

GCE

Chemistry A

H432/03: Unified chemistry

Advanced GCE

Mark Scheme for November 2020

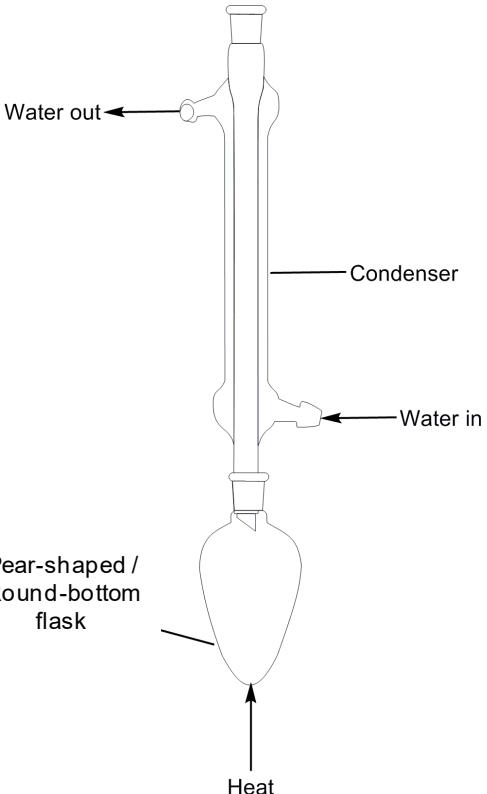
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

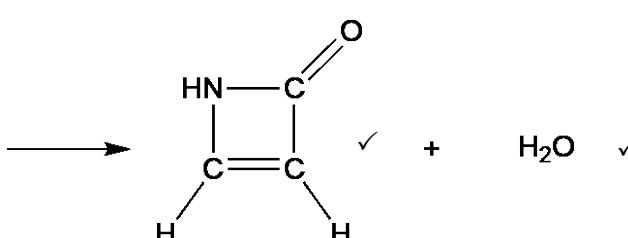
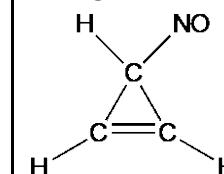
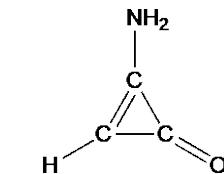

© OCR 2020

Annotations

Annotation	Meaning
✓	Correct response
✗	Incorrect response
✗	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument




Question		Answer	Marks	AO element	Guidance
1	(a)	<p>Water flow AND condenser Water in at bottom and out at top AND condenser ✓</p> <p>Flask and technique Pear-shaped/round-bottom flask AND reflux ✓</p>	2	1.2 × 2	<p>DO NOT ALLOW conical flask, volumetric flask, beaker in place of round bottom/pear shaped flask</p>

Question		Answer	Marks	AO element	Guidance
	(ii)	<p>Diagram showing knowledge of filtration under reduced pressure</p> <p>Diagram showing Buchner flask <i>must have <u>ONE</u> side arm</i> AND Buchner/Hirsh funnel on top of flask ✓ <i>Labels not required</i></p> <p>-----</p> <p>Further details:</p> <ul style="list-style-type: none"> Funnel sealed or stoppered to flask <p>AND</p> <ul style="list-style-type: none"> Apparatus capable of filtering under reduced pressure <p>AND</p> <ul style="list-style-type: none"> Label for setup from side arm to indicate reduced pressure <p>AND</p> <ul style="list-style-type: none"> Label for Buchner flask OR Buchner/Hirsh funnel ✓ <i>ALLOW slips in spelling of 'Buchner'</i> 	2	2.3 2.7	<p>Labels NOT required for diagram</p> <p>ALLOW diagram of a conical flask with a filtering setup above</p> <p>AND</p> <p>Side arm either in conical flask OR between flask and filter paper of funnel</p> <p>IGNORE absence of seals</p> <p>-----</p> <p>MUST imply some type of seal between filter setup and flask. ALLOW <u>small</u> gaps</p> <p>-----</p> <p>Examples of suitable labels (may have arrow from side arm or tube attached)</p> <ul style="list-style-type: none"> to pump to vacuum air out suction reduced pressure etc. <p>For Buchner flask and Buchner funnel DO NOT ALLOW just 'flask OR 'funnel' <i>Flask and funnel used in normal filtration</i></p>

