

GCE
Chemistry A

Unit **H432A/03**: Unified chemistry

Advanced GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
✗	Incorrect response
▲	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
✓	Separates marking points
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions**INTRODUCTION**

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

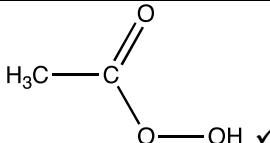
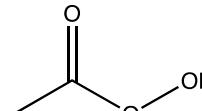
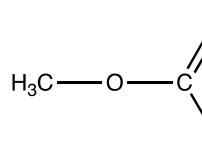
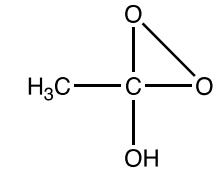
You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

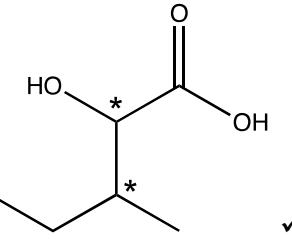
Question		Answer	Marks		Guidance
1	(a)	Throughout <ul style="list-style-type: none"> ALLOW bonding regions for bonded pairs ALLOW diagrams for communicating two bonds, two lone pairs and hydrogen bonding in ice IGNORE responses about open lattice/tetrahedral structure in ice 			
		Ice Ice has hydrogen bonds/bonding ✓ H₂O(g) 2 bonded pairs AND 2 lone pairs ✓ Repulsion Lone pairs repel more (than bonded pairs) ✓	3		ALLOW more hydrogen bonding/H bonds For H ₂ O(g), <ul style="list-style-type: none"> ALLOW water IGNORE hydrogen bonding
	(b)	It increases/causes/contributes to global warming OR C–H bonds vibrate OR absorb IR ✓	1		ALLOW it is a greenhouse gas/increases temp IGNORE ozone, radicals OR acid rain
	(c)	FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = CH ₄ •5.74 H ₂ O OR 5.74 award 2 marks <hr/> Mole ratio $n(\text{CH}_4) : n(\text{H}_2\text{O}) = \frac{13.4}{16.0} : \frac{86.6}{18.0}$ OR 0.8375 : 4.811 ✓ <hr/> Formula CH ₄ •5.74 H ₂ O OR 5.74 ✓	2	Working to at least 3 SF but IGNORE 'trailing zeroes', e.g. ALLOW 16 for 16.0 <hr/> ALLOW algebraic approach, e.g. $\begin{aligned} n(\text{CH}_4) &= n(\text{CH}_4 \cdot x \text{H}_2\text{O}) \\ \frac{13.4}{16.0} &= \frac{100}{16.0 + 18x} \\ x &= 5.74 \end{aligned}$ ALLOW ECF from incorrect mole ratio <hr/> For 1 mark, ALLOW x with < 2 DP: <ul style="list-style-type: none"> • x = 5.7 • x = 6 • x = 5.73 from 0.8375 and 4.8 from 0.84 and 4.811 • x = 5.71 from 0.84 and 4.8 	
	(d)	FIRST CHECK THE ANSWER ON THE ANSWER LINE	4		

