

GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2019

Annotations available in RM Assessor

Annotation	Meaning
✓	Correct response
✗	Incorrect response
▲	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions**INTRODUCTION**

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.

You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet **Instructions for Examiners**. If you are examining for the first time, please read carefully **Appendix 5 Introduction to Script Marking: Notes for New Examiners**.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

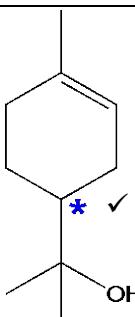
Question		Answer	Marks	AO element	Guidance
1	(a)	<p>Polar bonds F (atom) is more electronegative (than C atom) OR F is very/the most electronegative ✓</p> <p>No overall dipole (CF₄ is) symmetrical OR tetrahedral OR dipoles cancel OR dipoles act in opposite directions ✓</p>	2	AO1.1 x2	<p>Mark independently ALLOW C and F have different electronegativities OR the atoms have different electronegativities BUT DO NOT ALLOW C is more electronegative</p> <p>ALLOW C–F shown with correct dipole, i.e. C^{δ+}–F^{δ−}.</p> <p>IGNORE square planar</p> <p>IGNORE polar bonds cancel BUT ALLOW polarities cancel</p> <p>IGNORE charges cancel</p>
	(b)	<p>(Molecules) contain</p> <ul style="list-style-type: none"> • ²H OR deuterium/D • ³H OR tritium/T <p>OR O/H atoms have more neutrons (than ¹H) OR (different) O/H isotopes are present OR (Molecules are) D₂O ✓</p>	1	AO1.2	<p>ALLOW Molecules contain ¹⁸O</p> <p>Idea of isotopes is critical BUT DO NOT ALLOW isotopes of elements different from H and O (e.g. C)</p>
	(c)	$p(O_2) = 0.21 \times 1.00 \times 10^5$ $= 21,000 / 2.1 \times 10^4 \text{ (Pa)} \checkmark$	1	AO2.2	

Question		Answer	Marks	AO element	Guidance
(d)		<p>FIRST, CHECK ANSWER IF answer = 231 000, award 2 marks</p> <hr/> <p>$n(C_3H_8)$ $n(C_3H_8) = \frac{42.0 \times 10^3}{24.0}$ OR $\frac{42.0 \times 10^6}{24\ 000}$ OR 1750 (mol) ✓</p> <p>Mass of CO_2 $mass\ CO_2 = 3 \times 1750 \times 44$ $= 231\ 000 / 2.31 \times 10^5$ (g) ✓</p> <p>ALLOW 2 SF, e.g. 230 000</p>	2	AO2.2 AO2.6	<p>ALLOW use of ideal gas equation with a sensible temperature (20–25°C) and pressure (100/101 kPa) At 20°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 293} = 1724\dots$ (mol) $\rightarrow \sim 227586$ (g) (dependent on roundings)</p> <p>At 25°C and 100 kPa, $n(C_3H_8) = \frac{100 \times 10^3 \times 42.0}{8.314 \times 298} = 1695\dots$ (mol) $\rightarrow \sim 223767$ (g) (dependent on roundings)</p> <p>ALLOW use of 8.31 for R ALLOW ECF from $n(C_3H_8)$</p> <hr/> <p>Common errors from 24.0 dm^3 231 → 1 mark No conversion of m^3 to dm^3 0.231 → 1 mark Confusion of cm^3 and dm^3 77 000 → 1 mark No 3 × for CO_2</p>
(e)		Initial rate = $10^{-2} \times 2.4 \times 10^{-3}\ s^{-1}$ $= 2.4 \times 10^{-5}$ (mol $dm^{-3}\ s^{-1}$) ✓	1	AO2.2	
(f)		<p>FIRST, CHECK ANSWER IF answer = 9.03×10^{22}, award 2 marks</p> <hr/> <p>$n(P_2O_5)$ $n(P_2O_5) = \frac{4.26}{142.0}$ OR 0.03(00) (mol) ✓</p> <p>O atoms = $5 \times 0.0300 \times 6.02 \times 10^{23}$ $= 9.03 \times 10^{22}$ ✓</p> <p>Minimum 3 SF required</p>	2	AO2.2	<p>Alternative approach $n(O\ atoms) = \frac{4.26}{142.0} \times 5 = 0.15$ ✓</p> <p>O atoms = $0.15 \times 6.02 \times 10^{23} = 9.03 \times 10^{22}$ ✓</p> <p>ALLOW ECF from incorrect $n(P_2O_5)$ ALLOW use of 6.022×10^{23}</p> <hr/> <p>Common error 1.806×10^{22} OR $1.81 \times 10^{22} \rightarrow 1$ mark No × 5</p>