Question		Answer	Marks	AO element	Guidance
(b)	(i)	<p>Comparison of branching and points of contact e.g. $\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$ has longer chain / straight chain / no branches AND e.g. $\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$ has more points of contact / more surface interaction (between molecules) ✓</p> <p>Relative strength of force e.g. $\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$ has stronger/more induced dipole(–dipole) interactions OR London forces ✓</p> <hr/> <p>Hydrogen bonds $\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$ OR $(\text{CH}_3)_2\text{CHNH}_2$ have hydrogen/H bonds OR $(\text{CH}_3)_3\text{N}$ has no hydrogen/H bonds ✓</p> <p>Relative strength of force Hydrogen bonds are stronger than London forces /permanent dipole interactions ✓</p> <hr/> <p>Comparison of energy required to break force e.g. More energy to break/overcome London forces/intermolecular forces in $\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$ OR More energy is needed to break H bonds (than London forces) ✓</p>	5 → 4 max	1.2 2.1 1.2 2.1	<p>ANNOTATE WITH TICKS AND CROSSES, etc. -----</p> <p>ALLOW ORA throughout ALLOW 'The straighter the chain, the more points of contact'</p> <p>IGNORE comparison using 'primary', 'secondary' and 'tertiary'. <i>Comparison of branching is required.</i></p> <p>For London forces,</p> <ul style="list-style-type: none"> ALLOW induced dipole(–dipole) interactions IGNORE IDID OR van der Waals' forces/VDW <p>DO NOT ALLOW $\text{CH}_3\text{CH}_2\text{CH}_2\text{NH}_2$ has more electrons (number of electrons are the same)</p> <p>DO NOT ALLOW 'more energy to break covalent bonds</p> <p>ALLOW little energy is required to break London forces (compared with H bonds)</p>

Question		Answer	Marks	AO element	Guidance
(b)	(ii)	<p>FIRST CHECK MOLECULAR FORMULA and STRUCTURE</p> <p>IF molecular formula = $C_5H_{13}N$ AND correct structure AND evidence of ideal gas equation $\rightarrow 6$ marks</p> <p>Correct up to 87 AND $C_5H_{13}N$ $\rightarrow 5$ marks</p> <p>Correct up to 87 $\rightarrow 4$ marks</p> <hr/> <p>Rearranging ideal gas equation</p> $n = \frac{pV}{RT} \checkmark$ <p>Unit conversion AND substitution into $n = \frac{pV}{RT}$:</p> <ul style="list-style-type: none"> • $R = 8.314$ OR 8.31 • $V = 72(.0) \times 10^{-6}$ • T in K: $373 K$ <p>e.g. $\frac{1.00 \times 10^5 \times 72.0 \times 10^{-6}}{8.314 \times 373} \checkmark$</p> <p>Calculation of n</p> $n = 2.32 \times 10^{-3} \text{ (mol)} \checkmark$ <p>Calculation of M</p> $M = \frac{0.202}{2.32 \times 10^{-3}} = 87 \checkmark$ <p>Molecular formula</p> <p>$C_5H_{13}N \checkmark$</p> <p>Molecular formula required</p>	6	2.2×4	<p>IF $n = \frac{pV}{RT}$ is omitted, ALLOW when values are substituted into rearranged ideal gas equation.</p>

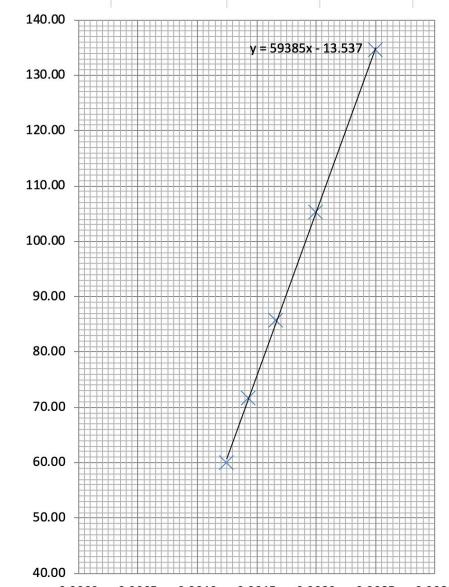
Question	Answer	Marks	AO element	Guidance
	<p>Structure of amine A from $C_5H_{13}N$ ✓</p> <p>OR</p> <p>OR</p> <p>OR</p> <p>OR</p> <p>OR</p>	3.2		<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>ALLOW structures below from molecular formula = $C_3H_9N_3$</p> <p>ALLOW ECF but only if structure has calculated M_r AND has 3 peaks in ^{13}C NMR spectrum.</p>
Use of 24000	<p>3 marks max possible for use of 72.0 cm^3 OR 0.720 dm^3 by ECF</p> <p>Calculation</p> <p>e.g. $n = \frac{72.0}{24000} = 3.00 \times 10^{-3}$ No mark (<i>calculation much simpler</i>)</p> <p>$M = \frac{0.202}{3.00 \times 10^{-3}} = 67.3$ OR 67 ✓ ECF</p> <p>Molecular formula = C_4H_5N ✓ ECF</p> <p>Structure</p> <p>✓ ECF</p>			

