Evidence from IR spectrum: O-H at 3350 (cm ⁻¹) ✓	1	3.2	Evidence from IR spectrum must include both bond and wavenumber ALLOW reference to the range 3200 - 3600	

ПU33 UZ	IVIAIK SC			Jul
1 *(h)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Gives a balanced and detailed account of the adv and disadv of biofuels (detailed means more than a simple statement). There is a well-developed line of reasoning which is clear and logically structured. Level 2 (3-4 marks) Gives a balanced account of the advantages and disadvantages of biofuels. OR Gives a detailed account of the advantages and outlines the disadvantages of biofuels, or vice versa. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence. Level 1 (1-2 marks) Gives some of the advantages of biofuels. OR Gives some of the disadvantages of biofuels. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. O marks No response or no response worthy of credit.	6	1.2 x 3 2.5 x 3	Advantages (compared with fossil fuels) • renewable • the CO ₂ they produce when burnt is the CO ₂ the plants absorbed while growing/they are carbon neutral/less greenhouse gases/less global warming • can be produced from waste (that would otherwise go to landfill) • sustainable • can be used as a straight replacement for diesel • (biodiesel is) biodegradable (if spilled) • (virtually) no sulfur/less SO ₂ /less acid rain • less particulates/less damage to lungs • less CO/less poisonous emissions • less HC emissions/less photochemical smog/less respiratory problems (Ignore references to cost) Disadvantages (compared with fossil fuels) • not a straight replacement for petrol/car engines need to be modified (to use fuels of high ethanol concentration) • land used to grow crops for food • not carbon neutral as CO ₂ is still produced when producing and transporting the fuel • more NO _x • (NO _x causes, so) more tropospheric ozone/more respiratory problems (Ignore references to cost)

позз	02		IVIAI K S	Julie		
Qı	Question		Answer	Mark	AO element	Guidance
2	(a)		anode (+) $2Cl^- \rightarrow Cl_2 + 2e^- \checkmark$ cathode (-) $2H_2O + 2e^- \rightarrow 2OH^- + H_2 \checkmark$	2	2.3 x 2	ALLOW multiples or halves of equations ALLOW $2Cl^ 2e^- \rightarrow Cl_2$ ALLOW $2H^+ + 2e^- \rightarrow H_2$ ALLOW 'e' for 'e-' IGNORE state symbols
2	(b)	(i)	It is the oxidation state/number of the chlorine/Cl (in chloric(I) acid)/the OS/N of chlorine/Cl is +1 ✓	1	1.2	Both oxidation state and species required If OS/N is given it must be +1 NOT 1+
2	(b)	(ii)	It is easier to transport/store/handle/less toxic (ORA) ✓ because it is a solid and chlorine is a gas ✓	2	2.3 x 2	The reason must be linked to the state and compared with the chlorine
2	(c)	(i)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 2.48 x 10^{-5} (mol dm ⁻³) to 3 s.f. award 4 marks Amount $S_2O_3^{2-}$ = $(12.4 / 1000 \times 0.000100) = 1.24 \times 10^{-6}$ (mol) \checkmark Amount of Cl_2 = $(1.24 \times 10^{-6} / 2) = 6.20 \times 10^{-7}$ (mol) \checkmark Concentration of Cl_2 = $(6.2 \times 10^{-7} \times 1000 / 25) = 2.48 \times 10^{-5}$ (mol dm ⁻³) \checkmark Appropriate number of s.f. = 3 \checkmark	4	2.4 x 4	Award fourth mark independently for any number to 3sf that results from a shown calculation. ALLOW ECF

11000	02		IVIAIR S	CHEILIE		Julie 2
2	(c)	(ii)	Any three from: (in 1) a 25 cm³ measuring cylinder – use a measuring/graduated/volumetric pipette (instead) ✓ (in 2) rinse out a burette with de-ionised water – use the sodium thiosulfate/standard solution (instead) ✓ (in 3) record the initial burette reading to the nearest 0.1 cm³ – should be to the nearest 0.05/±0.05 (instead) ✓ (in 5) add a few drops of starch indicator – (this should not be added before titrating –) add when addition of sodium thiosulfate has caused iodine/brown colour to become (pale) yellow/straw-coloured (instead) ✓	3	3.3x 2 3.4	ALLOW just 'pipette' (in 1)
2	(d)		Reducing agent: SO ₂ Explanation: the oxidation state (number) of the sulfur/S (in SO ₂) increases (goes) from +4 to +6 (in SO ₄ ² ·) ✓	1	2.6	ALLOW sulfur dioxide ALLOW the oxidation state (number) of the bromine (Br) (in Br ₂) decreases (goes) from 0 to -1 (in Br ⁻) Both reducing agent and explanation required for mark
2	(e)		(dark) red/brown liquid ✓	1	1.2	ALLOW red/brown/orange but no other colour
2	(f)	(i)	cream(-coloured)/off-white precipitate/ppt/solid ✓	1	1.2	IGNORE initial colours and changes of colour on standing No other colour(s) should be mentioned

						9 90 19
2	(f)	(ii)	FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = rounds to 97(%) to 2 or more s.f. award 3 marks	3	2.7 x 3	ALLOW answer to 2 or more s.f. (96.7213) ALLOW ECF
			amount of Br ⁻ in 25.0 cm ³ sample = $(25.0 / 1000 \times 0.0260) = 6.50 \times 10^{-4}$ mol amount of AgBr produced = 6.50×10^{-4} mol \checkmark			
			M(AgBr) = $(107.9 + 79.9) = 187.8 \text{ g mol}^{-1}$ maximum mass of AgBr = $(6.50 \times 10^{-4} \times 187.8)$ = $0.122(07)$ (g) \checkmark			
			% yield = [(0.118 / 0.122) x 100] = 97% ✓			