Question		Answer	Marks	AO element	Guidance
2	(a)	$\text{CO}_3^{2-} + \text{H}_2\text{O} \rightarrow \text{OH}^- + \text{HCO}_3^-$ OR $\text{CO}_3^{2-} + \text{H}_2\text{O} \rightarrow 2\text{OH}^- + \text{CO}_2 \checkmark$	1	AO1.2	ALLOW $\text{CO}_3^{2-} + 2\text{H}_2\text{O} \rightarrow 2\text{OH}^- + \text{H}_2\text{CO}_3$ IGNORE state symbols ALLOW inclusion of Na^+ as spectator ion, e.g. $2\text{Na}^+ + \text{CO}_3^{2-} + \text{H}_2\text{O} \rightarrow 2\text{OH}^- + 2\text{Na}^+ + \text{CO}_2$ IGNORE $\text{Na}_2\text{CO}_3 + \text{H}_2\text{O} \rightarrow 2\text{NaOH} + \text{CO}_2$ <i>Ionic equation required</i> IGNORE equation with H^+ or H_3O^+ e.g. $\text{CO}_3^{2-} + \text{H}^+ \rightarrow \text{OH}^- + \text{CO}_2$ Question asks for reaction with H_2O
	(b)	Acid/ H^+ / HCl reacts with OR protonates <ul style="list-style-type: none"> benzoate / $\text{C}_6\text{H}_5\text{COO}^-$ carboxylate / salt (to form benzoic acid) \checkmark	1	AO2.3	ALLOW suitable equation, e.g. $\text{C}_6\text{H}_5\text{COO}^- + \text{H}^+ \rightarrow \text{C}_6\text{H}_5\text{COOH}$ IGNORE responses purely in terms of neutralisation of alkali, e.g. Acid/ H^+ / HCl neutralises / reacts with/removes alkali / OH^- / CO_3^{2-} / Na_2CO_3
	(c)	$\text{C}_6\text{H}_5\text{CH}_2\text{OH} + 2[\text{O}] \rightarrow \text{C}_6\text{H}_5\text{COOH} + \text{H}_2\text{O} \checkmark$	1	AO2.6	ALLOW molecular, structural, displayed formulae, etc e.g. molecular: $\text{C}_7\text{H}_8\text{O} + 2[\text{O}] \rightarrow \text{C}_7\text{H}_6\text{O}_2 + \text{H}_2\text{O}$

Question		Answer	Marks	AO element	Guidance
(d)	<p>FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 33.8 OR 33.9 (%) award 3 marks</p> <hr/> <p>Theoretical moles $n(\text{C}_6\text{H}_5\text{COOH}) \text{ OR } n(\text{C}_6\text{H}_5\text{CH}_2\text{OH})$ $= \frac{4.00 \times 1.04}{108.0} \text{ OR } 0.0385..... \text{ (mol)} \checkmark$</p> <p>Actual moles $n(\text{C}_6\text{H}_5\text{COOH}) = \frac{1.59}{122.0} \text{ OR } 0.013(0).... \text{ (mol)} \checkmark$</p> <p>$\% \text{ yield} = \frac{0.0130...}{0.0385....} \times 100 = 33.8\% \text{ OR } 33.9 \text{ (3 sig fig)} \checkmark$</p> <p><i>Answer depends on some intermediate roundings to 3SF</i></p>	3	AO2.8 x1 AO2.8 x1 AO1.2	Calculator = 0.03851851852 Calculator = 0.01303278689 Alternative method using mass 1. Theoretical moles = 0.0385 mol 2. Mass = $0.0385 \times 122.0 = 4.70 \text{ g}$ 3. $\% \text{ yield} = \frac{1.59}{4.70} \times 100 = 33.8\%$	ALLOW ECF for each step

