www.xtrapapers.com

GCE

Mathematics A

Unit H240/03: Pure Mathematics and Mechanics

Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations and abbreviations

Annotation in scoris	Meaning
✓and ×	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
<u>۸</u>	Omission sign
MR	Misread
Highlighting	
Other abbreviations in mark	Meaning
scheme	
E1	Mark for explaining a result or establishing a given result
dep*	Mark dependent on a previous mark, indicated by *
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This guestion included the instruction: In this guestion you must show detailed reasoning.

Subject-specific Marking Instructions for A Level Mathematics A

- a Annotations should be used whenever appropriate during your marking. The A, M and B annotations must be used on your standardisation scripts for responses that are not awarded either 0 or full marks. It is vital that you annotate standardisation scripts fully to show how the marks have been awarded. For subsequent marking you must make it clear how you have arrived at the mark you have awarded.
- b An element of professional judgement is required in the marking of any written paper. Remember that the mark scheme is designed to assist in marking incorrect solutions. Correct solutions leading to correct answers are awarded full marks but work must not be judged on the answer alone, and answers that are given in the question, especially, must be validly obtained; key steps in the working must always be looked at and anything unfamiliar must be investigated thoroughly. Correct but unfamiliar or unexpected methods are often signalled by a correct result following an apparently incorrect method. Such work must be carefully assessed. When a candidate adopts a method which does not correspond to the mark scheme, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner.

If you are in any doubt whatsoever you should contact your Team Leader.

c The following types of marks are available.

Μ

A suitable method has been selected and *applied* in a manner which shows that the method is essentially understood. Method marks are not usually lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. In some cases the nature of the errors allowed for the award of an M mark may be specified.

Α

Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated Method mark is earned (or implied). Therefore M0 A1 cannot ever be awarded.

В

Mark for a correct result or statement independent of Method marks.

Е

Mark for explaining a result or establishing a given result. This usually requires more working or explanation than the establishment of an unknown result.

Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored. Sometimes this is reinforced in the mark scheme by the abbreviation isw. However, this would not apply to a case where a candidate passes through the correct answer as part of a wrong argument.

Mark Scheme

- d When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. (The notation 'dep*' is used to indicate that a particular mark is dependent on an earlier, asterisked, mark in the scheme.) Of course, in practice it may happen that when a candidate has once gone wrong in a part of a question, the work from there on is worthless so that no more marks can sensibly be given. On the other hand, when two or more steps are successfully run together by the candidate, the earlier marks are implied and full credit must be given.
- e The abbreviation FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A and B marks are given for correct work only – differences in notation are of course permitted. A (accuracy) marks are not given for answers obtained from incorrect working. When A or B marks are awarded for work at an intermediate stage of a solution, there may be various alternatives that are equally acceptable. In such cases, what is acceptable will be detailed in the mark scheme. If this is not the case please, escalate the question to your Team Leader who will decide on a course of action with the Principal Examiner. Sometimes the answer to one part of a question is used in a later part of the same question. In this case, A marks will often be 'follow through'. In such cases you must ensure that you refer back to the answer of the previous part question even if this is not shown within the image zone. You may find it easier to mark follow through questions candidate-by-candidate rather than question-by-question.
- f Unless units are specifically requested, there is no penalty for wrong or missing units as long as the answer is numerically correct and expressed either in SI or in the units of the question. (e.g. lengths will be assumed to be in metres unless in a particular question all the lengths are in km, when this would be assumed to be the unspecified unit.) We are usually quite flexible about the accuracy to which the final answer is expressed; over-specification is usually only penalised where the scheme explicitly says so. When a value is given in the paper only accept an answer correct to at least as many significant figures as the given value. This rule should be applied to each case. When a value is not given in the paper accept any answer that agrees with the correct value to 2 s.f. Follow through should be used so that only one mark is lost for each distinct accuracy error, except for errors due to premature approximation which should be penalised only once in the examination. There is no penalty for using a wrong value for *g*. E marks will be lost except when results agree to the accuracy required in the question.
- g Rules for replaced work: if a candidate attempts a question more than once, and indicates which attempt he/she wishes to be marked, then examiners should do as the candidate requests; if there are two or more attempts at a question which have not been crossed out, examiners should mark what appears to be the last (complete) attempt and ignore the others. NB Follow these maths-specific instructions rather than those in the assessor handbook.
- h For a genuine misreading (of numbers or symbols) which is such that the object and the difficulty of the question remain unaltered, mark according to the scheme but following through from the candidate's data. A penalty is then applied; 1 mark is generally appropriate, though this may differ for some units. This is achieved by withholding one A mark in the question. Marks designated as cao may be awarded as long as there are no other errors. E marks are lost unless, by chance, the given results are established by equivalent working. 'Fresh starts' will not affect an earlier decision about a misread. Note that a miscopy of the candidate's own working is not a misread but an accuracy error.