Question		Answer	Marks	AO element	Guidance
	(c)	<p>Organic product and water marked independently.</p> <p>1st mark correct organic product OR water IGNORE balancing numbers</p> <p>2nd mark BOTH products AND correctly balanced.</p>	2	3.2	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>ALLOW</p> <p>NOTE: For ECF, any structure must have correct number of bonds to C, H, O and N</p> <p>DO NOT ALLOW structure of dimer Question states molecular formula = C_3H_3NO</p>
		Total	16		

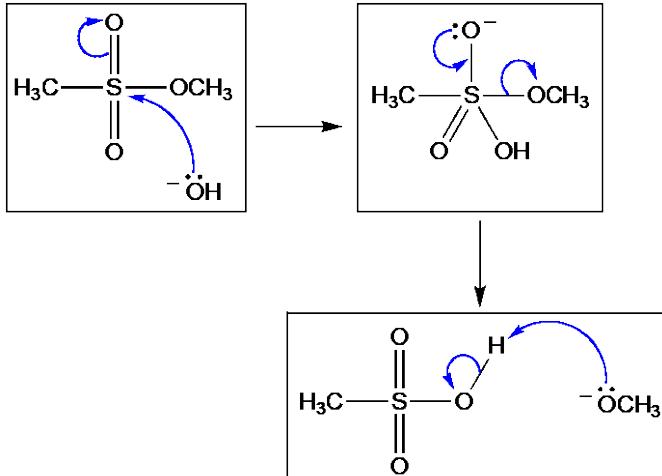
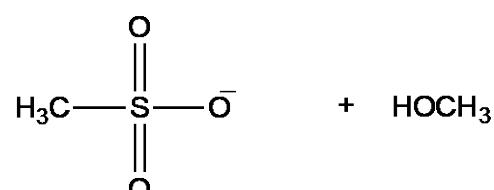
Question		Answer	Marks	AO element	Guidance
2*		<p>Refer to marking instructions on page 5 of mark scheme for guidance on marking this question.</p> <p>Level 3 (5-6 marks) Comprehensive explanation of the terms, ligand and coordination number and ligand substitution AND 3D diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes AND Ligand substitution illustrated with a balanced equation <i>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.</i></p> <p>Level 2 (3-4 marks) Explanation of the terms, ligand and coordination number and ligand substitution with some errors or omissions AND: Diagrams of suitable examples of 6 AND 4 coordinate complex ions with different shapes OR A 3D wedged diagram of a suitable example of 6 OR 4 coordination OR A diagram of a suitable example of 6 OR 4 coordination AND ligand substitution illustrated with an equation OR Ligand substitution illustrated with a balanced equation <i>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence</i></p>	6	1.1×4 2.1×2	<p>Indicative scientific points may include:</p> <p>Terms</p> <ul style="list-style-type: none"> • Ligand: Donates a lone pair to metal ion Forms dative covalent (coordinate) bond with metal ion • Coordination number: Number of coordinate bonds to metal ion. Could be implicit in annotated diagrams NOTE: For monodentate ligands, 'number of ligands' is the same as the number of coordination number • Ligand substitution: One ligand replacing another <p><u>Suitable examples of complex ions with different shapes</u></p> <ul style="list-style-type: none"> • Coordination no 6 Octahedral e.g. $[\text{Cu}(\text{H}_2\text{O})_6]^{2+}$, $[\text{Fe}(\text{H}_2\text{O})_6]^{3+}$ • Coordination no 4 Tetrahedral e.g. CuCl_4^{2-}, CoCl_4^{2-} OR Square planar Pt complexes, e.g. $\text{Pt}(\text{NH}_3)_2\text{Cl}_2$ <p><u>Diagrams and equations</u></p> <ul style="list-style-type: none"> • Diagrams of complex ions (may be 3D) • Equation for ligand substitution e.g. $[\text{Cu}(\text{H}_2\text{O})_6]^{2+} + 4\text{Cl}^- \rightarrow \text{CuCl}_4^{2-} + 6\text{H}_2\text{O}$ $[\text{Cu}(\text{H}_2\text{O})_6]^{2+} + 4\text{NH}_3 \rightarrow [\text{Cu}(\text{NH}_3)_4(\text{H}_2\text{O})_2]^{2+} + 4\text{H}_2\text{O}$ <p><i>NOTE: A clear and logically structured response would link shapes with some of: coordination number, names of shapes, connectivity, involvement of lone pairs, bond angles, etc. (not inclusive)</i></p> <p>ALLOW minor slips</p> <p>NOTE: Levels and the mark within a level is a 'best-fit', not perfection</p>

