

GCE

Physics B

Unit **H157/01**: Foundations of physics

Advanced Subsidiary GCE

Mark Scheme for June 2016

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2016

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
×	Incorrect response
ECF	Error carried forward
ш	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
^	Omission mark
SF	Error in number of significant figures
✓	Correct response
?	Wrong physics or equation

H157/01 Mark Scheme June 2016

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
1	alternative and acceptable answers for the same marking point
(1)	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
_	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as <u>independent</u> marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are <u>method</u> marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.

C marks: These are <u>compensatory</u> method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.

A marks: These are accuracy or answer marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or <u>more</u> significant figures. If an answer is given to fewer than 2 sf, then penalise once only in the <u>entire</u> paper. Any exception to this rule will be mentioned in the Additional Guidance.

Section A: MCQs

Question	Answer	Marks	Guidance
1	A	1	
2	В	1	
3	В	1	
4	D	1	
5	A	1	
6	С	1	
7	С	1	
8	В	1	
9	A	1	
10	С	1	
11	С	1	
12	В	1	
13	В	1	
14	С	1	
15	D	1	
16	A	1	
17	С	1	
18	A	1	
19	В	1	
20	С	1	
	Total	20	

Section B

Q	uesti	on	Answer		Marks	Guidance
21	(a)		apple in range 0.9 to 5 (N)	√	1	Accept order of magnitude answers if clear and within the accepted range e.g. order of magnitude = 0 would gain the mark for this
21	(b)		current in range 3 to 13 (A)	✓	1	Accept order of magnitude answers if clear and within the accepted range
21	(c)		volume in range 0.1 to 1.0 (m ³)	✓	1	Accept order of magnitude answers if clear and within the accepted range
			Total		3	

Q	uestion	Answer	Marks	Guidance
22	(a)	(transverse) waves that have one direction / plane of oscillation / vibration ✓	1	NOT move in one plane
22	(b)	(starts at 0° max then) drops to zero / minimum at 90°, and then increases / back to max (at 180°) ✓	1	both points for 1 mark
		Total	2	

C	uesti	on	Answer	Marks	Guidance
23	(a)		16 levels / $2^4 = 16$ / $\log_2 16$ \checkmark (bits) = 4	1	Accept 16 anywhere for first mark Accept 15 levels (as zero may have been ignored)
			(DIIS) = 4	'	No marks awarded if method is clearly incorrect .e.g. using noise limitation formula or \log_2 (voltage range)
23	(b)		$(f = 1/T = 1/2 \times 10^{-3}) = 500 \text{ (Hz)}$	1	accept in range 480 to 520 (Hz)
			Total	3	

C	uesti	on	Answer	Marks	Guidance
24	(a)		(C ⁺) ions or electrons move / flow in the gap between plates / complete the circuit ✓ current is the flow of charged particles / ions / electrons / charge carriers ✓ (C ⁺) ions or electrons are charge carriers ✓ no ions in air before candle is introduced / high temperature of flame ionises the air between plates ✓	1	accept any two correct points ignore idea of attraction between charges and plates unless movement of charges indicated penalise charges moving to incorrect plate (e.g. electrons move to negative plate) not just formula e.g. $I = \Delta Q/\Delta t$
24	(b)		(number per s) = current /charge / = I/e (= $28 \times 10^{-6} / 1.6 \times 10^{-19}$) = 1.8×10^{14} (s ⁻¹)	1	method accept $q = e$ evaluation accept 1.75×10^{14} (s ⁻¹)
			Total	4	

Q	uesti	ion	Answer	Marks	Guidance
25	(a)		net / resultant force on ball is zero / forces are balanced / ball in equilibrium ✓	1	not just T ₁ equal and opposite to weight W accept equal and opposite forces as only two forces are acting accept no acceleration / remains at rest NOT ball is at rest / stationary
25	(b)		vertical component of T_2 still balances weight / W / $T_2 \cos \theta = W$ / ($T_2 = W / \cos \theta = 4600 / \cos 35$) = 5600 (N)	1	method accept 5620 / 5610 (N) penalise > 3 S.F.
25	(c)		$(H = W \tan \theta = 4600 \text{ x} \tan 35) = 3200 \text{ (N)} / (H = T_2 \sin \theta = 5600 \text{ x} \sin 35) = 3200 \text{ (N)} / (H^2 = T_2^2 - W^2 = 5600^2 - 4600^2) = 3200 \text{ (N)}$	1	accept 3220 / 3221 (N) answer in range 3210 to 3220 (N) ecf from 25(b) answer in range 3190 to 3230 (N) ecf from 25(b)
			Total	4	

Q	uestic	on	Answer		Marks	Guidance
26	(a)		$(=(MV - mv) / (M + m)) = (8000 \times 30 - 1500 \times 4) / 9500$ = 24.6 m s ⁻¹	√ ✓	1 1	Method accept 25 m s ⁻¹
26	(b)		$(F = \Delta(mv) / \Delta t) = 8000 \times (30 - 24.6) / 0.020$ = 2.16 x 10 ⁶ (N)	✓ ✓	1	method accept $1500 (24.6 - (-4)) / 0.020 = 2.1 \times 10^6$ (N) accept calculates change in momentum (43200) or acceleration of either vehicle (lorry = 270, truck = 1430) for first mark ecf on value of combined velocity from 26(a) evaluation accept 2.2×10^6 (N) $/ 2.0 \times 10^6$ (N) using 2 SF velocity values $/$ accept answers based on use of 24 m s ⁻¹ from 26(a)
			Total		4	
			Total section B		20	

Section C

Q	uesti	on	Answer	Marks	Guidance
27	(a)		$D_{\text{Fe}} = \pi D_{\text{ring}} / 48 / = \pi \times 3.8 \times 10^{-9} / 48 \checkmark$	1	method algebra / numbers
			$= 2.5 \times 10^{-10^{\circ}} (m)$	1	evaluation accept 2.49 x10 ⁻¹⁰ (m)
			or scale factor of 3.8nm/39mm and diameter of atom between 1 – 2 mm = 9.7 x 10 ⁻¹¹ to 1.9 x 10 ⁻¹⁰ (m) ✓		not for scale factor alone
27	(b)	(i)	ripples / waves are (concentric circles) which are equally		accept wavefronts are equally spaced
			spaced / distance between (consecutive) ripples is ½ x wavelength / electron probability/density has set up a standing wave pattern (shown by circles inside the ring of atoms)	1	accept distance is equal to the wavelength accept there are nodes and antinodes present
27	(b)	(ii)	distance between complete waves divided by correct	1	e.g. 2.2cm / 3 waves
			number of waves then appropriately scaled OR	1	$x (3.8 \text{nm} / 3.9 \text{cm}) = 7.1 \times 10^{-10} \text{ (m)}$
			distance between gaps divided by correct number of		e.g. 2.2cm / 6 gaps x (3.8nm /3.9cm) / = 3.6 x 10 ⁻¹⁰ (m)
			waves, then appropriately scaled then doubled OR		$x 2 = 7.1 \times 10^{-10} \text{ (m)}$
			multiplies single peak to peak distance by scale factor \checkmark then doubled		e.g. 0.36 mm x $(3.8$ nm $/3.9$ cm $) = 0.35$ nm x $2 = 7.0 \times 10^{-10}$ (m)
					accept λ value in range 0.66 to 0.76 nm with correct working accept factor of 2 multiplication at any point in calculation
27	(b)	(iii)	$(mv = h/\lambda = 6.63 \times 10^{-34}/0.71 \times 10^{-9}) = 9.3 \times 10^{-25} \text{ kg m s}^{-1}$	1	expect answers in range 8.7 x 10 ⁻²⁵ to 10 x 10 ⁻²⁵ from (b)(ii) ecf from 27(b)

H157/01 Mark Scheme June 2016

C	Questi	on	Answer	Marks	Guidance
27	(b)		$E_{K} = (mv)^{2} / 2m / E_{K} = p^{2} / 2m / E_{K} = 1/2m \times (p/m)^{2}$ $v = p/m = (b)(iii)/9.11 \times 10^{-31} = 1.0 \times 10^{6} \text{ (m s}^{-1})$ \checkmark evaluation = $4.6 \times 10^{-19} \text{ (J)}$	1	method or evaluation of velocity (ecf from (b)(iii)) expect answers between 4.2 x 10 ⁻¹⁹ and 5.5 x 10 ⁻¹⁹ (J) ecf from (b)(iii)
			Total	8	

28 (a) (i) A for diode because it is not linear / not proportional / not ohmic /does not conduct until threshold voltage / about 0.4V 1 accept B is linear / proportional / ohmic /f so B is resistor (and A is diode) 28 (a) (ii) R = V/I = 1 / 0.080 = 12.5 (Ω) 1 accept bare answer / 13 (Ω) 28 (b) (i) current will become too large / overheat component 1 NOT just current becomes large accept the heating decreases resistance of semicor 28 (b) (ii) In series, the components draw the same current and p.d.s add to 1.5 V add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s add to 1.5 V and the same current and p.d.s and the sa	hermal runaway nductors
28 (b) (i) current will become too large / overheat component ✓ 1 NOT just current becomes large accept to / heating decreases resistance of semicor 28 (b) (ii) In series, the components draw the same current and p.d.s add to 1.5 V	nductors
28 (b) (i) current will become too large / overheat component ✓ 1 NOT just current becomes large accept to / heating decreases resistance of semicor 28 (b) (ii) In series, the components draw the same current and p.d.s add to 1.5 V	nductors
add to 1.5 V ✓ 1 where sum of voltage intercepts is ≈ 1.5 V	find the one
= 65 (mA)	68 (mA)
 In normal operation / low voltages / small currents (through the ammeter): the diode is not turned on / conducts negligibly / has very high resistance (as) p.d. across μA at f.s.d. = 0.10 V accept any 4 points for max 4 marks, but if or discussed max 3/4 accept no current through /shunted by diode 	•
in overload / with large currents: diode conducts / has low resistance current bypasses ammeter because p.d. rises above $0.3 \text{ V} / 0.4 \text{ V} / 0.6 \text{ V}$ / threshold voltage two diodes protect from large currents in both senses R_{diode} at $0.6 \text{ V} = 0.6 / 0.02 = 30 \Omega$ / about $1/33 R_{\text{meter}} \checkmark$ meter can dissipate up to $10 \mu \text{W}$ in normal operation f.s.d.	.g. mpared to <i>R</i> _{meter}
diode can shunt e.g. about 12 mW at 0.6 V ✓ accept other sensible estimates for power dimeter can dissipate 0.36 mW before damage Total 9	

Q	Question		Answer	Marks	Guidance
29	(a)	(i)	$\{(2 \times 0.9) + (3 \times 1.0) + (4 \times 1.1) + (2 \times 1.2) + (1 \times 1.3)\} / 12$ = 1.1 (s)	1	method penalise here if outlier is counted in – look for division by 13 accept 1.08 / 1.075
			Uncertainty = 0.2 (s) ✓	1	For second mark, decimal places in mean time and raw uncertainty must be max 2 and the same i.e. 1.1 ± 0.2 or 1.08 ± 0.20 accept 1.08 ± 0.22 allow percentage uncertainty of 18% or 20% (2sf max) accept $(14.5/13) = 1.1 \pm 0.4$ (s) $/ 1.12 \pm 0.35$ (s) if outlier used for second mark only
29	(a)	(ii)	(1.6 s is outlier) as further than 2 x spread from mean ✓	1	NOT outside of the range
29	(a)	(iii)	$v_{\text{terminal}} = 1.85 / 1.1 = 1.7 \text{ (m s}^{-1})$	1	evaluation for v_{terminal} value accept 1.68 (or 1.71 from t_{drop} = 1.08 or 1.72 from t_{drop} = 1.075 (m s ⁻¹) ecf from 29(a)
			% in t_{drop} is ± 18 % OR ± 20% and % in $d \pm 1$ % so use ± 18 % OR ± 20%	1	calculations and justification allow ecf on their ± value from (i) accept percentage errors combined / added (eg 19% or 21%)
			$\pm (1.7 \times 0.18) = \pm 0.3 \text{ (m s}^{-1})$	1	complete answer with uncertainty accept ± 0.34 / ± 0.4 (m s ⁻¹) if correctly followed through from rounding no penalty here for difference in decimal places in terminal velocity and uncertainty
			alternative method for uncertainty: max $v_{\text{terminal}} = 1.87 / 0.9 = 2.08$ (second marking point) (or min $v_{\text{terminal}} = 1.83 / 1.3 = 1.41$) difference from mean = $2.08 - 1.7 = 0.38$ (third marking point) (or difference from mean = $1.7 - 1.41 = 0.29$)		allow ecf on their ± value from (i) accept ± 0.3 or ± 0.4 using this method allow using average of max and min differences values if both calculated

Q	Question		Answer	Marks	Guidance
29	(a)	(iv)	method assumes at v_{terminal} for whole drop / may not reach terminal velocity drop	1	accept time includes the time of acceleration up to v_{terminal} / not at v_{terminal} for whole of time period measured / accept estimate made is too small / low in value
			method underestimates the v_{terminal} systematically	1	NOT human error in timing
			or reaction time (at start and/or end)		
			links smaller time to larger v_{terminal} or vice versa		e.g. ruler at an angle, parallax, starting above ground answer must state clearly whether measured length is too
			or incorrect height measurement due to plausible reason		short or too long for second mark
			links smaller distance to smaller v_{terminal} or vice versa		
29	(b)	(i)	using $\Delta s / \Delta t$ from table or from graph	1	method from gradient of linear section of graph (allow between 0.7 and 1.4) Δt at least 0.3s e.g. $(2.08 - 0.72) / (1.3 - 0.7) = 1.36 / 0.6 = 2.3 (2.27) (m s-1)$
			evaluation accept in range 2.2 to 2.3 (m s ⁻¹) ✓	1	or from table of results (averaging at least 3 intervals) for interval from 0.7 s to 1.3 s (allow between 0.7 and 1.4) e.g. 2.2, 2.3, 2.1, 2.3, 2.3, 2.4 average gives 2.3 (2.27)(m s ⁻¹) MAX 1 if Δt from graph < 0.3s or <3 intervals from table used bare answer in range max 1
29	(b)	(ii)	Ultrasonic sensor motion with data-logger / position	1	apparatus and capture method
			sensor with data-logger / video with ruler or tape / strobe		not ticker-tape (inappropriate)
			photography with ruler or tape ✓		not light gates (impractical)
			record data and review position every 0.1 s ✓	1	accept set pulse / frame rate to 0.1s
			shows where v_{terminal} is constant /	1	accept shows acceleration phase
			smaller ± % uncertainty in time measurement / reduced		uncertainty of velocity calculations from table is reduced to ≈
			to about ± 5% / eliminates reaction time systematic error ✓		1 part in 20
					ignore references to reducing human error
			Total	13	
			Total section C	30	
			Total sections B & C	50	

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge **CB1 2EU**

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 **OCR** is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office

Telephone: 01223 552552 Facsimile: 01223 552553