Mark Scheme

i If a calculator is used, some answers may be obtained with little or no working visible. Allow full marks for correct answers (provided, of course, that there is nothing in the wording of the question specifying that analytical methods are required). Where an answer is wrong but there is some evidence of method, allow appropriate method marks. Wrong answers with no supporting method score zero. If in doubt, consult your Team Leader.

j If in any case the scheme operates with considerable unfairness consult your Team Leader.

(Question	Answer	Marks	AO		Guidance	
1	(i)	$(x+4)^{2}-16+(y-1)^{2}-1-7=0$ $(x+4)^{2}+(y-1)^{2}=24$	M1	1.1	E	Correct method to find centre of circle	e.g. $(x \pm 4)^2$ and $(y \pm 1)^2$ seen (or
		<i>C</i> (-4,1)	A1 [2]	1.1	Е		implied)
1	(ii)	Radius = $\sqrt{24}$	B1 [1]	1.1	E	oe e.g. $2\sqrt{6}$	
2		Attempt process for finding both values	M1	1.1 a	E	e.g. squaring both sides to obtain 3 terms on both sides $(4x^2-4x+1=x^2+6x+9)$	Or consider two linear equations $(2x-1) = \pm (x+3)$
		$3x^2 - 10x - 8 (= 0)$	A1	1.1	Е		1 correct solution for A1
		Obtain 4 and $-\frac{2}{3}$	A1	1.1	E	BC	SC one correct solution from one linear equation B1
			[3]				1
3		$\frac{\mathbf{DR}}{x+3 \ge 14.5}$	M1	3.1b	E	Accept any inequality or equals and any letter for the width	
		<i>x</i> ≥11.5	A1	1.1	E	Correct inequality (seen or implied)	M1A1 correct answer with no working
		x(x+3) < 180	M1	3.1b	Е	Accept any inequality or equals	
		$x^{2} + 3x - 180(<0) \Rightarrow (x - 12)(x + 15)(<0)$	M1	1.1	E	Correct expansion and attempt to solve three term quadratic	SC B1: $x < \sqrt{60}$
		-15 < x < 12 $11.5 \le x < 12$	A1 B1 [6]	1.1 1.1	C C	Correct inequalities (seen or implied)	B1: $x \ge 29/6$

(Questic	n	Answer	Marks	AO		Guidance	
4	(i)	(a)	$fg(x) = f(x^{2}+2) = (x^{2}+2)^{3}$	B1	1.1	E		
				[1]				
4	(i)	(b)	$gf(x) = g(x^3) = (x^3)^2 + 2(=x^6 + 2)$	B1	1.1	E	No simplification required	
				[1]				
4	(ii)		DR $(x^{2}+2)^{3} = (x^{2})^{3} + 3(x^{2})^{2}(2) + 3(x^{2})(2)^{2} + 2^{3}$	M1	1.1	Е	Binomial expansion of their $(x^2 + 2)^3$ - correct powers and coefficients	Allow one slip
			$fg(x) = x^6 + 6x^4 + 12x^2 + 8$	A1	1.1	C		
			$fg(x) - gf(x) = 24 \implies 6x^4 + 12x^2 - 18 = 0$	A1	2.1	C		
			$x^{4} + 2x^{2} - 3 = 0 \Longrightarrow (x^{2} - 1)(x^{2} + 3) = 0$	M1	1.1	C	Correct method for solving their quadratic in x^2	If M0 next two marks become B marks
			$x^2 + 3 = 0$ has no real solutions	A1	2.4	Α	$x^2 + 3 \neq 0$ is acceptable for this mark	
			$x^2 - 1 = 0 \Longrightarrow x = \pm 1$	A1	2.2a	Α		
				[6]				
5	(i)			B1 M1	1.1 2.1	E E	Use of correct formula with correct (exact) <i>y</i> -values with their <i>h</i>	Condone one error in values
			$I \approx \frac{3}{4} + \frac{2}{2 + \sqrt{2}}$	A1	1.1	C		
			$\frac{1}{2+\sqrt{2}} = \frac{\left(2-\sqrt{2}\right)}{\left(2+\sqrt{2}\right)\left(2-\sqrt{2}\right)} = \frac{2-\sqrt{2}}{2}$	M1	3.1 a	E	Correct method for rationalising the denominator of their surd together with correct simplification	
			$I \approx \frac{3}{4} + \left(2 - \sqrt{2}\right) = \frac{11}{4} - \sqrt{2}$	A1 [5]	2.2a	A	AG – at least one step of intermediate working (from application of trapezium rule to given result)	Must be convincing as AG