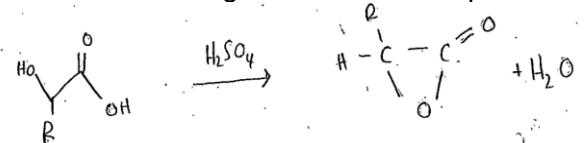
Question	Answer	Marks	Guidance
	<p>IF answer = 188 (dm³) AND use of ideal gas equation Award 4 marks for calculation</p> <hr/> <p>n(CH₄) in 1 kg</p> $n(\text{CH}_4) = \frac{1 \times 10^3}{16.0} \times \frac{13.4}{100} = 8.375 \text{ OR } 8.38 \text{ (mol)} \checkmark$ <p>Rearranging ideal gas equation</p> $V = \frac{nRT}{p} \checkmark$ <p>Substitution of values into $V = \frac{nRT}{p}$:</p> <ul style="list-style-type: none"> Calculated value of $n(\text{CH}_4)$ (Use ECF) $R = 8.314$ OR 8.31 T in K: 273 K p in Pa OR kPa 101 OR 101×10^3 OR 1.01×10^5 <p>e.g. $\frac{8.375 \times 8.314 \times 273}{(101 \times 10^3)}$ OR $\frac{8.375 \times 8.314 \times 273}{101} \checkmark$</p> <p>Final volume in dm³ to 3 SF $V = 188 \text{ (dm}^3\text{)} \checkmark$</p>		<p>ALLOW use of M(answer to (c) OR 119.32)</p> <p>Examples</p> <p>From $n(\text{CH}_4 \cdot 5.7 \text{ H}_2\text{O})$</p> $\frac{1 \times 10^3}{119.32} = 8.38(1) \rightarrow 188 \text{ (dm}^3\text{)}$ <p>From $n(\text{CH}_4 \cdot 5.7 \text{ H}_2\text{O})$</p> $\frac{1 \times 10^3}{118.6} = 8.43(2) \rightarrow 189 \text{ (dm}^3\text{)}$ <p>From $n(\text{CH}_4 \cdot 6 \text{ H}_2\text{O})$</p> $\frac{1 \times 10^3}{124.0} = 8.06 \text{ (mol)} \rightarrow 181 \text{ (dm}^3\text{)}$ <hr/> <p>IF $V = \frac{nRT}{p}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation.</p>
	<p>COMMON ERRORS</p> <p>Use of 298 K ALLOW ECF 3 marks max</p> <p><i>Example</i> $n(\text{CH}_4 \cdot 5.74 \text{ H}_2\text{O}) = 8.375 \checkmark$ $V = \frac{8.375 \times 8.314 \times 298}{101 \times 10^3} \rightarrow 205 \text{ (dm}^3\text{)} \checkmark \checkmark$</p> <p>Use of 24.0 dm³ OR 22.4 dm³ ALLOW ECF from $n(\text{CH}_4)$ 2 marks max for $n(\text{CH}_4)$ and V in dm³</p> <p>24.0 dm³ $n(\text{CH}_4 \cdot 5.74 \text{ H}_2\text{O}) = 8.375 \checkmark$ $V = 8.375 \times 24.0 = 201 \text{ (dm}^3\text{)} \checkmark$</p> <p>22.4 dm³ $n(\text{CH}_4 \cdot 5.74 \text{ H}_2\text{O}) = 8.375 \checkmark$ $V = 8.375 \times 22.4 = 188 \text{ (dm}^3\text{)} \checkmark$</p> <p>13.4% (13.4/100) omitted 3 marks</p> $n = \frac{1 \times 10^3}{16} = 62.5 \text{ (mol)} \times$ $V = \frac{62.5 \times 8.314 \times 273}{101 \times 10^3} \rightarrow 1400 \text{ (dm}^3\text{)} \checkmark \checkmark \checkmark$		
(e)	For fuel OR energy \checkmark	1	<p>ALLOW responses linked with energy. e.g.</p> <ul style="list-style-type: none"> to generate electricity

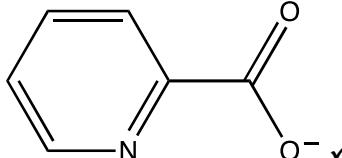
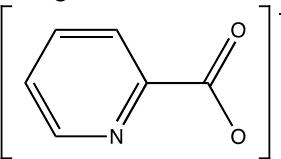




Question		Answer	Marks		Guidance
					<ul style="list-style-type: none">• for burning/heat <p>ALLOW (chemical) feedstock</p> <p>IGNORE cooking</p>
		Total	11		