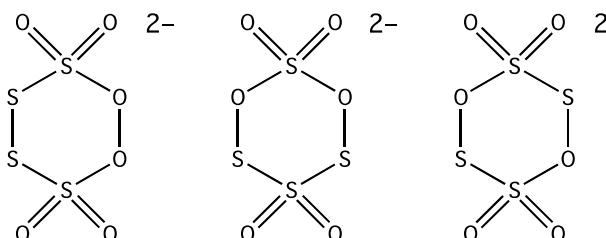
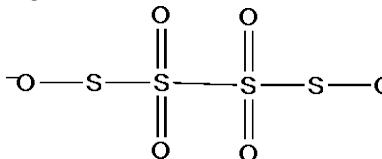
Question		Answer	Marks	AO element	Guidance
	(e)	<p>Dissolve in the minimum quantity of hot water/solvent ✓</p> <p>Cool AND Filter AND (leave to) dry ✓ <i>All three needed</i></p>	2	AO3.3 x2	<p>ALLOW any solvent</p> <p>DO NOT ALLOW use of drying agent (e.g. MgSO_4)</p> <p>IGNORE</p> <ul style="list-style-type: none"> Initial filtering hot filtration to remove insoluble impurities
			Total	8	


Question		Answer	Marks	AO element	Guidance
3	(a)	<p>(i) $4\text{Pb}_2\text{O}_3 + 3\text{CH}_4 \rightarrow 8\text{Pb} + 3\text{CO}_2 + 6\text{H}_2\text{O}$ OR $\text{Pb}_2\text{O}_3 + \text{CH}_4 \rightarrow 2\text{Pb} + \text{CO} + 2\text{H}_2\text{O}$ OR $2\text{Pb}_2\text{O}_3 + 3\text{CH}_4 \rightarrow 4\text{Pb} + 3\text{C} + 6\text{H}_2\text{O} \checkmark$</p>	1	AO2.6	ALLOW multiples IGNORE state symbols
	(ii)	<p>ONE Safety issue AND precaution \checkmark From: Safety issue: Compounds may be toxic/poisonousflammable AND Precaution: Use a fume cupboard/good ventilation</p> <hr/> <p>Safety issue: Lead (compounds) is/are toxic/poisonous AND Precaution: Wear gloves</p> <hr/> <p>Safety issue: Methane is flammable AND Precaution: Keep away from flame</p> <hr/>	1	AO3.3	IGNORE use safety glasses, lab coat (<i>in question</i>) and tying hair back, safety screen Definite safety issue needed. Not just 'harmful' OR dangerous (Too vague). FOR OTHER SAFETY ISSUES AND PRECAUTIONS, CONTACT TEAM LEADER

Question		Answer	Marks	AO element	Guidance
	(iii)	<p>Any 2 modifications ✓ ✓ from</p> <ol style="list-style-type: none"> 1. Heat to constant mass (Ensures all lead oxide has reacted) 2. Spread/stir/break up lead oxide OR increase surface area OR use powder rather than lumps (Ensures all lead oxide has reacted) 3. Pass methane/inert gas/N₂ through tube as it cools OR don't pass cold air (Prevents O₂ reacting with Pb) 4. Use excess methane OR more methane (Ensures all lead oxide has reacted) 5. Bubble (escaping) gas through lime water (Ensures all lead oxide has reacted OR ensures all CO₂ has been produced) 	2	AO3.4 x2	<p>ALLOW response that implies heating to constant mass, e.g. Heat again until the mass does not change</p> <p>IGNORE 'heat for longer' Needs <i>link to constant mass</i></p> <p>IGNORE 'weigh straight after heating'</p> <p>IGNORE idea of repeating the experiment/ taking an average/ getting concordant results / larger sample size, etc.</p>
	(iv)	<p>Pb : O Masses(/g): 3.132 AND 0.322</p> <p>OR Mole ratios: $\frac{3.132}{207.2} : \frac{0.322}{16.0}$</p> <p>OR Mole ratios: 0.0151: 0.020125 ✓</p> <p>Empirical formula Pb₃O₄ (must come from masses) ✓</p>	2	AO2.8 x2	NO ECF from incorrect masses