(Questio	n	Answer	Marks	AO		Guidance	
5	(ii)		$x = u^2 \Longrightarrow \mathrm{d}x = 2u\mathrm{d}u$	M1*	3.1 a	E	An attempt at integration by sub - allow any genuine attempt (as a	Limits not required for first four marks
							minimum must differentiate their sub.	101 mist four marks
							and remove all <i>x</i> 's)	
			$\int_{-1}^{4} dx \int_{-1}^{2} 2u dx$	A1	1.1	С	Correct integral in terms of <i>u</i>	
			$\int_{0}^{4} \frac{\mathrm{d}x}{2 + \sqrt{x}} = \int_{0}^{2} \frac{2u}{2 + u} \mathrm{d}u$					
			$2\int^{2} 2+u-2 du = 2\int^{2} 1 \frac{2}{2} du$	Dep*M1	2.1	С	Re-writes integral in the form	Or use $t = 2 + u$ to
			$=2\int_{0}^{2}\frac{2+u-2}{2+u}du=2\int_{0}^{2}1-\frac{2}{2+u}du$				$\int a + \frac{b}{1+u} du$	obtain integral of
							$\int u + \frac{1}{1+u} du$	the form $\int a + \frac{b}{t} dt$
								ľ
			$=2\left[u-2\ln(2+u)\right]_{0}^{2}$	A1ft	1.1	А	Correctly integrates their $\int a + \frac{b}{1+u} du$	
								$= 2t - 4\ln t$
			$= 2\left\{ \left(2 - 2\ln(2+2)\right) - \left(0 - 2\ln(2+0)\right) \right\}$	M1	1.1	С	Uses correct limits correctly	
				A1	2.2a	А	(dependent on both previous M marks) oe e.g. $4 - 4 \ln 4 + 4 \ln 2$	
			$=2(2-2\ln 2)$		2.2a	Λ	$0 \in \mathcal{C}.g. + - + \inf + + \inf \mathcal{L}$	
				[6]				
5	(iii)		$\frac{11}{\sqrt{2}} \approx 2(2-2\ln 2)$	M1	1.1a	С	Setting the given result approx. equal to their (ii)	
			$\frac{11}{4} - \sqrt{2} \approx 2(2 - 2\ln 2)$ $\ln 2 \approx \frac{5}{16} + \frac{\sqrt{2}}{4}$					
			$\ln 2 \approx \frac{5}{16} + \frac{\sqrt{2}}{4}$	A1	2.2a	A	$k = \frac{5}{16}$	
				[2]				

(Questio	on	Answer	Marks	AO		Guidance	
6	(i)		$\sin\left(2\theta + \frac{\pi}{4}\right) = 3\cos\left(2\theta + \frac{\pi}{4}\right)$ $\sin 2\theta \cos \frac{\pi}{4} + \sin \frac{\pi}{4}\cos 2\theta = 3\cos 2\theta \cos \frac{\pi}{4} - 3\sin 2\theta \sin \frac{\pi}{4}$	M1	1.1	Е	Correct use of compound angle formulae at least once	
			$4\sin 2\theta = 2\cos 2\theta$ $2\frac{\sin 2\theta}{\cos 2\theta} = 1 \Longrightarrow \tan 2\theta = \frac{1}{2}$	A1 A1	1.1 2.2a	E E	Not from incorrect working AG – at least one step of intermediate working seen	
			66320	[3]				
			ALT: $\tan\left(2\theta + \frac{\pi}{4}\right) = 3$	B 1				
			$\frac{\tan 2\theta + 1}{1 - \tan 2\theta} = 3 \implies \tan 2\theta + 1 = 3(1 - \tan 2\theta)$	M1			Correct use of compound angle formula for tan and removal of fraction	
			$\tan 2\theta = \frac{1}{2}$	A1				
6	(ii)		$\tan 2\theta = \frac{1}{2} \Longrightarrow \frac{2\tan\theta}{1-\tan^2\theta} = \frac{1}{2}$	M1*	3.1 a	E	Double angle formula for $\tan 2\theta$	Allow one sign slip in formula
			$\tan^2\theta + 4\tan\theta - 1 = 0$	Dep*M1	1.1	E	Rearranges correctly to form 3-term quadratic in tan	
			$\tan\theta = -2\pm\sqrt{5}$	A1	1.1		$\mathbf{B}\mathbf{C}$ - One correct exact value	
			$-2 + \sqrt{5} > 0$ so $\tan \theta = -2 + \sqrt{5}$ gives acute angle	A1	2.3		Explicit rejection and reason for rejection	
			$\therefore \tan \theta = -2 - \sqrt{5}$	A1	2.2a	А	This value only	
				[5]				