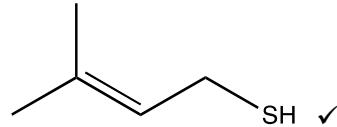
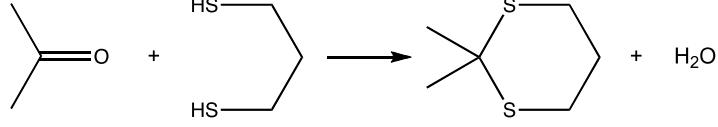
Question	Answer	Marks	Guidance
2 (a)	<p><i>Please refer to the marking instructions on page 5 of this mark scheme for guidance on how to mark this question.</i></p> <p>Level 3 (5–6 marks) A comprehensive conclusion, using all quantitative data, to calculate the energy change and ΔH values for reactions 3.1 and 3.2 AND linking ΔH data using Hess' Law</p> <p><i>There is a well-developed line of reasoning which is clear and logically structured. The working throughout is clearly shown. All values calculated with reasonable numbers of SF and correct signs mostly shown, allowing for ECF.</i></p> <p>Level 2 (3–4 marks) Attempts to describe all three scientific points but explanations may be incomplete. OR Explains two scientific points thoroughly with few omissions.</p> <p><i>There is a line of reasoning with some logical structure. There may be minor errors in energy change and errors in the calculations of ΔH for reaction 3.1 or reaction 3.2.</i></p> <p>Level 1 (1–2 marks) Processes raw mass and temperature data and obtains a calculated value for the energy change using $mc\Delta T$ OR attempts to obtain values for two scientific points but explanations may be incomplete</p> <p><i>There is an attempt at a logical structure with a line of reasoning to obtain a value for energy change. There may be minor errors in calculation of energy change.</i></p> <p>0 marks – No response or no response worthy of credit.</p>	6	<p>Indicative scientific points may include:</p> <p>1. Masses and ΔT from raw results</p> <ul style="list-style-type: none"> • $m(\text{Na}_2\text{O}) = 1.24 \text{ (g)}$ • $m(\text{solution}) = 25.75 \text{ (g)}$ • $\Delta T = 35.0 \text{ (}^{\circ}\text{C)}$ <p>Energy change from $mc\Delta T$</p> <ul style="list-style-type: none"> • energy released in J OR kJ $= 25.75 \times 4.18 \times 35.0$ $= 3767 \text{ (J)} \text{ OR } 3.767 \text{ (kJ)}$ $(3.767225 \text{ unrounded})$ <hr/> <p>2. $\Delta_r H$ for reaction 3.2</p> <ul style="list-style-type: none"> • $n(\text{Na}_2\text{O}) = \frac{1.24}{62.0} = 0.0200 \text{ (mol)}$ • $\Delta_r H \text{ value } - \frac{3767}{0.0200} = -188 \text{ (kJ mol}^{-1}\text{)}$ $(-188.36125 \text{ unrounded})$ <hr/> <p>3. $\Delta_r H$ for reaction 3.1</p> <ul style="list-style-type: none"> • ΔH value for reaction 3.1 clearly linked to ΔH for reaction 3.2 and reaction 3.3 in energy cycle or an expression: $\Delta H(3.1) = \Delta H(3.2) + 2\Delta H(3.3)$ • $\Delta H(3.1) = -188 + (2 \times -57.6)$ $= -188 - 115.2 = -303(2) \text{ (kJ mol}^{-1}\text{)}$ $(-303.56125 \text{ unrounded})$ <p>Note Throughout, ALLOW ECF from previous value ALLOW omission of trailing zeroes</p>

Question	Answer	Marks	Guidance
(b)	<p>% uncertainties to at least 1 SF, rounded or truncated</p> <hr/> <p>ONE correct % uncertainty ✓</p> <hr/> <p>BOTH correct % uncertainties ✓</p> <hr/> <p>mass: $\frac{0.005 \times 2}{1.24} \times 100 = 0.8/0.81$ OR 0.80 (truncated)</p> <p>ΔT: $\frac{0.1 \times 2}{35.0} \times 100 = 0.6 / 0.57$ (%) ✓</p> <p>Calculator values:</p> <p>mass: 0.8064516129</p> <p>ΔT: 0.5714285714</p>	2	<p>ALLOW error for uncertainty</p> <hr/> <p>ALLOW ECF from mass and ΔT in 2(a)</p> <hr/> <p>IGNORE % uncertainty of mass of solution</p> <hr/> <p>ALLOW one mark for:</p> <ul style="list-style-type: none"> • 2 calculations with both ×2 factors missing i.e. mass 0.3% AND ΔT 0.4% • Not converting to %s using ×2 factors i.e. 0.008 AND 0.006
(c)	<p>ALLOW uncertainty OR error throughout</p> <p>Greater mass of Na₂O OR more Na₂O ✓</p> <p>For mass, ALLOW amount/moles/quantity</p> <p>larger ΔT OR reduces % uncertainty in ΔT ✓</p>	2	<p>ALLOW up to 2 marks based on a single mass measurement:</p> <p>one mass measurement OR measure mass directly ✓ e.g. <i>tare balance</i></p> <hr/> <p>% uncertainty reduced by half ✓</p> <hr/> <p>IGNORE</p> <ul style="list-style-type: none"> • repeat and take average • read to more figures (<i>same apparatus</i>) • increase volume (reduces mass error but increases ΔT error) • use a cooling curve • use a lid