Question		Answer	Marks	AO element	Guidance
	(b)	<p>Type of lattice 2 marks</p> <ul style="list-style-type: none"> • SiO_2: Giant (covalent lattice) ✓ • CO_2: Simple molecular/covalent (lattice) ✓ <hr/> <p>Explanation 2 marks</p> <p>1. Forces in CO_2</p> <ul style="list-style-type: none"> • Induced dipole–dipole interactions / London forces ✓ <hr/> <p>2. Comparison of forces with strength / melting point</p> <ul style="list-style-type: none"> • (Covalent) bonds in SiO_2 are stronger THAN intermolecular forces in CO_2 OR • More energy to break (covalent) bonds in SiO_2 THAN intermolecular forces in CO_2 ✓ <p>ORA</p>	4	AO1.1 x2 AO1.1 x1 AO2.1 x1	<p>Throughout, IGNORE 'ionic' for SiO_2</p> <p>FOR SiO_2, IGNORE macromolecular DO NOT ALLOW giant metallic</p> <p>Mark explanation independently on type of lattice i.e. no ECF from incorrect lattice</p> <p>For CO_2 IGNORE</p> <ul style="list-style-type: none"> • covalent bonds • van der Waals' forces • idid • LDF <p>DO NOT ALLOW hydrogen bonds OR permanent dipole interactions</p> <hr/> <p>For SiO_2, comparison needs just 'bonds' OR 'forces'</p> <p>For intermolecular, ALLOW 'between molecules'</p> <p>For comparison, ALLOW strong in SiO_2 AND weak in CO_2</p> <p>DO NOT ALLOW responses containing intermolecular forces in SiO_2</p> <p>IGNORE 'More bonds'</p>
			Total	10	

Question		Answer	Marks	AO element	Guidance
4	(a)	<p>4-chloro-3,5-dimethylphenol ✓</p> <p>CARE: Look for dimethyl</p>	1	AO1.2	<p>ALLOW 3,5-dimethyl-4-chlorophenol</p> <p>ALLOW absence of hyphens or extra hyphen or space, e.g. 4 chloro 3,5 dimethylphenol</p> <p>ALLOW full stops or spaces between numbers e.g. 4-chloro-3.5-dimethylphenol</p> <p>ALLOW name based on benzene, if unambiguous e.g. 1-chloro-4-hydroxy-2,6-dimethylbenzene</p> <p>DO NOT ALLOW meth OR methyl</p>
	(ii)	5 ✓	1	AO2.5	
	(iii)	<p>Functional group Phenol ✓</p> <p>Test Indicator/pH paper turns red / orange OR pH < 7 OR pH meter < 7 AND No reaction with $\text{Na}_2\text{CO}_3/\text{CO}_3^{2-}$/carbonate ✓</p>	2	AO1.2 AO2.3	<p>DO NOT ALLOW alcohol OR hydroxide IGNORE hydroxyl OR hydroxy IGNORE OH (<i>name asked for</i>)</p> <p>ALLOW Add bromine AND white precipitate</p> <p>ALLOW FeCl_3 AND violet/blue colour</p>