	Juestion	Answer	Marks AO			Guidance	
7		$(2x-1)^{3} \frac{dy}{dx} + 4y^{2} = 0$ $-\frac{1}{4} \int \frac{dy}{y^{2}} = \int \frac{dx}{(2x-1)^{3}}$	M1	2.5	E	Attempt to separate variables	
		$\int \frac{\mathrm{d}y}{\mathrm{y}^2} = -\frac{1}{\mathrm{y}}$	A1	1.1	Е		
		$\int \frac{\mathrm{d}x}{\left(2x-1\right)^3} = \frac{\left(2x-1\right)^{-2}}{\left(2\right)\left(-2\right)}$	M1 A1	1.1 1.1	E C	M1 for $k(2x-1)^{-2}$	
		$\frac{1}{4y} = -\frac{1}{4(2x-1)^2} + c, \ (1,1) \Longrightarrow c = \dots$	M1	2.1	C	Use of $(1, 1)$ to find c – dependent on the previous two M marks and substituted into correct form	
		$\frac{1}{y} = -\frac{1}{(2x-1)^2} + 2$	A1	2.2a	А	Oe	
		$\frac{1}{y} = \frac{2(2x-1)^2 - 1}{(2x-1)^2}$	M1	3.1 a	A	8	r re-write in rms of y
		$y = \frac{(2x-1)^2}{2(2x-1)^2 - 1}$	M1	1.1	A		emove triple- ecker fractions
		$y = \frac{4x^2 - 4x + 1}{8x^2 - 8x + 1}$	A1	2.2a	А	a = 4, b = 8	
			[9]				