Question		Answer	Marks	AO element	Guidance
		<p>Level 1 (1-2 marks) Explanation of some terms: ligand, coordination number and ligand substitution with some errors or omissions. AND A suitable example of a complex ion OR Ligand substitution illustrated with an equation with some errors <i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i> 0 marks No response or no response worthy of credit.</p>			
		Total	6		

Question			Answer	Marks	AO element	Guidance
3	(a)	(i)	<p>FIRST, CHECK THE ANSWER ON ANSWER LINE IF $\Delta_cH = -1860$ OR -1850 (kJ mol$^{-1}$) with evidence of working, award 3 marks IF $\Delta_cH = -1862$, award 2 marks (not 3 SF)</p> <p>Energy released in J OR kJ $= 100 \times 4.18 \times 24.5 = \pm 10241$ (J) OR ± 10.241 (kJ) ✓ 3 SF minimum required</p> <p>Calculates $n(C_3H_8)$ $= \frac{0.242}{44(0)} = 0.0055(0)$ (mol) ✓</p> <p>Calculates Δ_cH with – sign AND 3 SF (appropriate) $\Delta_cH = \frac{10241}{0.0055 \times 1000} = -1862$ No mark $= -1860$ OR -1.86×10^3 (kJ mol$^{-1}$) ✓ – sign AND 3 SF required</p>	3	2.4	<p>FULL ANNOTATIONS MUST BE USED ALLOW ECF throughout DO NOT ALLOW $c = 4.2 \rightarrow 10290$ Next 2 marks available by ECF $\rightarrow -1870$ ALLOW 10240/10200 J OR 10.24/10.2 kJ IGNORE units</p> <p>ALLOW ECF from initial 3 SF rounding to 10.2 kJ: $\pm \frac{10200}{0.0055 \times 1000} \rightarrow \pm 1854.545455$ ✓ $\rightarrow 1850$ ✓</p> <p>Common errors $\Delta H = -54.6$ OR -54.7 2 marks by ECF from $mc\Delta T$ m wrong as 0.242 and ΔT wrong as 297.5 K $\rightarrow mc\Delta T$ wrong as 300.9391 (J)</p> <p>$\Delta H = -4.51$ 2 marks by ECF from $mc\Delta T$ m wrong as 0.242 and ΔT correct as 24.5) $\rightarrow mc\Delta T$ wrong as 24.78322 (J)</p> <p>$\Delta H = -22600$ 2 marks by ECF from $mc\Delta T$ m correct as 100 and ΔT wrong as 297.5) $\rightarrow mc\Delta T$ wrong as 124355 (J)</p>
	(a)	(ii)	<p>Any two from: 1 MARK ONLY ✓</p> <ul style="list-style-type: none"> • Heat loss/released to surroundings • Incomplete combustion/reaction with oxygen or air OR not everything burns • Evaporation of water 	1	1.2	<p>IGNORE incomplete ‘reaction’ <i>Needs link to combustion/burning/reaction with air/O₂</i></p> <p>IGNORE evaporation of C₃H₈</p>