Question		Answer	Marks	AO element	Guidance
	(iv)	<p>FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 1.71×10^{-10}, award FOUR calculation marks CARE Separate mark for equation</p> <p>Equation (1 mark) $C_8H_9ClO \rightleftharpoons H^+ + C_8H_8ClO^- \checkmark$ <i>Molecular formulae required (atoms in any order)</i></p> <p>[C₈H₉ClO] calculation (2 marks) Molar mass C₈H₉ClO = 156.5 (g mol⁻¹) \checkmark ONLY correct answer</p> $[C_8H_9ClO] = \frac{4.8 \times 10}{156.5} \text{ OR } 0.3067.... \text{ (mol dm}^{-3}\text{)} \checkmark$ <p><i>Subsumes mark for molar mass = 156.5</i></p> <p>K_a calculation (2 marks) $[H^+] = 10^{-5.14} = 7.244.... \times 10^{-6} \text{ (mol dm}^{-3}\text{)} \checkmark$</p> $K_a = \frac{(7.244.... \times 10^{-6})^2}{0.3067....} = 1.71 \times 10^{-10} \text{ (mol dm}^{-3}\text{)} \checkmark$	5	AO1.2 $\times 1$ AO2.8 $\times 4$	<p>ALLOW \rightarrow for \rightleftharpoons</p> <p>DO NOT ALLOW C₈H₈ClOH in equation i.e. C₈H₈ClOH \rightleftharpoons H⁺ + C₈H₈ClO⁻</p> <p>If equation is omitted, ALLOW equation mark for a correct K_a expression with molecular formula i.e. $\frac{[H^+][C_8H_8ClO^-]}{[C_8H_9ClO]}$</p> <p>NO ECF from an incorrect formula in equation</p> <p>ALLOW ECF from incorrect molar mass ALLOW 0.307 up to calculator value: 0.306709265 correctly rounded</p> <p>ALLOW 7.24×10^{-6} up to calculator value: $7.244359601 \times 10^{-6}$ correctly rounded</p> <p>ALLOW 2 SF (1.7.... $\times 10^{-10}$) up to calculator value, correctly rounded (but take care from acceptable intermediate rounding)</p> <p>COMMON ERRORS $2.36.... \times 10^{-5}$ 3/4 calculation marks <i>No squaring of 7.24×10^{-6}</i></p>

Question		Answer	Marks	AO element	Guidance
(b) (i)			1	AO2.5	<p>DO NOT ALLOW more than one *</p> <p>ALLOW a circle for *</p>
(ii)		<p>MAXIMUM OF 4 MARKS FROM 5 MARKING POINTS</p> <p>Requirement for <i>E/Z</i> isomerism <i>2 marks</i> C=C/double bond ✓</p> <p>Each C (in C=C) is attached to (two) different groups/atoms ✓</p> <p>Identification as <i>E</i>- or <i>Z</i>- isomer <i>2 marks</i> <i>E/Z</i> isomerism linked to (high) priority groups ✓</p> <p>Z- isomer AND groups are on same side OR the ring carbons ✓</p> <p>Reason why other <i>E/Z</i> isomer does not exist <i>1 mark</i> ring would be strained OR ring would break/deform OR Cannot form ring if high priority groups are on opposite sides OR ring locks groups on one side of C=C bond ✓</p>	4	AO1.2 ×2 AO2.5 ×2	<p>IGNORE no H attached to C=C IGNORE functional', i.e. ALLOW different functional groups</p> <p>ALLOW in context of groups with largest atomic number ORA Award BOTH identification marks for: Z- isomer AND (high) priority groups on same side</p> <p>Mark independently of previous part</p> <p>Response MUST be linked to the ring/cyclic structure</p> <p>IGNORE just 'E isomer is impossible'</p> <p>IGNORE C=C bond cannot rotate IGNORE Groups can't swap sides</p>

Question		Answer	Marks	AO element	Guidance
	(iii)	<p>First group: Reagent AND Functional group: Alkene OR cycloalkene ✓</p> <p>Examples of reagents Br₂ or other halogen, HBr, H₂ AND Ni (catalyst), H₂O(g)/steam AND H⁺ (catalyst)</p> <p>Organic product for reagent with C=C in α-terpineol ✓ ALLOW product from H₂ or H₂O if H⁺ catalyst has been omitted from reagent.</p> <p>Second group Reagent AND Functional group: (Tertiary) alcohol ✓</p> <p>Examples of reagents NaBr/KBr/Br⁻ AND acid/H⁺ (substitution), OR HBr Acid/H⁺ (catalyst) (elimination), CH₃COOH AND acid/H⁺ (catalyst) (esterification) CH₃COOCOCH₃ (esterification) CH₃COCl (esterification)</p> <p>Organic product for reagent with OH in α-terpineol ✓ ALLOW product if catalyst omitted from reagent</p>	4	AO3.2 x4	<p>CONTACT TEAM LEADER FOR OTHER REACTIONS ----- ALLOW GROUPS EITHER WAY ROUND IN BOXES</p> <p>Functional group MUST be named</p> <p>DO NOT ALLOW UV with halogens ALLOW H₂SO₄/H₃PO₄/acid for H⁺</p> <p>ALLOW addition of HBr/ H₂O either way across C=C</p> <p>ALLOW ANY HALIDE, i.e. Cl⁻, Br⁻, I⁻ ALLOW H₂SO₄/H₃PO₄/acid for H⁺ ALLOW HBr for H⁺ and Br⁻</p> <p>ALLOW name or formula of any carboxylic acid or acyl chloride for esterification</p> <p>ALLOW Na → product with -ONa OR -O⁻ DO NOT ALLOW Cr₂O₇²⁻/H⁺ (tertiary alcohol)</p>
		Total	18		