Question		Answer	Marks	Guidance
(d)	(i)	sodium nitrate(III)	1	ALLOW sodium nitrite OR sodium nitrite(III)
(d)	(ii)	Sodium/Na oxidised from 0 to +1 ✓ Nitrogen/N reduced from +3 to 0 ✓	2	ALLOW 1+ for +1 and 3+ for +3 ALLOW N ₂ for nitrogen ALLOW 1 mark for elements AND all oxidation numbers correct, but N on oxidised line and Na on reduced line '+' is required in +3 and +1 oxidation numbers
(d)	(iii)	2NaNO ₂ + 6Na → 4Na ₂ O + N ₂ ✓ IGNORE state symbols	1	ALLOW multiples, e.g. NaNO ₂ + 3Na → 2Na ₂ O + ½N ₂
		Total	14	


Question		Answer	Marks	Guidance
3	(a) (i)	<p>(rate =) $k [\text{H}_2\text{O}_2] [\text{I}^-]$ ✓</p> $k = \frac{\text{rate}}{[\text{H}_2\text{O}_2] [\text{I}^-]} = \frac{2.00 \times 10^{-6}}{0.0100 \times 0.0100} = 0.02(00)$ ✓ <p>units: $\text{dm}^3 \text{ mol}^{-1} \text{ s}^{-1}$ ✓</p>	3	<p>Square brackets required IGNORE any state symbols</p> <p>IGNORE $[\text{H}^+]^0$</p> <p>ALLOW ECF from incorrect rate equation BUT units must fit with rate equation used</p> <p>ALLOW $\text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ OR in any order</p> <p>NOTE K_c expression with calculation and units 0 marks</p>
	(a) (ii)	<p>Plot graph using $\ln k$ AND $1/T$ ✓</p> <p>(Measure) gradient ✓ <i>Independent mark</i></p> <p>$E_a = (-)R \times \text{gradient}$ OR $(-8.314) \times \text{gradient}$ ✓</p> <ul style="list-style-type: none"> • <i>Independent mark, even if variables for graph are incorrect</i> • <i>Subsumes 'gradient' mark</i> 	3	<p>Unless otherwise stated, assume that $\ln k$ is on y axis and $1/T$ is on x axis</p> <p>IGNORE intercept</p> <p>ALLOW $\text{gradient} = (-)\frac{E_a}{R}$</p> <hr/> <p>NOTE: ALLOW 'Inverse graph' (special case)</p> <p>Plot graph of $1/T$ against $\ln k$ ✓</p> <p>(Measure) gradient ✓ <i>Independent mark</i></p> <p>$E_a = (-)\frac{R}{\text{gradient}}$ OR $(-)\frac{8.314}{\text{gradient}}$</p> <p>OR $\text{gradient} = (-)\frac{R}{E_a}$ ✓</p> <p><i>Subsumes 'gradient' mark</i></p>



