

GCE

Geology

Unit H014: Geology

Advanced Subsidiary GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Annotation	Use
BP	Blank page
BOD	Benefit of Doubt
CON	Contradiction
×	Cross
\checkmark	Tick
L1	Level 1 answer in Level of Response question
L2	Level 2 answer in Level of Response question
L3	Level 3 answer in Level of Response question
I	Ignore
ECF	Error Carried Forward
▲	Omission mark
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
MR	Maximum Response

Subject Specific Marking Instructions

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

Ques	stion	Answer	Mark	Guidance	AO
1		D ✓	1		1.1a
2		C √	1		2.1a
3		Β ✓	1		1.1a
4		D ✓	1		2.1a
5		Β ✓	1		2.1a
6		C √	1		2.1a
7		D ✓	1		1.1a
8		A ✓	1		2.1a
9		C √	1		1.1c
10		A ✓	1		2.1a
11		A ✓	1		2.1b
12		Β ✓	1		1.1a
13		C √	1		2.1a
14		D ✓	1		1.1c
15		Β ✓	1		1.1c
16		D ✓	1		2.1a
17		C √	1		1.1c
18		A ✓	1		2.1a
19		C √	1		2.1a
20		A✓	1		1.1d

Question			Answer	Mark	Guidance	AO
21	(a)	(i)	3.0 g cm ⁻³ OR 2.99 g cm ⁻³ OR 2.98 g cm ⁻³ ✓	2	ALLOW calculations of mean mass and mean volume to provide density. e.g. { $(210.2/70.3)+(267.6/89.2)+(183.9/61.7)+(80.5/27.2)$ } ÷ 4 = (2.99+3.00+2.98+2.95) ÷ 4 = 2.98 g cm ⁻³ (2 dp) or 3.0 g cm ⁻³ (1dp) e.g. (210.2+267.6+183.9+80.5) ÷ (70.3+89.2+61.7+27.2) =2.99 g cm ⁻³ (2dp) 3.0 g cm ⁻³ (1dp) ALLOW one mark for working if incorrect answer given DO NOT ALLOW 3 dp answers DO NOT ALLOW 3 g cm ⁻³	2.1b
		(ii)	3000 kg m⁻³ OR 2990 kg m⁻³ OR 2980 kg m⁻³ ✓	1	ALLOW ecf from part (i)	2.1b
	(b)		gabbro ✓ slow cooling AND cooled at depth OR plutonic OR in a batholith ✓	2	ALLOW diorite ALLOW any correct tectonic setting such as ocean ridges. ALLOW any appropriate specific depth	2.1a 3.1a
	(c)		answer between 2.25% and 2.35% \checkmark Any two from: density of Rock B is 135.5÷48.4= 2.80 (student 2) and 88.9÷32.7= 2.71 (student 4) \checkmark difference in observations is 3.000 – 2.949 = 0.051 (A), 2.800 – 2.719 = 0.081 (B) \checkmark average percentage difference is the mean of 0.051÷3.000 = 1.700% and 0.081÷2.800=2.893% \checkmark	3	max 2 if not 3 sf ALLOW one mark for working. e.g. Method involving calculating density for A and B for both students; calculating % difference between students' results	2.1b

Question			Answer	Mark	Guidance	AO
	(d)		Any three from: first measurement rock is dry / contains no water ✓ subsequent measurements rock contains some water in pore spaces ✓ over time more water enters the rock ✓ air is being displaced by water ✓ density of water is greater than that of air ✓	3		3.1e
	(e)		Any two from: repeats of measurements ✓ balances calibrated ✓ balances with higher resolution ✓ vacuum immersion of samples (E) ✓ leave to soak for a long time before displacement measured ✓ larger specimens and displacement vessels ✓	2	AW ALLOW drying out samples before repeating test	3.1f
	(f)		Any two from: mineral composition variation ✓ decreased porosity due to compaction / diagenesis OR metamorphism / recrystallization ✓ increased porosity due to fractures / joints / foliation / vesicles / amygdales / weathering ✓	2	 max 1 mark for general statement about porosity max 1 mark for any two factors listed, with no link to porosity changes DO NOT ALLOW changes in sample size again 	3.1a
	(g)	(i)	rhyolite ✓	1	ALLOW pumice	1.1a