Question		Answer	Marks	AO element	Guidance
5	(a) (i)*	<p><i>Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.</i></p> <p>Level 3 (5–6 marks) Calculates CORRECT enthalpy change with correct – signs for $\Delta_{\text{sol}}H$ (CuSO₄(s)) for reaction 5.2 AND Δ_fH, for reaction 5.1.</p> <p><i>There is a well-developed line of reasoning which is clear and logically structured.</i> <i>The information presented is relevant and substantiated.</i></p> <p>Level 2 (3–4 marks) Calculates a value of $\Delta_{\text{sol}}H$ (CuSO₄(s)) for reaction 5.2 from the: Energy change AND Amount in mol of CuSO₄.</p> <p><i>There is a line of reasoning presented with some structure.</i> <i>The information presented is relevant and supported by some evidence.</i></p> <p>Level 1 (1–2 marks) Processes experimental data to obtain the: Energy change from $m\Delta T$ OR Amount in mol of CuSO₄.</p> <p><i>There is an attempt at a logical structure with a line of reasoning.</i> <i>The information is in the most part relevant.</i></p>	6	AO3.1 ×4 AO3.2 ×2	<p><i>Indicative scientific points may include:</i></p> <p>1. Processing experimental data Energy change from $m\Delta T$</p> <ul style="list-style-type: none"> Energy in J OR kJ <i>Using 50.70 g, 50.0 g</i> $= 50.70 \times 4.18 \times 13.5 = 2861$ (J) OR 2.861 (kJ) 3SF or more (2.861001 unrounded) OR $50.0 \times 4.18 \times 13.5 = 2821.5$ (J) OR 2.8215 (kJ) <p>Amount in mol of CuSO₄</p> <ul style="list-style-type: none"> $n(\text{CuSO}_4) = \frac{7.98}{159.6} = 0.0500$ (mol) <hr/> <p>2. ± value of $\Delta_{\text{sol}}H(\text{CuSO}_4(\text{s}))$ for reaction 5.2</p> <p>From $m = 50.70$ g $= \pm \frac{2.861}{0.0500} = \pm 57.22$ (kJ mol⁻¹) $(-57.22002$ unrounded) From $m = 50.0$ g $= \pm \frac{2.8215}{0.0500} = \pm 56.43$ (kJ mol⁻¹)</p> <hr/> <p>3. CORRECT enthalpy changes for reactions 5.2 and 5.1 with signs (using 50.70 g ONLY) Reaction 5.2 $= -57.22$ (kJ mol⁻¹) 3SF or more with correct – sign Reaction 5.1 $\Delta_fH = \Delta_{\text{sol}}H(\text{CuSO}_4(\text{s})) - \Delta_{\text{sol}}H(\text{CuSO}_4 \cdot 5\text{H}_2\text{O}(\text{s}))$ $= -57.22 - 8.43 = -65.65$ (kJ mol⁻¹) 3SF or more with correct – sign</p> <p>NOTE: A clear and logically structured response would include an energy cycle ALLOW omission of trailing zeroes ALLOW minor slips</p>