Q	Question		Answer	Mark	AO	Guidance	
		1			element		
3	(a)		$^{2}_{1}H + ^{2}_{1}H \rightarrow ^{4}_{2}He \checkmark$	1	2.6	ALLOW atomic/mass numbers (only if correct) to be written to rhs of both H/He	
3	(b)		The student is correct AW (because) The lines are in exactly the same positions/frequencies/ match up ✓	3	3.1	Must say 'student is correct' AW to score three marks.	
			The energy transitions are the same ✓		3.2	ALLOW energy is quantized	
			Each element has unique energy levels AW ✓		3.2		
3	(c)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = $\%^{113}$ In = $4\%^{115}$ In = 96% award 2 marks [112.90x] + [114.90(100-x)] / 100 = 114.82 \checkmark 112.90x + 11490 - 114.90x = 11482 -2x = -8 x = 4 $\%^{113}$ In = 4 $\%^{115}$ In = 96 \checkmark	2	2.6 x 2		
3	(d)	(i)	5p¹ ✓	1	1.1		
3	(d)	(ii)	Indium has/there are delocalised electrons ✓	1	1.1	IGNORE it has metallic bonding	
3	(d)	(iii)	Strong attraction between oppositely charged ions (in a giant structure) ✓	1	1.1	ALLOW 'strong attractions in ionic bonding'	
3	(e)		(Student is incorrect about InH₃) InH₃ has (only) 3 bond pairs (of electrons) ✓ (equal repulsion between b-p) gives trigonal planar	3	3.2 3.2		
			shape/bond angles 120° ✓ NH₃ has 3 b-p and 1 l-p ✓		1.2		

11033 02			IVIAIN	1	Julie	
Q	uestior	1	Answer	Mark	AO element	Guidance
4	(a)	(i)	C–F is most polar ✓ (because) F is (the) most <u>electronegative</u> ✓	2	3.1 3.2	ALLOW order of bond polarities C-F>C-Cl>C-Br for MP1 ALLOW order of electronegativity F>Cl>Br for MP2
	(a)	(ii)	C–Br is broken ✓ (because the C–Br is the) weakest bond AW ✓	2	3.2 x 2	ALLOW order of bond enthalpies/strengths C-F>C-C <i>l</i> >C-Br for MP2
4	(b)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = $C_2Br_2F_4$ award 2 marks molar ratio of C:Br:F 9.2 / 12.0 : 61.5 / 79.9 : 29.3 / 19.0 0.77 0.77 1.54 1 : 1 : 2 OR empirical formula = $CBrF_2 \checkmark$ empirical mass = 129.9 $M_r = 259.8$ $(259.8 / 129.9) = 2$ molecular formula = $C_2Br_2F_4 \checkmark$	2	2.4	
4	(c)		FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = (+) 346 (kJ mol ⁻¹) (3 or more s.f.) award 3 marks Energy needed to break one C-Cl bond $(E = hv)$ = $6.63 \times 10^{-34} \times 8.67 \times 10^{14}$ = 5.75×10^{-19} (J) \checkmark Energy needed to break one mole of C-Br bonds = $5.75 \times 10^{-19} \times 6.02 \times 10^{23}$ = 346042 (J) \checkmark = (+) $346 \text{ kJ mol}^{-1} \checkmark$	3	2.4	The working for an incorrect answer MUST be checked in detail. Do be aware that candidates may well multiply/divide the numbers in a different order (or even combine steps) to that shown in the answer column so the order of/the numbers in this method of working may not necessarily be seen. However, candidates should show evidence (explicit or implicit) of using $E = hv (\checkmark)$, and multiplying by both the Planck constant and the Avogadro constant (\checkmark) and converting between J and $kJ (\checkmark)$.

H033 02	Mark S		June		
Question	Answer	Mark	AO element	Guidance	
4 *(d)	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Gives details of adv and disadv of O ₃ (details means correctly specifies tropos and stratos) AND Describes the catalytic role of NO ₂ in O ₃ destruction supported by reference to equations AND Refers to NO ₂ and O ₃ reacting/forming photochemical smog in the tropos Well-developed reasoning, clear, logically structured. Level 2 (3-4 marks) Gives the adv and disadv of O ₃ AND Describes the catalytic role of NO ₂ in O ₃ destruction supported by some reference to equation(s) OR Gives details of the adv and disadv of O ₃ AND Describes the disadv of NO ₂ in the tropos and/or stratos. Reasoning with some structure. Information is relevant and supported by some evidence.	6	1.2 (x4) 2.7 (x2)	 Ozone/O₃ Disadvantages In troposphere it is toxic (it can lead to) photochemical smog/causes respiratory problems Advantages In stratosphere it protects against/absorbs (harmful) ultraviolet radiation (relevant equation)	
	Gives a reference to either the adv or disadv of O ₃				

1000 02	ivia	ou ou		
Question	Answer	Mark	AO element	Guidance
	OR The disadv of NO ₂ in the tropos and stratos			
	A description of the catalytic role of NO ₂ in ozone destruction.			
	Attempt at logical structure/line of reasoning. Information is in the most part relevant.			
	0 marks No response or no response worthy of credit			

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building **Shaftesbury Road** Cambridge **CB2 8EA**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