Question		Answer	Marks	AO element	Guidance	
	(b)*	<p>Refer to marking instructions on page 5 of mark scheme for guidance on marking this question.</p> <p>Level 3 (5-6 marks) Calculates Δ_rH for reaction 3.1 correctly with correct sign AND Calculates a value for Δ_cH° of propane using Δ_rH AND $\pm 4 \times \Delta_{\text{vap}}H$ <i>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.</i></p> <p>Level 2 (3-4 marks) Calculates Δ_rH for reaction 3.1 correctly with correct sign OR Calculates bonds broken OR bonds made correctly to obtain a value of Δ_rH for reaction 3.1 AND attempts to link Δ_rH with $\Delta_{\text{vap}}H$ OR calculates $4 \times \Delta_{\text{vap}}H$ <i>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</i></p> <p>Level 1 (1-2 marks) Uses bond enthalpies for bonds broken and bonds made but may contain errors or omissions AND obtains a value for Δ_rH. OR Calculates bonds broken OR bonds made correctly. <i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i></p> <p>0 marks No response or no response worthy of credit.</p>	6	2.4×2 3.1×2 3.2×2		<p>Indicative scientific points may include:</p> <p>Bond enthalpy calculation of Δ_rH</p> <p>Bonds broken</p> $= (2 \times 347) + (8 \times 413) + (5 \times 498)$ $= (694) + (3304) + (2490)$ $= \pm 6488 \text{ kJ mol}^{-1}$ <p>Bonds made</p> $= (6 \times 805) + (8 \times 464)$ $= (4830) + (3712) = \pm 8542 \text{ kJ mol}^{-1}$ $\Delta_rH = 6488 - 8542 = -2054 \text{ kJ mol}^{-1}$ <p>NOTE: 3 C–C → 6835 for bond broken: $\Delta H = -1707$ 2 C–C omitted from bonds broken gives: $\Delta H = -2748$</p> <hr/> <p>Determination of $\Delta_cH(C_3H_8)$</p> <p>Δ_cH° of propane using Δ_rH AND $\pm 4 \times \Delta_{\text{vap}}H$</p> <p>Correct</p> $\Delta_cH(C_3H_8) = \Delta_rH - 4 \times \Delta_{\text{vap}}H$ $= -2054 - (4 \times 40.65)$ $= -2054 - 162.6$ $= -2216.6 / -2217 \text{ kJ mol}^{-1}$ <p>Incorrect</p> $\Delta_cH(C_3H_8) = -2054 + (4 \times 40.65)$ $= -2054 + 162.6$ $= -1891.4 / -1891 \text{ kJ mol}^{-1}$ <p>NOTE: A clear and logically structured response would include a correct energy cycle for $\Delta_cH(C_3H_8)$ using Δ_rH AND $4 \times \Delta_{\text{vap}}H$ in energy cycle or expression: ALLOW trailing zeroes OR minor slips</p>
			Total	10		

Question		Answer	Marks	AO element	Guidance
4	(a) (i)	<p>Overall equation AND state symbols: $M(s) + 2HCl(aq) \rightarrow MCl_2(aq) + H_2(g) \checkmark$</p> <p>STATE SYMBOLS required in overall equation ONLY</p> <p>Half equations:</p> <p>Oxidation $M \rightarrow M^{2+} + 2e^- \checkmark$</p> <p>Reduction $2H^+ + 2e^- \rightarrow H_2$ OR $H^+ + e^- \rightarrow \frac{1}{2}H_2 \checkmark$</p>	3	2.6×3	<p>All 3 marks are independent.</p> <p>IGNORE charges/oxidation numbers shown around overall equation. <i>Treat as rough working</i></p> <p>ALLOW overall equation shown with some or all ions that are present e.g. (with state symbols) $M + 2H^+ \rightarrow M^{2+} + H_2$ $M + 2HCl \rightarrow M^{2+} + 2Cl^- + H_2$ $M + 2H^+ + 2Cl^- \rightarrow M^{2+} + 2Cl^- + H_2$</p> <p>In half equations, IGNORE state symbols even is wrong BUT half equations MUST only have species that change.</p> <p>For charges on half equations, ALLOW M^{+2} for M^{2+} OR H^{+1} for H^+ ALLOW $M - 2e^- \rightarrow M^{2+}$</p> <p>If BOTH half equations are correct but shown with oxidation and reduction the wrong way around, award 1 mark from the 2 marks for half equations</p>
	(a) (ii)	<p>Bubbles/effervescence/fizzing stops \checkmark</p> <p>M/metal/solid has disappeared/dissolved \checkmark</p>	2	3.3×2	<p>Responses must imply that all fizzing has stopped and that all the solid has dissolved i.e. 'metal disappears' is not quite enough. 'All the metal disappears' is enough</p> <p>IGNORE constant mass IGNORE no increase in temperature</p>
	(a) (iii)	$H^+ + OH^- \rightarrow H_2O \checkmark$	1	2.5	<p>ALLOW multiples e.g. $2H^+ + 2OH^- \rightarrow 2H_2O$</p> <p>IGNORE state symbols, even if wrong</p>