H240/03

8 (i) $g = \begin{pmatrix} 0 \\ -9.8 \end{pmatrix}$ B1 1.2 E $\begin{pmatrix} 15 \\ -8 \end{pmatrix} + \begin{pmatrix} -7 \\ -2 \end{pmatrix} + 5 \begin{pmatrix} 0 \\ -9.8 \end{pmatrix} = 5a$ M1 3.3 E Use of $\mathbf{F} = m\mathbf{a}$ with correct n terms of \mathbf{F} correct $a = \begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix}$ or $\begin{pmatrix} 1.6 \\ -g = 2 \end{pmatrix}$ A1 3.4 C 8 (ii) $s = \frac{1}{2} \begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix} (10)^2$ M1 3.4 E Use of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $t = \frac{1}{2}\mathbf{a}t^2$ $s = \begin{pmatrix} 80 \\ -590 \end{pmatrix}$ A1ft 1.1 E 50a 9 (i) 25N B1 3.4 E 9 (ii) 25N B1 3.4 E 9 (ii) 2100 = 75x + (x + 0.5)(25) A1ft 1.1 C	Guidance		
$\begin{vmatrix} 1 & 1 & 1 & 1 & 1 \\ -8 & 1 & -2 & 1 & 5 & -3 \\ a = \begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix} \text{ or } \begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix} = 5a \\ a = \begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix} = 5a \\ a = \begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix} = 5a \\ a = \begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix} = 5a \\ a = \begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix} = 5a \\ a = \begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix} = ba \\ a = \begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix} = $			
a = $\begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix}$ or $\begin{pmatrix} 1.6 \\ -g-2 \end{pmatrix}$ A1 3.4 C s = $\frac{1}{2} \begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix} (10)^2$ M1 3.4 E Use of $s = ut + \frac{1}{2}at^2$ with $t = ut + \frac{1}{2}at^2$ s = $\begin{pmatrix} 80 \\ -590 \end{pmatrix}$ Position vector is $\begin{pmatrix} 82 \\ -545 \end{pmatrix}$ A1 1.1 E 50a 9 (i) 25N B1 3.4 E use of $s = ut + \frac{1}{2}at^2$ with $t = ut + \frac{1}{2}at^2$ 9 (ii) 25N B1 3.4 E eg moments about $A - correct of terms$	n and two		
8(ii) $\mathbf{s} = \frac{1}{2} \begin{pmatrix} 1.6 \\ -11.8 \end{pmatrix} (10)^2$ M13.4EUse of $\mathbf{s} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$ with $t = 1$ $\mathbf{s} = \begin{pmatrix} 80 \\ -590 \end{pmatrix}$ $\mathbf{s} = \begin{pmatrix} 80 \\ -590 \end{pmatrix}$ A1ft1.1E50aPosition vector is $\begin{pmatrix} 82 \\ -545 \end{pmatrix}$ A11.1C9(i)25 NB13.4E9(ii)M13.3Eeg moments about A - correct of terms			
$\mathbf{s} = \begin{bmatrix} 30 \\ -590 \end{bmatrix}$ $\mathbf{A1}$ 1.1 \mathbf{C} $\mathbf{A1}$ 1.1 \mathbf{C} $\mathbf{S} = \begin{bmatrix} -590 \\ -590 \end{bmatrix}$ $\mathbf{A1}$ $\mathbf{A1}$ $\mathbf{I.1}$ \mathbf{C} $\mathbf{I3}$ $\mathbf{I1}$ $I1$	10		
Image: Second			
9 (i) 25 N B1 3.4 E 9 (ii) M1 3.3 E eg moments about A - correct of terms			
9 (i) 25 N B1 3.4 E 9 (ii) M1 3.3 E eg moments about A - correct of terms			
of terms			
2(100) = 75x + (x + 0.5)(25) A1ft 1.1 C Follow through their 25 only	t number		
x = 1.875 A1 I.1 C [3] [3] [3] [3]			
9 (iii) M1 3.3 E moments about D – correct n terms – oe (leading to an equ W)			
(x+0.5-2)(100) = W(4-0.5-x) A1ft 1.1 C Follow through their x only			
W = 23.1 N $A1$ $[3]$ $A1$ $A1$ A $Accept 23 or better$	23.076923		

(Questic	n	Answer	Marks	AO		Guidance			
9	(iv)	(a)	Modelling the stone as a particle assumes that the weight of the stone block acts exactly at <i>B</i> therefore the block's dimensions (or the distribution of the mass of the block) have not been taken into consideration	B1	3.5b	А	Accept 'uniform'			
9	(iv)	(b)	Modelling the plank as a rigid rod assumes that the plank remains in a straight line and does not bend	[1] B1	3.5b	A				
				[1]						
10	(i)		$4\sin 2\theta = 6\sin \theta$ $8\sin \theta \cos \theta = 6\sin \theta$	B1 M1 A1	3.3 3.1a 1.1	E E E	Resolving horizontally Use of double angle formulae			
			$\cos\theta = \frac{3}{4} \Rightarrow \theta = 41.4^{\circ}$	[4]	2.2a	C	AG	41.409622		
10	(ii)		$P = 4\cos 2\theta + 6\cos \theta$	M1	3.3	Е	Resolving vertically – allow sin/cos errors			
			<i>P</i> = 5	A1 [2]	1.1	E	Accept 5.002 or better			
10	(iii)	(a)	$3\sin\theta$ and $P-3\cos\theta$ $\sqrt{(3\sin\theta)^2 + (P-3\cos\theta)^2}$	B1 M1	1.1	E E	Resolving horizontally and vertically Pythagoras on two forces – both must include 41.4	Alt – M1 for cosine rule with their <i>P</i> , 3 and 41.4, A1 for 11.4966 or 11.5		
			Magnitude is 3.39N	A1 [3]	2.2a	С	3.4 or better	3.3911649		