Question		Answer	Marks	Guidance
(b)		<p>ALLOW equilibrium sign in equations provided reactants on left</p> <p>Reaction of H₂O₂ with MnO₂: $\text{H}_2\text{O}_2 + \text{MnO}_2 + 2\text{H}^+ \rightarrow \text{O}_2 + \text{Mn}^{2+} + 2\text{H}_2\text{O} \checkmark$</p> <p>Reaction of H₂O₂ with Mn²⁺: $\text{H}_2\text{O}_2 + \text{Mn}^{2+} \rightarrow \text{MnO}_2 + 2\text{H}^+ \checkmark$</p> <p>Use of E data Use of E data to support equation(s) above or half direction of provided half equations (one including MnO₂) ✓ <i>Also look for evidence around half equations</i></p> <p>MnO₂ regenerated/reformed ✓ <i>Must be linked to an equation showing MnO₂ as reactant and an equation showing MnO₂ as product</i></p>	4	<p>ALLOW correct multiples IGNORE state symbols</p> <hr/> <p>ALLOW uncancelled H₂O and H⁺ $\text{H}_2\text{O}_2 + \text{MnO}_2 + 4\text{H}^+ \rightarrow \text{O}_2 + \text{Mn}^{2+} + 2\text{H}_2\text{O} + 2\text{H}^+$</p> <p>$\text{H}_2\text{O}_2 + \text{Mn}^{2+} + 2\text{H}_2\text{O} + 2\text{H}^+ \rightarrow \text{MnO}_2 + 4\text{H}^+ + 2\text{H}_2\text{O}$</p> <p>Examples</p> <ul style="list-style-type: none"> • More negative E moves to left ORA • Reduction half equation to the right ORA • Most positive E is reduced ORA • Calculated E cell = +0.81 V (from top 2) OR +0.27 V (from bottom 2) <p>ALLOW combining of equations above to show that MnO₂ is used and reformed</p>
(c)	(i)	<p></p> <p>ALLOW skeletal OR displayed formula OR mixture of the above as long as non-ambiguous, e.g. </p>	1	<p>ALLOW</p> <p></p> <p>OR</p> <p></p> <p>Structure must include OH as part of COOOH group</p> <p>ALLOW $-\text{O}^- \text{H}^+$ in structure</p>



Question		Answer	Marks	Guidance
(c)	(ii)	<p>FIRST CHECK THE ANSWER ON THE ANSWER LINE IF answer = 0.023(125) (mol) award 3 marks for calculation</p> <hr/> <p>K_c expression $(K_c =) \frac{[\text{CH}_3\text{COOOH}]}{[\text{H}_2\text{O}_2][\text{CH}_3\text{COOH}]} \checkmark$</p> <p>$[\text{CH}_3\text{COOOH}]$ $= 0.37 \times 0.500 \times 0.500 = 0.0925 \text{ (mol dm}^{-3}\text{)} \checkmark$ <i>Subsumes K_c expression</i></p> <p>$n(\text{CH}_3\text{COOOH})$ $= 0.0925 \times \frac{250}{1000} = 0.023(125) \text{ (mol)} \checkmark$</p>	3	<p>If there is an alternative answer, check for any ECF credit</p> <hr/> <p>ALLOW $0.37 = \frac{[\text{CH}_3\text{COOOH}]}{0.500 \times 0.500}$</p> <p>ALLOW ECF but ONLY if 0.37 AND 0.5×0.5 have been used</p> <p>Common errors</p> <p>0.076 2 marks <i>Use of $[\text{CH}_3\text{COOOH}]^2$</i></p> <p>0.675 2 marks <i>Use of 0.5 for $[\text{H}_2\text{O}]$ on K_c</i></p> <p>0.169 2 marks <i>Inverted K_c</i></p> <p>0.338 1 mark <i>Inverted K_c AND 0.5 for $[\text{H}_2\text{O}]$</i></p> <p>5.78×10^{-3} 2 marks $\times \frac{250}{1000}$ before $[\text{CH}_3\text{COOOH}]$</p>
		Total	14	

Question		Answer					Marks		Guidance														
4	(a)	<p>Burette readings</p> <table border="1"> <tr> <td>Final (reading)/cm³</td><td>23.15</td><td>45.95</td><td>32.45</td><td>✓</td></tr> <tr> <td>Initial (reading)/cm³</td><td>0.60</td><td>23.15</td><td>10.00</td><td></td></tr> </table> <ul style="list-style-type: none"> Correct titration results recorded with initial and final readings, clearly labeled AND all readings recorded to two decimal places with last figure either 0 or 5 <p>Titres</p> <table border="1"> <tr> <td>Titre/cm³</td><td>22.55</td><td>22.80</td><td>22.45</td><td>✓</td></tr> </table> <ul style="list-style-type: none"> Correct subtractions to obtain final titres to 2 DP <p>Units</p> <ul style="list-style-type: none"> Units of cm³ for initial, final and titres ✓ <p>Mean titre</p> <ul style="list-style-type: none"> mean titre = $\frac{22.55 + 22.45}{2} = 22.50$ OR 22.5 cm³ ✓ <i>i.e. using concordant (consistent) titres</i> 	Final (reading)/cm ³	23.15	45.95	32.45	✓	Initial (reading)/cm ³	0.60	23.15	10.00		Titre/cm ³	22.55	22.80	22.45	✓	<p>4</p>					<p>Table not required</p> <p>ALLOW initial reading before final reading</p> <p>ALLOW ECF</p> <p>ALLOW units with each value ALLOW brackets for units, i.e. (cm³)</p> <p>ALLOW ECF from incorrect concordant titres</p>
Final (reading)/cm ³	23.15	45.95	32.45	✓																			
Initial (reading)/cm ³	0.60	23.15	10.00																				
Titre/cm ³	22.55	22.80	22.45	✓																			

Question		Answer	Marks	Guidance
(a)	(ii)	<p>ALLOW 3SF or more throughout IGNORE trailing zeroes, e.g. ALLOW 0.084 for 0.0840</p> <hr/> $n(\text{NaOH}) = 0.0840 \times \frac{22.50}{1000} = 1.89 \times 10^{-3} \text{ (mol)} \checkmark$ $n(\text{A}) \text{ in } 250 \text{ cm}^3 = 10 \times 1.89 \times 10^{-3} = 1.89 \times 10^{-2} \text{ (mol)} \checkmark$ $M(\text{A}) = \frac{2.495}{1.89 \times 10^{-2}} = 132 \text{ (g mol}^{-1}\text{)} \checkmark$ $M(\text{alkyl group}) (= 132 - 75) = 57 \checkmark$ $\text{R} = \text{C}_4\text{H}_9 \checkmark$ <p>ALLOW alkyl group in drawn structure with straight chain or branch(es) in wrong position, e.g. for $\text{R} = \text{C}_4\text{H}_9$, $\text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2$ OR $(\text{CH}_3)_3\text{C}$</p> <p>Structure with chiral carbon atoms identified (see * below)</p>	6	<p>ALLOW ECF from incorrect mean titre in 4a(i) e.g. From 22.60 cm^3 (mean of all 3 titres in (i)), $n(\text{NaOH}) = 1.8984 \times 10^{-3} \text{ (mol)}$</p> <p>ALLOW ECF from incorrect $n(\text{NaOH})$</p> <p>ALLOW ECF from incorrect $n(\text{A})$</p> <p>ALLOW ECF from incorrect $M(\text{A}) - 75$</p> <p>ALLOW ECF for alkyl group closest to calculated $M(\text{alkyl group})$, e.g. for $M = 45$, ALLOW C_3H_7 (43)</p> <p>ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous</p> <p>IGNORE poor connectivity to OH groups <i>Given in question</i></p> <hr/> <p>Common error for 4 marks max 25.00 instead of 22.50 and scaling by $\times 10$ $2.10 \times 10^{-3} \times \rightarrow 2.10 \times 10^{-2} \checkmark$ $\rightarrow 118.81 \checkmark \rightarrow 43.81 \checkmark \rightarrow \text{C}_3\text{H}_7 \checkmark$</p> <p>$25.00$ instead of 22.50 and scaling by $\times \frac{250}{22.50}$ $2.10 \times 10^{-3} \times \rightarrow 2.33 \times 10^{-2} \checkmark$ $\rightarrow 106.93 \checkmark \rightarrow 31.93 \checkmark \rightarrow \text{C}_2\text{H}_5 \checkmark$</p> <p>No structure with 2 chiral centres possible *</p>