Question		Answer	Marks	AO element	Guidance
		0 marks – No response or no response worthy of credit.			
(a)	(ii)	Temperature change = $0.2 \times \frac{100}{20} = 1(0.0)^\circ\text{C}$ ✓	1	AO2.8	IGNORE direction of temperature change Working NOT required
(b)		<p>FIRST CHECK THE ANSWER IN ON ANSWER LINE If answer = (+)156 (J K⁻¹ mol⁻¹) award 4 marks</p> <hr/> <p>Part 1: Calc of Δ_rS Use of 298 K (seen anywhere) 1 mark ✓</p> <ul style="list-style-type: none"> e.g. $-16.1 = -55.8 - 298 \times \Delta S$ <hr/> <p>CORRECT use of Gibbs' equation 1 mark <ul style="list-style-type: none"> using candidate's temperature (e.g. 298) with -16.1 AND -55.8 to calculate ΔS in kJ OR J ✓</p> <hr/> <p>Part 2: Calc of $S(\text{Na}_2\text{S}_2\text{O}_3)$ 1 mark CORRECT use of standard S data in question Seen anywhere (could be within an expression) e.g. <ul style="list-style-type: none"> $372.4 - [S(\text{Na}_2\text{S}_2\text{O}_3) + (5 \times 69.9)]$ OR $372.4 - (5 \times 69.9)$ OR $372.4 - 349.5$ OR 22.9 ✓</p> <hr/> <p>IGNORE sign, i.e. ALLOW -22.9, etc</p> <hr/> <p>CORRECT calculation of $S(\text{Na}_2\text{S}_2\text{O}_3)$ using candidate's calculated ΔS in Part 1 to 3 SF 1 mark ✓</p>	4	AO2.4 x4	<p>Using 298 K, $\Delta S = \frac{-55.8 - (-16.1)}{298} = \frac{-39.7}{298}$ $= -0.133\dots(\text{kJ K}^{-1}\text{mol}^{-1})$ OR -133... ($\text{J K}^{-1}\text{mol}^{-1}$) Sign required IGNORE units</p> <p>Calculator: -0.133221 ($\text{kJ K}^{-1}\text{mol}^{-1}$) -133.221 ($\text{J K}^{-1}\text{mol}^{-1}$)</p> <hr/> <p>ALLOW ECF from incorrect temperature.</p> <p>Using -133: $S(\text{Na}_2\text{S}_2\text{O}_3) = 372.4 - 349.5 - (-133)$ $= 22.9 + 133$ $= (+)156$ ($\text{J K}^{-1}\text{mol}^{-1}$) 3 SF required</p> <hr/> <p>ALLOW ECF from incorrect Δ_rS (Part 1)</p>

Question		Answer	Marks	AO element	Guidance
(c)	(i)	109.5($^{\circ}$) AND tetrahedral ✓	1	AO1.2	ALLOW 109–110($^{\circ}$)
(ii)		$\begin{array}{c} \text{O} & & \text{O} \\ & & \\ \text{O} - \text{S} - \text{S} - \text{S} - \text{S} - \text{O}^- \\ & & \\ \text{O} & & \text{O} \end{array}$ <p>OR</p> $\begin{array}{c} \text{O} & & \text{O} \\ & & \\ \text{S} - \text{S} - \text{O} - \text{O} - \text{S} - \text{S}^- \\ & & \\ \text{O} & & \text{O} \end{array}$ <p>OR</p> $\begin{array}{c} \text{O} & & \text{O} \\ & & \\ \text{O} - \text{S} - \text{S} - \text{O} - \text{S} - \text{S}^- \\ & & \\ \text{O} & & \text{O} \end{array}$ <p style="text-align: right;">✓</p>	1	AO3.1	IGNORE charges ALLOW cyclic structures. Three 6-ring structures possible, e.g. <p>NOTE: There MUST be 2 atoms in centre between 6-bonded S atoms. e.g. DO NOT ALLOW</p> <p>For other structures, contact TL</p>
		Total	13		

Question		Answer	Marks	AO element	Guidance
6	(a) (i)	A: $\text{Fe(OH)}_3(\text{s})$ ✓ B: $\text{Ag}_2\text{S}(\text{s})$ ✓	2	AO3.1 x2	ALLOW $\text{Fe(OH)}_3(\text{H}_2\text{O})_3$ IGNORE state symbols
	(ii)	Student is incorrect AND No oxidation numbers change OR example, e.g, Fe stays as +2 ✓	1	AO3.2	ALLOW no electron transfer
	(iii)	$2[\text{Fe}(\text{H}_2\text{O})_6]^{2+} + \text{Cl}_2 \rightarrow 2[\text{Fe}(\text{H}_2\text{O})_6]^{3+} + 2\text{Cl}^-$ ✓	1	AO3.1	ALLOW multiples e.g. $[\text{Fe}(\text{H}_2\text{O})_6]^{2+} + \frac{1}{2}\text{Cl}_2 \rightarrow [\text{Fe}(\text{H}_2\text{O})_6]^{3+} + \text{Cl}^-$ ALLOW $2[\text{Fe}(\text{H}_2\text{O})_6]^{2+} + \text{Cl}_2 \rightarrow 2[\text{Fe}(\text{H}_2\text{O})_5\text{OH}]^{2+} + 2\text{HCl}$ OR $2[\text{Fe}(\text{H}_2\text{O})_6]^{2+} + \text{Cl}_2 \rightarrow 2[\text{Fe}(\text{H}_2\text{O})_5\text{Cl}]^{2+} + 2\text{H}_2\text{O}$ NOTE: equation MUST be balanced by charge and oxidation number IGNORE state symbols
	(iv)	$5\text{H}_2\text{S} + 2\text{MnO}_4^- + 6\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 5\text{S} + 8\text{H}_2\text{O}$ ✓✓ 1st mark ALL Correct species (SIX) OR Equation containing Mn and S species correctly balanced i.e. $5\text{H}_2\text{S} + 2\text{MnO}_4^- \dots \rightarrow 2\text{Mn}^{2+} + 5\text{S} \dots$ 2nd mark Complete correct balanced equation	2	AO3.1 x2	ALLOW multiples, e.g. $2\frac{1}{2}\text{H}_2\text{S} + \text{MnO}_4^- + 3\text{H}^+ \rightarrow \text{Mn}^{2+} + 2\frac{1}{2}\text{S} + 4\text{H}_2\text{O}$ ALLOW equation with S^{2-} , e.g. $5\text{S}^{2-} + 2\text{MnO}_4^- + 16\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 5\text{S} + 8\text{H}_2\text{O}$ IGNORE extra electrons for 1st mark

Question		Answer	Marks	AO element	Guidance
(b)*	<p><i>Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question.</i></p> <p>Level 3 (5–6 marks) Reaches a comprehensive conclusion to determine the correct formulae of almost all of C, D, E, F, G AND 9H₂O</p> <p><i>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.</i></p> <p>Level 2 (3–4 marks) Reaches a sound conclusion to determine the correct formulae of at least half of C, D, E, F, G AND 9H₂O.</p> <p><i>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</i></p> <p>Level 1 (1–2 marks) Reaches a simple conclusion to determine the correct formulae of some of C, D, E, F, G AND 9H₂O.</p> <p><i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i></p> <p>0 marks No response or no response worthy of credit.</p>	6	AO1.2 x2 AO3.1 x2 AO3.2 x2	<p>Indicative scientific points may include:</p> <p>Formula of C, D, E, F and G</p> <ul style="list-style-type: none"> • C: Fe(NO₃)₃•9H₂O OR FeN₃O₉•9H₂O • D: FeN₃O₉ OR Fe(NO₃)₃ • E: Fe₂O₃ • F: NO₂ • G: O₂ • 9H₂O <p>Examples of evidence</p> $n(H_2O) = \frac{0.486}{18.0} = 0.027 \text{ (mol)}$ $0.027 : 0.003 = 1 : 9 \rightarrow 9H_2O$ $n(F) = \frac{270 - 54}{24000} = \frac{216}{24000} = 0.009(00) \text{ (mol)}$ $M(E) = 55.8 \times 2 + 16.0 \times 3 = 159.6$ $M(F) = \frac{0.414}{0.009(00)} = 46 \text{ (g mol}^{-1}\text{)}$ <p>G: oxygen linked to relighting glowing split</p> <p>NOTE: Equations could include evidence e.g $Fe(NO_3)_3 \cdot 9H_2O \rightarrow Fe(NO_3)_3 + 9H_2O$ $FeN_3O_9 \cdot 9H_2O \rightarrow FeN_3O_9 + 9H_2O$ $2Fe(NO_3)_3 \rightarrow Fe_2O_3 + 6NO_2 + 1\frac{1}{2}O_2$ </p>	
	Total	12			

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2019