Question		Answer	Marks	AO element	Guidance
(a)	(iv)	<p>Mean titre 1 mark $= \frac{(27.30 + 27.20)}{2} = 27.25 \text{ (cm}^3\text{)} \checkmark$</p> <p>Analysis of results 5 marks $n(\text{NaOH}) = 27.25 \times \frac{0.320}{1000} = 8.72 \times 10^{-3} \text{ (mol)} \checkmark$</p> $n(\text{HCl}) \text{ in } 25.0 \text{ cm}^3 = n(\text{NaOH})$ $n(\text{HCl}) \text{ in } 250 \text{ cm}^3$ $= 8.72 \times 10^{-3} \times 10 = 8.72 \times 10^{-2} \text{ (mol)} \checkmark$ <p>$n(\text{HCl})$ that reacted with M $= 0.210 - 8.72 \times 10^{-2} = 0.1228 \text{ (mol)} \checkmark$</p> <p>$n(\text{M})$ that reacted $= \frac{0.1228}{2} = 0.0614 \text{ (mol)} \checkmark$</p> $A_r \text{ of } \text{M} = \frac{6.90}{0.0614} = 112.4 \text{ AND M = cadmium/Cd} \checkmark$	6	2.8×5	<p>FULL ANNOTATIONS MUST BE USED</p> <p>Common error: Incorrect mean from all 3 titres = 27.35 cm³</p> <p>Use ECF throughout Intermediate values for working to at least 3 SF.</p> <p>TAKE CARE: Value written down may be truncated calculator value. Depending on rounding, either can be credited.</p> <p>ALLOW 0.123 (mol) i.e. 3SF</p> <p>ALLOW 0.0615 (mol) IF 0.1228 rounded to 0.123</p> <p>ALLOW 112.2 from 0.0615 AND Cd</p> <p>ALLOW A_r to nearest whole number ALLOW ECF for metal closest to calculated A_r</p> <p>DO NOT ALLOW Ga OR Sc (Form 3+ ions only)</p>
		<p>COMMON ERRORS:</p> <p>Mean of 27.35 (use of all 3 titres) $\rightarrow 8.752 \times 10^{-3} \rightarrow 8.752 \times 10^{-2} \rightarrow 0.12248$ $\rightarrow 0.06124 \rightarrow 112.7 \text{ AND Cd: } 5 \text{ marks}$</p> <p>No ÷2 to obtain n(M) $\rightarrow 56.2 \text{ AND Fe (from 27.25)} \quad 5 \text{ marks}$ $\rightarrow 56.3 \text{ AND Fe (from 27.35)} \quad 4 \text{ marks}$</p> <p>No subtraction from 0.210 $\rightarrow 8.72 \times 10^{-2}/2 \rightarrow 4.36 \times 10^{-2} \rightarrow \frac{6.90}{4.36 \times 10^{-2}}$ $\rightarrow 158.2 \text{ to } 158.3 \text{ AND Tb} \quad 5 \text{ marks}$</p>	3.2		<p>No ×10 to obtain n(HCl) in 250 cm³ 5 marks $0.210 - 8.72 \times 10^{-3} = 0.20128 \text{ OR } 0.201$ $n(\text{M}) = 0.20128/2 = 0.10064$ $A_r = 6.90/0.10064 = 68.56 \rightarrow \text{Zn}$</p> <p>No ×10 and no ÷ 2 4 marks $0.210 - 8.72 \times 10^{-3} = 0.20128$ $A_r = 6.9/0.20128 = 34.28 \rightarrow \text{Ca}$</p> <p>Omitting initial titration calculation Zero marks $0.210/2 = 0.105 \rightarrow 6.9/0.105 = 65.71 \rightarrow \text{Zn}$</p>