Question		Answer	Marks	Guidance
(b)	(i)	<p>Equation</p> $2\text{HOCH}(\text{R})\text{COOH} + \text{Mg} \rightarrow (\text{HOCH}(\text{R})\text{COO})_2\text{Mg} + \text{H}_2$ <p>Organic product ✓</p> <p>Balance ✓</p> <p>Type of reaction</p> <p>Redox ✓</p>	3	<p>ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous</p> <p>ALLOW</p> $2\text{HOCH}(\text{R})\text{COOH} + \text{Mg} \rightarrow 2\text{HOCH}(\text{R})\text{COO}^- + \text{Mg}^{2+} + \text{H}_2$ <p>ALLOW multiples</p> <p>IGNORE poor connectivity to OH groups Given in question</p>
(b)	(ii)	<p>Equation</p> $2\text{HOCH}(\text{R})\text{COOH} \rightarrow \text{R}-\text{C}(=\text{O})-\text{O}-\text{C}(=\text{O})-\text{R} + 2\text{H}_2\text{O}$ <p>Organic product ✓</p> <p>Balance ✓</p> <p>Type of reaction</p> <p>Condensation OR esterification ✓</p>	3	<p>ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous</p> <p>ALLOW 1 mark of the 2 equation marks for formation of '3 ring' with balanced equation:</p> <p>ALLOW condensation polymerisation ALLOW addition-elimination</p> <p>IGNORE elimination IGNORE dehydration</p>

Question		Answer	Marks		Guidance
(c)	(i)		1		<p>ALLOW brackets around structure with negative charge outside, i.e.</p> <p></p> <p>ALLOW ring (Kekulé structure)</p>
(c)	(ii)	<p>FIRST CHECK THE ANSWER ON THE ANSWER LINE If answer = 1.61×10^{-3} award 2 marks</p> <p>$M = 418(.0) \text{ (g mol}^{-1}\text{)} \text{ OR } n(\text{Cr}) = 3.85 \times 10^{-6} \text{ (mol)} \checkmark$</p> <p>$\text{Mass} = 3.85 \times 10^{-6} \times 418.0 = 1.61 \times 10^{-3} \text{ g} \checkmark$</p>	2		<p>Note: $\frac{200 \times 10^{-6}}{52.0} = 3.85 \times 10^{-6}$ (at least 3 SF)</p> <p>ALLOW ECF from incorrect M OR $n(\text{Cr})$</p> <p>ALLOW 3 SF up to calculator value correctly rounded</p>
		Total	19		

Question		Answer	Marks	Guidance	
		For 5a(i)–(iv) IGNORE poor connectivity to SH groups		Given in question	
5	(a)	(i)	$K_a = \frac{[H^+][C_4H_9S^-]}{[C_4H_9SH]} \checkmark$ <p>Square brackets required</p>	1	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous
	(a)	(ii)	$CH_3CH_2CH_2CH_2SH + H_3C-C(=O)OH \longrightarrow H_3C-C(=O)S-CH_2CH_2CH_2CH_3 + H_2O$ <p>Structure of thioester \checkmark</p> <p>Complete equation \checkmark</p>	2	ALLOW correct skeletal OR displayed formula OR mixture of the above as long as non-ambiguous ALLOW C_4H_9SH ALLOW CH_3COOH Thioester functional group must be fully displayed, OR as a skeletal formula but allow SC_4H_9 in thioester
	(a)	(iii)		1	IF correct skeletal formula is shown, IGNORE displayed formula in a second structure
	(a)	(iv)	<p>Reactants \checkmark</p> <p>Products AND balanced equation \checkmark</p>	2	ALLOW correct structural OR skeletal OR displayed formula OR mixture of the above as long as non-ambiguous

Question	Answer	Marks	Guidance																																			
(b)*	<p>Refer to the marking instructions on page 5 of the mark scheme for guidance on marking this question.</p> <p>Level 3 (5–6 marks) Develops a plan that identifies all compounds by a process of elimination AND includes essential detail for all required tests and observations <i>There is a well-developed line of reasoning which is clear and logically structured</i></p> <p>Level 2 (3–4 marks) Develops a plan that identifies at least half of the compounds OR identifies the functional groups in most of the compounds AND includes detail of the required tests and observations <i>There is a line of reasoning with some structure. The information is mostly relevant and supported by some evidence.</i></p> <p>Level 1 (1–2 marks) Develops a plan that attempts to identify the compounds OR functional groups AND includes detail of the required tests and observations <i>There is a line of reasoning using information that is mostly relevant.</i></p> <p>0 marks – No response or no response worthy of credit with no compounds identified</p>	6	<p>Indicative scientific points may include:</p> <p>Functional groups</p> <ul style="list-style-type: none"> • B alkene and tertiary alcohol • C alkene and aldehyde • D alkene and primary alcohol • E ketone • F secondary alcohol • G alkene and ketone <p>Tests</p> <ul style="list-style-type: none"> • B, C, D and G → Bromine decolourises • C, D and F → $(H^+/\text{Cr}_2\text{O}_7^{2-})$ green • C, E and G → 2,4-DNP orange precipitate • C → Tollens silver mirror <p>For Tollens' ALLOW alternative: Fehling's solution produces a 'brown/brick red/orange precipitate</p> <p>For 2,4-DNP, ALLOW 2,4-DNPH and Brady's</p> <table border="1"> <thead> <tr> <th></th> <th>B</th> <th>C</th> <th>D</th> <th>E</th> <th>F</th> <th>G</th> </tr> </thead> <tbody> <tr> <td>Bromine</td> <td>✓</td> <td>✓</td> <td>✓</td> <td></td> <td></td> <td>✓</td> </tr> <tr> <td>$(H^+/\text{Cr}_2\text{O}_7^{2-})$</td> <td></td> <td>✓</td> <td>✓</td> <td></td> <td>✓</td> <td></td> </tr> <tr> <td>2,4-DNP</td> <td></td> <td>✓</td> <td></td> <td>✓</td> <td></td> <td>✓</td> </tr> <tr> <td>Tollens'</td> <td></td> <td>✓</td> <td></td> <td></td> <td></td> <td></td> </tr> </tbody> </table> <p>No credit for tests on products of tests, melting points, spectra, etc. For other tests seen, contact TL for advice</p>		B	C	D	E	F	G	Bromine	✓	✓	✓			✓	$(H^+/\text{Cr}_2\text{O}_7^{2-})$		✓	✓		✓		2,4-DNP		✓		✓		✓	Tollens'		✓				
	B	C	D	E	F	G																																
Bromine	✓	✓	✓			✓																																
$(H^+/\text{Cr}_2\text{O}_7^{2-})$		✓	✓		✓																																	
2,4-DNP		✓		✓		✓																																
Tollens'		✓																																				
	Total	12																																				

Appendix for Q5b Level of Response

Results of tests

	B	C	D	E	F	G
Bromine	✓	✓	✓			✓
(H⁺)/Cr₂O₇²⁻		✓	✓		✓	
2,4-DNP		✓		✓		✓
Tollens		✓				

Possible processes of elimination (not inclusive)

BCDEFG with 2,4 DNP

CEG orange ppt

CEG with Tollens

EG with bromine

C silver mirror

G decolourises **E** no change

BDF with (H⁺)/Cr₂O₇²⁻

DF green

DF with bromine

B no colour change

D decolourises **F** no change

BCDEFG with (H⁺)/Cr₂O₇²⁻

CDF green

CDF with Tollens/2,4DNP

DF with bromine

C silver mirror/orange ppt

D decolourises **F** no change

BEG with 2,4 DNP

EG orange ppt

EG with bromine

B no change

G decolourises **E** no change

BCDEFG with bromine

BCDG decolourise

EF with 2,4-DNP/(H⁺)/Cr₂O₇²⁻

BCDG with Tollens'

BDG with H⁺/Cr₂O₇²⁻

BG with 2,4-DNP

EF no change

E orange ppt/**F** green

C silver mirror

BDG no change

D green

BG no change

G orange ppt

B no change

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2017