)uesti o	n	Answer	Marks	AO		Guidance	
10	(iii)	(b)	$\tan \alpha = \frac{P - 3\cos\theta}{1 + 1}$	M1	3.1a	E	Where α is the angle below the	Alt - M1 for
			$\sin \alpha = \frac{3}{3\sin \theta}$				horizontal	$\frac{\sin\alpha}{2} = \frac{\sin 41.4}{2}$
								3 '3.39'
			54.2° below the horizontal	A1	3.2a	А	54.2 or better – must indicate 'below	54.18696
							horizontal' or equivalent to the 'downward vertical' (35.8) – direction	
							may be shown on diagram with	
							minimum of arrow on resultant or	
							arrows on both components	
11			1 . 0.02	[2]	11	Б		
11	(i)		a = k + 0.06t k + 0.06(20) = 1.3	B1 M1	1.1 1.1	E E	Use of $t = 20$ and $a = 1.3$ in their a	
			k = 0.00(20) = 1.3 k = 1.3 - 1.2 = 0.1	A1	1.1	E	Use of $l = 20$ and $u = 1.5$ in then u	
			k = 1.3 = 1.2 = 0.1	[3]	1.1	Е		
11	(ii)			M1*	3.1a	Е	Attempt to integrate – all powers	
							increased by 1 (but not just multiplying	
				1.10		Б	by t)	
			$s = 0.05t^2 + 0.01t^3(+c)$	A1ft	1.1	E	$s = \frac{1}{2}kt^2 + 0.01t^3$	
			$t = 0, s = 0 \Longrightarrow c = 0$	B1	2.1	Α	From a correct expression for <i>s</i>	If $c = 0$ stated then
			t = 20, v = 14	B1ft	1.1	Е	12 + 20k	must give a reason
				dep*M1	3.4	C E		
			$s_1 = 0.05(20)^2 + 0.01(20)^3$	dep mi	5.4	C	(for reference $s_1 = 100$)	
			$25^2 = 14^2 + 2(1.3)s_2$	M1	3.3	А	0.50017 u 1.205 with v 25 and	
			Total distance and a 265 m	A1	2.20	٨	a = 1.3 and their u	
			Total distance $= s_1 + s_2 = 265 \text{ m}$	AI	2.2a	А	All previous marks must have been awarded	
				[7]				

	Question		Answer	Marks	AO		Guidance	
12	(i)	(a)	$R = mg\cos 30$	B1	3.3	E	Resolving perpendicular to the plane	
			$T = \frac{1}{4}mg$	B 1	1.1	Е	Resolving vertically for <i>B</i>	
				M1	3.3	Е	Resolving parallel to the plane – three	
							terms – allow signs and sin/cos	
			$T + F - mg\sin 30 = 0$	A1	1.1	С	confusion	
			$F = \mu(mg\cos 30)$	M1	3.3	E	Use of $F = \mu R$	
				M1	2.1	Α	•	
			$\frac{1}{4}mg + \mu \left(\frac{mg\sqrt{3}}{2}\right) - \frac{1}{2}mg = 0 \implies \mu = \dots$				and attempt to solve for μ –	
			4 (2)2				dependent on previous M marks and second B mark	
			$\mu = \frac{\sqrt{3}}{6}$	A1	2.2a	А		
			0	[7]				
12	(i)	(b)	$F = mg\sin 30 - \lambda mg(>0)$	M1	3.1a	A	Resolving parallel to the plane with λmg	
			$F > 0 \Longrightarrow \lambda < \frac{1}{2}$	A1 [2]	2.2a	А		
12	(ii)		$\frac{2}{T - F - mg\sin 30} = m\left(\frac{1}{4}g\right)$	M1	3.3	C	N, II parallel to the plane – four terms	Allow a
	()							
			$2mg - T = 2m\left(\frac{1}{4}g\right)$	B1	3.3	С	N, II for <i>B</i>	Allow <i>a</i>
			$2mg - F - mg\sin 30 = \frac{3}{4}mg$	A1	1.1	C	Correct method for eliminating T	
			$2mg - \mu(mg\cos 30) - mg\sin 30 = \frac{3}{4}mg$	A1	2.1	А	Correct use of $F = \mu R$ and $R = mg \cos 30$	
			$\mu = \frac{\sqrt{3}}{2}$	A1 [5]	2.2a	А	1	

OCR (Oxford Cambridge and RSA Examinations) The Triangle Building Shaftesbury Road Cambridge CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627 Email: <u>general.qualifications@ocr.org.uk</u>

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553 Cambridge