Question		Answer	Marks	AO element	Guidance
	(b) (i)	$n(\text{CO}_2) = \frac{2.75}{44} = 0.0625 \text{ (mol)} \checkmark$	1	2.8	
	(b) (ii)	<p>$n(\text{X}_2\text{CO}_3) = 0.0625 \text{ (mol)}$ OR 0.0625 used in molar mass expression below \checkmark</p> <p>Molar mass of $\text{X}_2\text{CO}_3 = \frac{14.57}{0.0625} = 233.12 \text{ (g mol}^{-1}\text{)} \checkmark$</p> <p>Metal X = Rubidium/Rb \checkmark</p>	3	1.2 2.8 3.2	<p>ALLOW ECF from 4b(i)</p> <p>ALLOW to nearest whole number</p> <p>DO NOT ALLOW strontium/Sr <i>wrong carbonate formula</i></p> <hr/> <p>ALLOW ECF for X from calculated molar mass ONLY IF X is a Group 1 metal OR Ag</p> <p>Working: Mass of X in $\text{X}_2\text{CO}_3 = 233.14 - 60 = 173.12 \text{ OR } 173$ $A_r \text{ of X} = \frac{173.12}{2} \text{ OR } 86.56 \text{ OR } 85.6 \text{ OR } 87$</p>
	(c) (i)	Reweigh to constant mass \checkmark	1	3.4	<p>ALLOW response implying leaving for longer and monitoring by reweighing to constant mass, e.g. Leave flask until the mass does not change</p> <p>IGNORE 'leave for longer' OR wait till fizzing stops <i>Needs link to constant mass</i></p> <p>ALLOW Collect gas until gas volume is constant</p>
	(c) (ii)	<p>Mass (CO_2) OR $n(\text{CO}_2)$ loss would be smaller OR Mass X_2CO_3 OR $n(\text{X}_2\text{CO}_3)$ reacted (seems to be) less \checkmark</p> <p>Molar mass would be greater \checkmark</p>	2	3.1 3.2	
		Total	19		

Question		Answer					Marks	AO element	Guidance
5	(a)	T /K	500	600	700	800			
		K_p	5.86×10^{45}	1.83×10^{37}	1.46×10^{31}	1.14×10^{26}			
		$\frac{1}{T} /K^{-1}$	2.00×10^{-3}	1.67×10^{-3}	1.43×10^{-3}	1.25×10^{-3}	✓		ALLOW 2 SF or more for $1/T$ but ignore trailing zeroes
		$\ln K_p$	105	86	72	60	✓		ALLOW whole numbers (± 1) for $\ln K_p$
		<i>Calculator values</i>							ALLOW 1 small slip in each row. e.g. 1.66 for 1.67; 71.7 for 71.8
		$1/T /10^{-3}$	2.00	1.66 recurring	1.428571429	1.25			<i>Check with calculator values below table</i>
		$\ln K_p$	105.3844788	85.79996441	71.75857432	59.99824068			BUT DO NOT ALLOW whole number errors, e.g. 85 for 86 <input checked="" type="checkbox"/>
	(b)	Equilibrium (position) shifts to the left AND (forward) reaction is exothermic ✓					1	2.2	ALLOW 'favours reverse reaction' <i>Implies shift to left</i> ALLOW 'shifts in endothermic direction' BUT only if (forward) reaction stated as exothermic

Question		Answer	Marks	AO element	Guidance
	(c)	Plotting of graph <u>All</u> points correctly plotted AND best-fit straight line ✓ Gradient Correct gradient of best-fit straight line within the range $\pm 57000 \rightarrow \pm 63000$ ✓ ΔH calculation (subsumes mark for gradient) $\Delta H = (-)$ gradient $\times 8.31(4)$ OR calculated value ✓ e.g. from ± 60000 , $\Delta H = (+)498840$ (J) OR ± 498.840 (kJ) ΔH in kJ mol^{-1} ΔH correct in kJ mol^{-1} AND 3SF AND – sign ✓ e.g. from ± 498840 , $\Delta H = -499$ (kJ mol^{-1})	4	3.1 3.1 3.2 3.2	 ALLOW 4 points on graph Tolerance 1 small square
	(d)	Extrapolate line to (y) intercept OR Measure/Use (y) intercept ✓ $\text{Intercept} = \frac{\Delta S}{R}$ OR $\Delta S = R \times (\text{y}) \text{ intercept}$ ✓ <i>This statement automatically subsumes 1st mark</i> NOTE: If 'x' intercept, DO NOT ALLOW 1st mark but 2nd mark available for $\times R$ as BOD	2	3.1×2	ALLOW substitute values of $\ln K_p$, $1/T$ and gradient into Equation 5.1 ✓ From provided values and gradient = 60000: $\frac{\Delta S}{R} = \ln K_p - \text{gradient} \times 1/T$ OR $135 - 60000 \times 2.50 \times 10^{-3} = -15$ ✓
		Total	9		