Question	Answer	Mark	Guidance	AO
(ii)*	Level 35 – 6 marksApplies detailed knowledge and understanding of geophysical and surface measurements to the prediction of eruptions.There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated	6	 Diagrams marked as text Indicative points include: A01.1b Demonstrate knowledge of geological skills and techniques Geophysical measurements: harmonic tremors, magma movement in conduits and vents microsociamic obert period events intruding measure 	1.1b
	Level 23 – 4 marksDemonstrates knowledge and understanding of a geophysical and a surface measurement relevant to the prediction of eruptions. Explains how measurements are relevant to the prediction of eruptions.There is a line of reasoning with some structure. The information presented is relevant and supported by some evidenceLevel 11 – 2 marksDemonstrates knowledge of geophysical or another surface measurement relevant to the prediction of eruptions.There is an attempt at a logical structure with a line of reasoning. The information is, in the most part, 		 Interoseismic short-period events, intruding magnal fracturing rock geodetic measurements such as GPS or tiltmeters, ground surface changes satellite remote sensing such as SLAR, thermal infrared multispectral scanner and spectrometry A01.1c Demonstrate understanding of geological ideas Surface measurements: composition of erupting material, such as phreatic to magmatic composition and volumes of gases (at fumaroles) chemistry of surface runoff or groundwater volumes and frequency of steam emissions infrared photometers ground surveys such as levelling or tiltmeters A02.1a Apply knowledge and understanding of geological ideas Predicting volcanic eruptions: changes in seismic activity indicating change from filling magma chamber to active upward intrusion changes in surface slow swelling and sudden drops associated empting of magma chamber changes in composition gasses/erupted material/chemistry associated with magma front 	1.1c 2.1a

Mark Scheme

June 2018

Question		Answer	Mark	Guidance	AO
				 possible case study examples such as Bárðarbunga 2014- 15 or Kilauea 2018 	
		Total	24		

Question			Answer	Mark	Guidance	AO
22	(a)	(i)	shadow zones ✓	1		1.1a
		(ii)	Any two from: seismic wave velocity changes due to changing incompressibility / rigidity / density \checkmark changes in velocity result in wave r <u>efraction</u> \checkmark at the liquid outer core there is a decrease in wave velocity \checkmark waves are focussed inwards / refracted more steeply resulting in the shadow zones \checkmark	2	IGNORE answers based on S-wave shadow zones max 1 for general statement linking refraction to change in state from solid to liquid	1.1c
		(iii)	change of state from liquid (outer core) to solid (inner core) ✓	1	ALLOW increase in incompressibility OR rigidity	2.1b
	(b)	(i)	0.125 OR 12.5% OR ¹ / ₈ th ✓ correct working ✓	2	volume of core is $\frac{4}{3} \times \pi \times (\frac{7}{2})^3 = (\frac{4}{3} \times \pi \times r^3) /_8 = \frac{1}{8}$ th of whole Earth volume of Earth is $\frac{4}{3} \times \pi \times 6371^3 = 1.08 \times 10^{12}$ km ³ , AND volume of core is $\frac{4}{3} \times \pi \times 3185.5^3 = 1.35 \times 10^{11}$ km ³ $\frac{1.35 \times 10^{11}}{1.08 \times 10^{12}} = 0.125$ ALLOW 17% / 16.7% / $\frac{1}{6}$ th using depth to Gutenberg Discontinuity (i.e. core radius = 6371km - 2900km = 3471km = is $\frac{4}{3} \times \pi \times 3471^3 = 1.75 \times 10^{11}$ km ³) ALLOW one mark for evidence of correct working if incorrect answer given	2.1a
		(ii)	Any two from: low surface density suggests high density for the interior \checkmark density of interior must be greater than 5500 kg m ⁻³ \checkmark mantle rocks increase in density with depth / as	3	ALLOW any attempt to calculate it e.g. .125(x) + 0.875 (3000) = 5500 x = 23 000 kg m ⁻³ OR x = 18 625 kg m ⁻³	3.1a

Que	stion	Answer		Guidance	AO
		pressure rises \checkmark density increase due to a change in composition / change from silicates to iron \checkmark the small volume of the core implies a very high density to account for the average density of the Earth \checkmark			
	(c)	Level 3 5 – 6 marks Shows a detailed knowledge and understanding of the properties of the asthenosphere clearly described and explained clearly linked to plate tectonics. Makes a clear evaluation of the evidence important to plate tectonics.	6	 Indicative scientific points include: A01.1a Demonstrate knowledge of geological ideas Asthenosphere as a rheid layer: deforms as a plastic solid in response to stress viscous non-molten solid, below its melting point deforms at a rate at least three times that of an elastic solid 	1.1a
		There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 3–4 marks Demonstrates knowledge and understanding of the properties of the asthenosphere and explains the links to plate tectonics. Shows understanding of the terms and gives some evidence for the properties. Makes some evaluation of the evidence important to plate tectonics.		 A01.1c Demonstrate understanding of geological ideas Evidence for rheid behaviour of the Asthenosphere: postglacial isostatic rebound of Scandanavia / Scotland gravity anomalies indicating mountains chains in isostatic equilibrium gravity anomalies indicating oceanic islands (such as Hawaii) are not in isostatic equilibrium Low Velocity Zone (LVZ) operates between 5 and 300 km depth (depths vary and are not critical) geotherm close to / overlap the peridotite melting curve. 1-5% melt is enough to slow P-waves and (especially) 	1.1c
		There is a line of reasoning with some structure. The information presented is relevant and supported by some evidence.		S-waves A02.1a Apply knowledge and understanding of geological ideas A03.1c Evaluate geological information, ideas and evidence	2.1a 3.1c
		Level 11 – 2 marksDemonstrates knowledge of the properties of the asthenosphere and describes some evidence for thisOR outlines the limited relevance to plate tectonics.		 Importance of rheid behaviour to plate tectonics: ductile 'weak' zone allows relative movement of the rigid lithospheric plates. allows slab pull and (a minor amount of) ridge push 5% partial melting acts as source of magma for oceanic crust production by intrusion, extrusion and eruption at 	

Question	Answer	Mark	Guidance	AO
	There is an attempt at a logical structure with a line of reasoning. The information is, in the most part, relevant. 0 marks No response or no response worthy of credit		 Oceanic Core Complexes (OCC) and Mid-Ocean Ridges (MOR) negative density contrast with Lithosphere important for allowing subduction to take place 	
	Total	14		

Que	Question		Answer	Mark	Guidance	AO
23	(a)	(i)	Rock Y: mean grain size $0.25 - 0.5 \text{ mm } \checkmark$ (very) well sorted \checkmark (well) rounded \checkmark Rock Z: largest grain diameter >3.5mm - 5mm \checkmark (very) poorly sorted \checkmark	max 3	 2 / 3 correct = 1 4 / 5 correct = 2 6 correct = 3 DO NOT ALLOW other descriptive terms for sorting and grain shape DO NOT ALLOW any measurements without units 	1.1a 2.1b
		(ii)	(sub-) angular ✓ glacial ✓	1	ALLOW fault plane OR talus / scree slope OR wadi OR alluvial fan OR river / alluvial OR deep marine / abyssal plain	2.1a
	(b)		Any two from: immature sediment results from lack of weathering OR has not been transported far \checkmark mature sediments result from prolonged weathering / transport \checkmark In immature sediments (chemically) unstable minerals OR (physically) weak minerals can be found \checkmark mature sediments only contain resistant minerals (e.g. quartz) \checkmark Any two from: rock Z contains clay minerals which are weak and easily broken down \checkmark rock Z contains rock fragments which will breakdown into smaller / mono-mineralic fragments \checkmark rock Z grains are angular and show little evidence of transport \checkmark rock Y has well rounded grains, evidence of prolonged transport \checkmark	4		1.1a 2.1a
	(c)	(i)	(quartz) as other minerals break down during transport ✓ (continental) <u>desert</u> ✓	1	ALLOW aeolian / wind-blown	1.1c

Question			Answer		Mark Guidance		
		(ii)	Recognisable diagram with min two labels \checkmark Diagram fully labelled including: asymmetrical dune profile at appropriate angles AND wind/current direction AND indication of cross bedding correctly orientated at correct angle \checkmark ANY 4 points from: sand carried (by saltation) up stoss / windward / gently inclined face \checkmark sand eroded from stoss / windward / gently inclined face \checkmark sand deposited / avalanches down lee/steep face \checkmark coarser grains on surface of the flow mark out the cross beds \checkmark cross beds show former position of lee slope / face of dune \checkmark cross bedding is steep / angle of rest in air / 37° at top \checkmark	1 1 2	2 / 3 points = 1 mark 4 points = 2 marks 2 / 3 explanatory points = 1 mark 4 explanatory points = 2 marks	1.1a	
	(d)	(i)	Any two from: desiccation cracks result from drying out of mud ✓ formed in playa / ephemeral lakes ✓ require high rates of evaporation ✓ mud contracts as it dries forming (polygonal) cracks ✓ v-shaped as evaporation taking place at surface ✓ preserved by infilling with sediment ✓	2		1.1a 1.1c	
		(ii)	Any one from: graphic log shows this as a mudrock ✓ mudrocks contain high proportion of clay minerals ✓ only clay minerals shrink as they dry ✓	1		3.1a	

Question	Answer		Guidance	AO
(e)	 Any one from: flash flood event (in mountains / wadis) ✓ flash floods move a range of material ✓ Any one from: large pebbles / cobbles / boulders are supported in muddy suspension ✓ material kept in suspension by rapid flow in mountain valley / wadi ✓ poorly sorted material as rapidly deposited ✓ as water spreads out / slows down / loses energy ✓ referred to as wadi gravels / conglomerates ✓ these deposits create an alluvial fan ✓ 	2	MAX 1 for coherent description of turbidite deposition if environment taken as deep water marine.	2.1a
	Total	18		

Question			Answer	Mark	Guidance	AO
24	(a)	(i)	it must be a lava (flow) OR extrusive OR erupted at the surface ✓	1		1.1c
		(ii)	vesicles ✓ Any two from:	3		1.1a 1.1c
			pressure decreases / drops (as magma is erupted) causing exsolution of gases / volatiles \checkmark gases rise as bubbles to the top \checkmark		ALLOW gas comes out of solution	
			rapid cooling 'freezes' / traps some of the vesicles in this upper surface \checkmark		AW	
	(b)	(i)	 It is a <u>sill</u> AND it is injected between beds at depth/not exposed at the surface to be weathered OR It is a <u>sill</u> AND it is injected between beds at depth/under pressure so no vesicles can form ✓ It is a <u>sill</u> AND in the forceful injection of magma between beds, pieces of both beds can be ripped off and incorporated in the magma OR reverse argument that a lava flow can only incorporate xenoliths from the rock beneath it as there is no rock above it before cooling ✓ 	1	ALLOW 1 max if two good points, but no mention of "sill".	1.2a 2.1a
		(ii)	Any four from: at the contacts with the cold sedimentary rocks cooling would be rapid \checkmark rapid cooling of magma caused <u>fine</u> crystal formation \checkmark	4	DO NOT ALLOW small / smaller OR big / bigger for crystal grain size	2.1a

Question		Answer	Mark	Guidance	AO
		 there are chilled margins in rock K at the contacts ✓ the centre of the igneous body cools more slowly than the margins ✓ slower cooling of magma results in <u>coarser</u> crystals ✓ the sill/rock K is insulated by the depth at which it is intruded ✓ 			
	(c)	the sedimentary rock may change colour OR be harder/indurated OR be less permeable OR be crystalline ✓ baked margins have resulted from the heat of the igneous rock OR the sedimentary rock has been metamorphosed/re-crystallised by the heat of the igneous rock ✓	2	ALLOW formation of hornfels / andalusite slate / spotted rock / metaquartzite	2.1a
		Total	12		

Que	stion		Answer	Mark	Guidance	AO
Que 25	stion (a)	(i)	Answer 4 smooth, sub-parallel contours drawn around first appearances ✓✓	Mark 2	Guidance 2 / 3 contours correct = 1 mark 4 contours correct = 2 marks 1 max if drawn contours just join points G H G H G H H K	AO 2.1a 2.1b
					G H J J K K L G H J J K L G G H J J K L G G H J J K L H J J K K L G G H H J J K K L H J J K K K L H J J K K K L K K K L K K K K K Z km	
		(ii)	Any two from: index minerals only exist at certain temperatures and pressures / are stable under specific pressure and temperature conditions \checkmark metamorphism / recrystallization of clay minerals forms index minerals \checkmark the <u>first appearance</u> of the index mineral is mapped \checkmark	2	ALLOW 1 max for idea that chlorite is lowest grade and sillimanite is highest grade	1.1c
		(iii)	east of map area ✓	1	DO NOT ALLOW: (from the) right	3.1b
			Total	5		

Que	estio	n	Answer	Mark	Guidance	AO
26	(a)	(i)	Any three from: divergent margins are associated with upwelling of mantle \checkmark hot rising convection currents cause partial melting \checkmark temperature of mantle approaches solidus / melting point \checkmark slab pull OR diverging plates reduces pressure on rocks below \checkmark pressure release / lower pressure causes partial melting \checkmark low density of melt and hot mantle holds up ridge \checkmark	3		1.1c
		(ii)	Any two from: they offer easy inspection/sampling of oceanic lithosphere / crust / plate ✓ ophiolites show the structure / composition of oceanic lithosphere ✓ oceanic lithosphere is usually destroyed by subduction ✓ oceanic lithosphere is difficult / impossible to sample by drilling✓ ophiolites help in the understanding of the sea-floor spreading process ✓ ophiolites form from obduction / thrusting onto land ✓	2		2.1b
	(b)	(i)	Points correctly plotted ✓✓	2	8 or more points correct = 2 marks 5 to 7 points correct = 1 mark (Correct points are within +/- 1mm) Cr (ppm) Troodos data Y (ppm)	2.1b

Que	estio	า	Answer	Mark	Guidance	AO
		(ii)	most of the Troodos data lie in the IA field \checkmark	1	ORA	3.1d
		(iii)	MOR field = $40\% \checkmark$	2		3.1a
			IA field = $20\% \checkmark$			
26	(b)	(iv)	Any two from:	2		3.1b
			the new ophiolite setting is different / distinguishable from the			3.1c
			Troodos setting ✓			3.1d
			new data generally lies outside the IA field / is not wholly island			
			arc OR new data has more association with the MOR field /			
			more ocean ridge setting v			
			new data has generally higher Y concentrations ✓			
			I roodos data lie principally within the IA field V		ORA	
			Any three from:			
			the Treades data show the method to be worthwhile v	2		
			40% of now data lie outside either field $$	3		
			there is a limited range of V values/only 10 to 10 ppm so \checkmark			
			there is a very large range of Cr values \checkmark			
			experimental error has not been stated \checkmark			
			errors at such low concentrations could lead to mis-			
			interpretation of setting \checkmark			
			there are only 10 values for the new ophiolite \checkmark			
			the new data may not be representative of the ophiolite / no		ALLOW these data would be better plotted on a log-log	
			information on samples used \checkmark		graph:	
			points for the new ophiolite have a greater spread / lower			
			precision / no apparent trend ✓			
			there is overlap between the two sets of data so can't be			
			distinguished 🗸			
			-			
			Total	15		

Que	estior	ì	Answer		Guidance	AO
27	(a)	(i)	downthrows correctly marked on both faults (E of f1 and W of f2) \checkmark	1		3.1a
		(ii)	graben ✓	1	ALLOW rift OR rift valley ALLOW horst as ecf from a(i)	3.1a
	(b)	(i)	2 faults showing correct downthrow to allow coal outcrops ✓ antiform with steeper dip on western limbs ✓ constant thickness of beds on W and E limbs of fold ✓	3	Beds must be recognisable/contain decoration similar to map otherwise MAX 1 mark for dips OR faults correct	3.1a 3.1d
		(ii)	unconformable / unconformity ✓ Any two from: dips are steeper in underlying rocks ✓ dips are in a different direction in underlying rocks ✓ contact cuts across more than one rock type OR Triassic cuts across the Carboniferous ✓ contact cuts off / across faults ✓	1 2	ALLOW correct explanation of unconformity without use of term ORA	2.1a 3.1a
		(iii)	tensional 🗸	1	ALLOW extensional OR tension ALLOW compressional OR compression	1.1c
		(iv)	compressional ✓	1	ALLOW compression	1.1c
		(v)	different tectonic forces affected the area at different times \checkmark	1	DO NOT ALLOW ecf from (b) (iii) and (iv) if both are the same	2.1a

Question	Answer	Mark	Guidance	AO
(c)	Any two from:	2		1.1c
	plunging (to the north) 🗸			2.1a
	antiform 🗸		ALLOW anticline for antiform	
	asymmetrical 🗸			
	N-S axial plane OR limbs dipping East and West ✓			
	overfold OR axial plane dipping east ✓			
	open OR inter-limb angle is 96° / 95° ✓			
	Total	12		

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 Cambridge

© OCR 2018