Question		Answer		Marks	AO element	Guidance						
6	(a)	<table border="1"> <tr> <td>Bond angle</td> <td>Name of shape</td> </tr> <tr> <td>120(°)</td> <td>Trigonal planar</td> </tr> <tr> <td>104–105(°)</td> <td>Non-linear</td> </tr> </table> <p>Mark by row OR by column to give higher mark</p> <p>i.e. 2 bond angles correct ✓ 2 shapes correct ✓</p> <p>OR</p> <p>i.e. bond angle AND shape correct in 1st row ✓ bond angle AND shape correct in 2nd row ✓</p>	Bond angle	Name of shape	120(°)	Trigonal planar	104–105(°)	Non-linear		2	1.2×2	<p>For non-linear, ALLOW bent, v-shaped, angular IGNORE planar, 'not straight'</p>
Bond angle	Name of shape											
120(°)	Trigonal planar											
104–105(°)	Non-linear											
	(b)	$\text{CH}_3\text{SO}_2\text{OH} + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{SO}_2\text{O}^- + \text{H}_3\text{O}^+$ ✓ <p>A1 B2 B1 A2 ✓</p> <p>For an equilibrium shown using CH_3COOH instead of H_2O, mark acid–base pairs by ECF, i.e.</p> $\text{CH}_3\text{SO}_2\text{OH} + \text{CH}_3\text{COOH} \rightleftharpoons \text{CH}_3\text{SO}_2\text{O}^- + \text{CH}_3\text{COOH}_2^+ \times$ <p>A1 B2 B1 A2 ECF ✓</p> <p>$\text{CH}_3\text{SO}_2\text{OH}$ dissociates more (than CH_3COOH) OR $\text{CH}_3\text{SO}_2\text{OH}$ is a stronger acid ✓</p> <p>ORA in terms of CH_3COOH being a weaker acid</p> <p>Student is correct AND (sulfonic acid has) lower $\text{p}K_a$/higher K_a OR greater $[\text{H}^+]$ ORA ✓</p>	4	2.1×2	<p>ALLOW → for \rightleftharpoons</p> <p>ALLOW acid–base pairs labelled other way round. i.e. $\text{CH}_3\text{SO}_2\text{OH} + \text{H}_2\text{O} \rightleftharpoons \text{CH}_3\text{SO}_2\text{O}^- + \text{H}_3\text{O}^+$ <p>A2 B1 B2 A1</p> <p>ALLOW small slip</p> <p>If ONE charge is missing from equilibrium. ALLOW ECF for acid–base pairs mark</p> <p>IGNORE 'more acidic' <i>Response needs strength/dissociation</i></p> <p>ALLOW maths explanation for final 2 marks, e.g.</p> $K_a(\text{CH}_3\text{COOH}) = 10^{-(4.76)} = 1.74 \times 10^{-5}$ $[\text{H}^+] = \sqrt{(1.74 \times 10^{-5}) \times 1} = 4.17 \times 10^{-3}$ $\text{pH} = -\log 4.17 \times 10^{-3} = 2.38 \checkmark$ <p>$K_a(\text{CH}_3\text{SO}_2\text{OH}) = 10^{-(1.90)} = 79.4$</p> $[\text{H}^+] = \sqrt{(79.4) \times 1} = 8.91$ $\text{pH} = -\log 8.91 = -0.95 \checkmark$ <p>BOTH pH calcs subsumes 'Student is correct'</p> </p>							

Question		Answer		Marks	AO element	Guidance
	(c)		4	3.1×4	IGNORE any added charges OR dipoles. Marks solely for curly arrows	
		<p>6 curly arrows correct ✓✓✓✓</p> <p>5 curly arrows correct ✓✓✓</p> <p>4 curly arrows correct ✓✓</p> <p>3 curly arrows correct ✓</p>			IGNORE any curly arrows on bottom structures (not in boxes):	
			Total	10		

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored