

Oxford Cambridge and RSA

GCE

Chemistry A

H432/02: Synthesis and analytical techniques

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

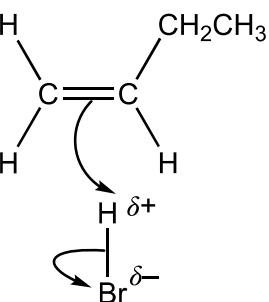
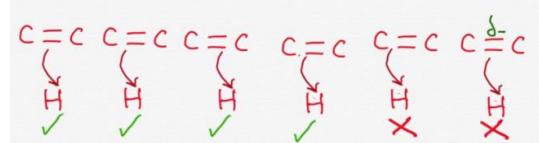
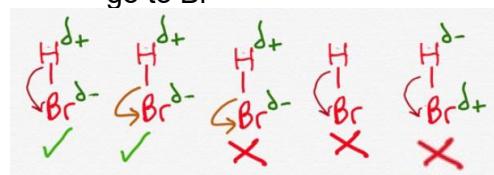
It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

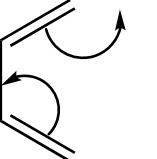
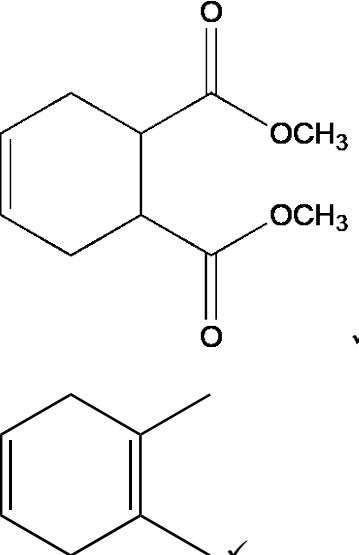
Mark schemes should be read in conjunction with the published question papers and the report on the examination.

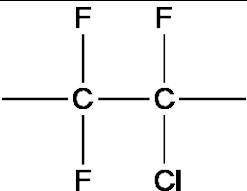
© OCR 2021




1. Annotations

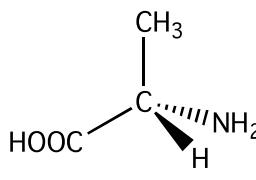
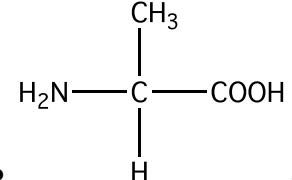
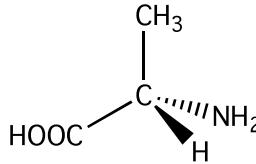
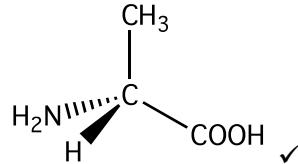
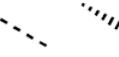
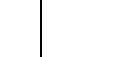
Annotation	Meaning
✓	Correct response
✗	Incorrect response
^K	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

2. Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).



Annotation	Meaning
DO NOT ALLOW	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

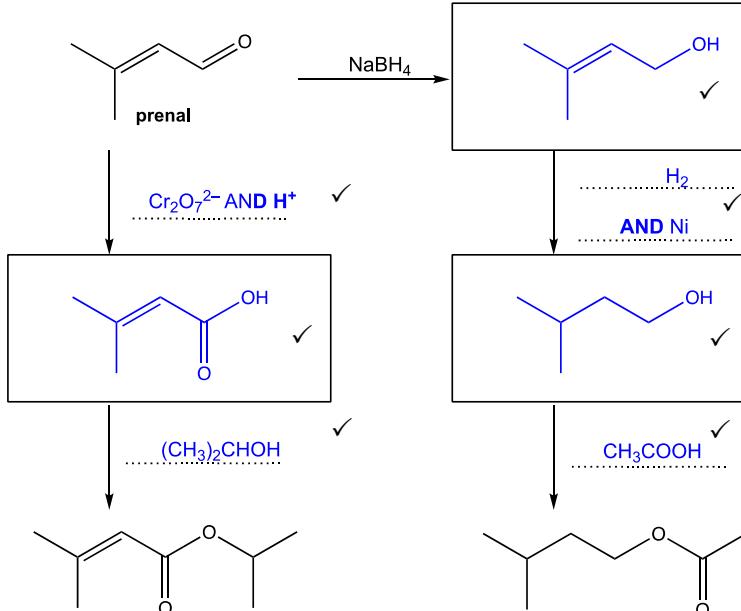

Question	Answer	Marks	AO element	Guidance
1	C	1	AO2.1	ALLOW 4 (This is the number of structural isomers)
2	B	1	AO1.2	
3	C	1	AO2.2	
4	C	1	AO2.6	
5	D	1	AO2.1	
6	B	1	AO1.2	
7	A	1	AO1.2	
8	C	1	AO2.1	
9	C	1	AO1.2	
10	A	1	AO2.1	
11	D	1	AO2.5	
12	B	1	AO2.1	
13	B	1	AO2.1	
14	C	1	AO1.1	
15	A	1	AO1.2	
	Total	15		

Question		Answer	Marks	AO element	Guidance
16	(a) (i)	<p>σ-bond: Overlap of orbitals between (bonding) atoms ✓</p> <p>π-bond: Sideways overlap of (adjacent) p-orbitals ✓</p>	2	AO1.1 x2	ALLOW labelled diagrams IGNORE the type of orbital for σ -bond DO NOT ALLOW pi-orbital
	(ii)	<p>σ-bonds: 9 ✓</p> <p>π-bonds: 2 ✓</p>	2	AO1.2 x2	
	(b) (i)	<p> Curly arrow from C=C bond to H of H-Br ✓ DO NOT ALLOW partial charge on C=C </p> <p>Correct dipole shown on H-Br AND curly arrow showing breaking of H-Br bond ✓</p>	4	AO1.2 x2 AO2.5 x2	<p>NOTE: curly arrows can be straight, snake like, etc. but NOT double headed or half headed arrows</p> <p>1st curly arrow must</p> <ul style="list-style-type: none"> go to the H atom of H-Br AND start from, OR be traced back to any point across width of C=C <p> </p> <p>2nd curly arrow must</p> <ul style="list-style-type: none"> start from, OR be traced back to any part of δ+H-Brδ- bond AND go to Br^{δ-} <p> </p>







Question	Answer	Marks	AO element	Guidance
	<p>Correct carbocation AND curly arrow from Br^- to C^+ of carbocation ✓ DO NOT ALLOW $\delta+$ on C of carbocation</p> <p></p> <p>Correct product ✓</p> <p></p>			<p>3rd curly arrow must</p> <ul style="list-style-type: none"> • go to the C^+ of carbocation • start from, OR be traced back to any point across width of lone pair on :Br^- • OR start from – charge of Br^- ion <p></p> <p>(Lone pair NOT needed if curly arrow shown from – charge of Br^- ion)</p> <p>ALLOW ECF for product from incorrect carbocation, i.e.</p> <p></p> <p>IF Br_2 is used instead of HBr contact your Team Leader</p>

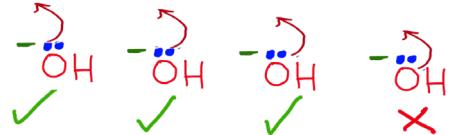
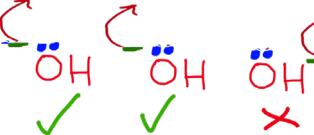
Question		Answer	Marks	AO element	Guidance
	(ii)	(major product forms from) most/more stable intermediate/carbocation ✓ (major product forms from a) secondary carbocation OR carbocation bonded to more C atoms / more alkyl groups OR carbocation bonded to fewer H atoms ✓	2	AO1.1 AO1.2	For carbocation, ALLOW carbonium ion or cation IGNORE descriptions of the major/minor product in terms of Markownikoff's rule e.g. H atom joins to C with most H IGNORE references to stability of the product ALLOW ORA , i.e. (minor product forms from) least/less stable intermediate/carbocation ✓ (minor product forms from a) primary carbocation OR carbocation bonded to less C atoms / less alkyl groups OR carbocation bonded to more H atoms ✓
	(iii)	3 ✓	1	AO1.2	
	(c) (i)	Same structural formula AND Different arrangement (of atoms) in space OR different spatial arrangement (of atoms) ✓	1	AO1.1	ALLOW structure/displayed/skeletal formula DO NOT ALLOW same empirical formula OR same general formula IGNORE same molecular formula Reference to <i>E/Z</i> isomerism or optical isomerism is not sufficient
	(ii)	Student is not correct AND 2 groups on one carbon atom (of C=C) are the same OR C–C bond can rotate ✓	1	AO3.1	DO NOT ALLOW one side of C=C

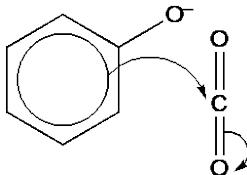
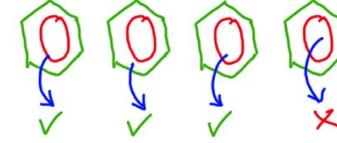
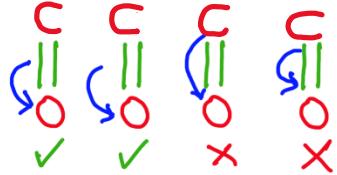
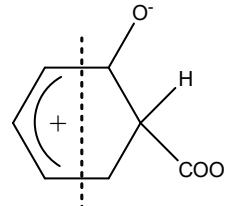
Question		Answer	Marks	AO element	Guidance
	(d) (i)	 1 mark for each curly arrow ✓✓	2	AO2.5 x2	IGNORE any dipoles shown NOTE: curly arrows can be straight, snake-like, etc. but NOT half headed or double headed arrows Curly arrow from C=C bond must start from, OR be traced back to, Lower left: any part of C=C bond and go to C–C Upper left: any part of C=C bond and go to gap between C=C and C=C
	(ii)		2	AO3.2 x2	
			Total	17	


Question		Answer	Marks	AO element	Guidance	
17	(a)	<p>Formation of C_l• $\text{CClF}_3 \rightarrow \text{CF}_3\cdot + \text{Cl}\cdot \checkmark$</p> <p>Breakdown of O₃ $\text{Cl}\cdot + \text{O}_3 \rightarrow \cdot\text{ClO} + \text{O}_2 \checkmark$</p> $\cdot\text{ClO} + \text{O} \rightarrow \text{Cl}\cdot + \text{O}_2 \checkmark$	3	AO2.5 AO1.1 ×2	<p>IGNORE dots for formation C_l•, i.e. ALLOW $\text{CClF}_3 \rightarrow \text{CF}_3 + \text{Cl}$</p> <p>DO NOT ALLOW ECF Dots required in this equation</p> <p>IGNORE O + O₃ → 2O₂</p> <p>ALLOW 1 mark if both equations are correct by atom but dot(s) missing or incorrect</p>	
	(b)	(i)		1	AO2.5	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>'End bonds' MUST be shown</p> <p>DO NOT ALLOW more than 1 repeat unit</p> <p>IGNORE brackets</p> <p>IGNORE n</p>
		(ii)	<p>More points of contact / more surface interaction (between molecules) AND Stronger/more dipole(–dipole) interactions \checkmark</p> <p>More energy needed to break the intermolecular forces \checkmark</p>	2	AO2.1 ×2	<p>Both answers need to be a comparison</p> <p>IGNORE surface area ALLOW more electrons</p> <p>ALLOW induced/permanent dipole interactions ALLOW London forces ALLOW van der Waals' forces (as permanent dipole-dipole and induced dipole-dipole interactions are present within this polymer) IGNORE IDID</p>

Question		Answer		Marks	AO element	Guidance
	(c)	<div style="display: flex; justify-content: space-around; align-items: center;"> <div style="text-align: center;"> $\begin{array}{c} \text{H} & \text{H} & \text{H} & \text{H} \\ & & & \\ \text{H}_2\text{N}-\text{C} & -\text{C} & -\text{C} & -\text{C}-\text{NH}_2 \\ & & & \\ \text{H} & \text{H} & \text{H} & \text{H} \end{array}$ ✓ </div> <div style="text-align: center;"> </div> </div> <div style="display: flex; justify-content: space-around; align-items: center;"> <div style="text-align: center;"> $\begin{array}{c} \text{H} & \text{H} & \text{H} & \text{H} \\ & & & \\ \text{N}-\text{C} & -\text{C} & -\text{C} & -\text{C}-\text{N} \\ & & & \\ \text{H} & \text{H} & \text{H} & \text{H} \end{array}$ O </div> </div> <p>Amide link: ✓</p> <p>1 repeat unit of correct polymer: ✓</p>	4	AO2.5 x2 AO1.2 AO2.5	<p>For polymer, DO NOT ALLOW > 1 repeat unit</p> <p>'End bonds' MUST be shown (do not have to be dotted)</p> <p>ALLOW $-\text{NH}-$ at either end i.e.</p> <div style="text-align: center;"> $\begin{array}{c} \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \\ & & & & \\ \text{C} & -\text{C} & -\text{C} & -\text{C} & -\text{C}-\text{N} \\ & & & & \\ \text{H} & \text{H} & \text{H} & \text{H} & \text{H} \end{array}$ O </div> <p>IGNORE brackets</p> <p>IGNORE n</p>	
		Total	10			

Question		Answer	Marks	AO element	Guidance
18	(a) (i)	Non-superimposable mirror images (about a chiral centre) ✓	1	AO1.1	
	(ii)	<p>Correct groups attached to chiral C of alanine seen once e.g.</p> <p> OR ✓ </p> <p>Two 3D structures of alanine that are mirror images AND correct connectivity in both i.e.</p> <p> ✓ </p>	2	AO2.1 × 2	<p>Each structure must have four central bonds with at least two wedges. For bond into paper accept:</p>




Question		Answer	Marks	AO element	Guidance
	(iii)	4 ✓	1	AO2.2	
(b)		<p>Diagram showing the synthesis of valine from an ester:</p> <p>Starting material: <chem>CC(C)C(C(=O)OC)CO</chem> (ester, $C_7H_{14}O_3$)</p> <p>Reagents: H^+/H_2O OR $H^+(aq)$ OR $HCl(aq)$</p> <p>Product: <chem>CC(C)C(C(=O)O)Cl</chem> (acyl chloride, $C_5H_9O_2Cl$)</p> <p>Reagents: $NaBr/Br^-$ AND H_2SO_4/H^+</p> <p>Product: <chem>CC(C)C(C(=O)O)Br</chem> (haloalkane, $C_5H_9BrO_2$)</p> <p>Reagents: NH_3 AND ethanol OR excess NH_3</p> <p>Product: valine</p>	7	AO1.2 $\times 4$ AO2.5 $\times 3$	<p>ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous</p> <p>ALLOW names of reagents</p> <p>DO NOT ALLOW OH^- for HO^- but ALLOW ECF for subsequent use in (b)</p> <p>For hydrolysis, ALLOW dilute acid</p> <p>ALLOW alkaline conditions followed by protonation of carboxylate i.e. $NaOH(aq)/OH^-(aq)$ AND $H^+(aq)/HCl(aq)$</p> <p>ALLOW HBr for $NaBr/H_2SO_4$</p>





Question		Answer	Marks	AO element	Guidance
	(c) (i)	$C_{13}H_{18}O_2 \checkmark$	1	AO2.1	ALLOW C, H and O in any order
	(ii)	<p>FIRST CHECK ANSWER ON THE ANSWER LINE If answer = 1.17×10^{21} award 3 marks</p> <p>$M(\text{ibuprofen}) = 206 \checkmark$</p> <p>$n(\text{ibuprofen}) = \frac{400 \div 1000}{206} = 1.94 \times 10^{-3} \text{ (mol)} \checkmark$</p> <p>Number of molecules = $1.94 \times 10^{-3} \times 6.02 \times 10^{23}$ $= 1.17 \times 10^{21} \text{ to 3 SF} \checkmark$</p>	3	AO2.2 × 3	<p>ALLOW ECF from (c)(i)</p> <p>Calculator: $1.941747573 \times 10^{-3}$</p> <p>ALLOW ECF from $n(\text{ibuprofen})$ 3 SF essential</p>
	(d) (i)	<p style="text-align: center;">✓</p> <p style="text-align: center;">✓</p>	2	AO3.2 × 2	<p>IGNORE small slip in carbon chains</p> <p>ALLOW</p>
	(ii)	More soluble in water ✓	1	AO3.1	<p>Answer must be a comparison</p> <p>ALLOW dissolve faster/quicker</p> <p>IGNORE absorbed more quickly (given in question)</p>
		Total	18		

Question		Answer	Marks	AO element	Guidance
19	(a) (i)	3-methylbut-2-enal ✓	1	AO1.2	IGNORE lack of hyphens, or addition of commas
	(ii)		7	AO1.2 x4 AO2.5 x3	ALLOW any combination of skeletal OR structural OR displayed formula as long as unambiguous ALLOW names of reagents and catalyst For oxidation, ALLOW $\text{K}_2\text{Cr}_2\text{O}_7$ for $\text{Cr}_2\text{O}_7^{2-}$ ALLOW H_2SO_4 for H^+ For left hand side esterification IGNORE $\text{C}_3\text{H}_7\text{OH}$ IF esterification is given instead of hydrogenation contact your Team Leader

Question		Answer	Marks	AO element	Guidance
(b)*		<p>Refer to marking instructions on page 5 of mark scheme for guidance on marking this question.</p> <p>Level 3 (5-6 marks) Correct calculation of the mass of $C_6H_5CH_2Cl$ AND Planned synthesis to form the intermediate $C_6H_5CH_2CN$ followed by hydrolysis to form A with most of the reagents identified and equations are mostly correct.</p> <p><i>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.</i></p> <p>Level 2 (3-4 marks) Correct calculation of the mass of $C_6H_5CH_2Cl$ AND Planned synthesis to form the intermediate $C_6H_5CH_2CN$ with most of the reagents identified and equation is mostly correct OR Calculation of the mass of $C_6H_5CH_2Cl$ is partly correct AND Planned synthesis includes formation of the intermediate $C_6H_5CH_2CN$ followed by hydrolysis to form A with some of the reagents identified OR Attempts to calculate mass of $C_6H_5CH_2Cl$ but makes little progress AND Planned synthesis includes formation of the intermediate $C_6H_5CH_2CN$ followed by hydrolysis to form A with most of the reagents identified and equations are mostly correct</p>	6	AO2.4 ×2 AO2.7 ×2 AO3.3 ×2	Indicative scientific points may include: <u>Calculation of mass of $C_6H_5CH_2Cl$</u> Using moles <ul style="list-style-type: none"> $n(A) = \frac{5.44}{136}$ = 0.04(00) (mol) $n(C_6H_5CH_2Cl) = 0.0400 \times \frac{100}{25}$ = 0.16(0) (mol) Mass of $C_6H_5CH_2Cl$ = 126.5×0.16 = 20.2(4) g Using mass <ul style="list-style-type: none"> Theoretical mass of ester = $5.44 \times \frac{100}{25}$ = 21.76 (g) Theoretical $n(C_6H_5CH_2Cl) = \frac{21.76}{136}$ = 0.16(0) (mol) Mass of $C_6H_5CH_2Cl$ = 126.5×0.160 = 20.2(4) g ALLOW small slip/rounding errors such as errors in M_r , e.g. use of 137 instead of 136 for $C_6H_5CH_2COOH$ ----- Examples of partly correct calculations Mass = 1.265 g from $0.0400 \times \frac{25}{100} \times 126.5$ (% yield inverted) Mass = 5.06 g from 0.0400×126.5 (% yield omitted)

Question		Answer	Marks	AO element	Guidance
		<p><i>There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.</i></p> <p>Level 1 (1-2 marks)</p> <p>Calculation of the mass of $C_6H_5CH_2Cl$ is partly correct</p> <p>OR</p> <p>Attempts to calculate mass of $C_6H_5CH_2Cl$ but makes little progress</p> <p>AND</p> <p>Planned synthesis includes formation of the intermediate $C_6H_5CH_2CN$ with the reagent identified</p> <p>OR</p> <p>Planned synthesis includes both steps with some of the reagents identified</p> <p>OR</p> <p>Attempts equations for both steps but these may contain errors</p> <p>OR</p> <p>Describes one step of the synthesis with reagent(s) and equation mostly correct</p> <p><i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i></p> <p>0 marks</p> <p>No response or no response worthy of credit.</p>			<p>Synthesis: reagents and conditions</p> <p>Stage 1: Formation of intermediate, $C_6H_5CH_2CN$</p> <ul style="list-style-type: none"> Reagents: CN^- (/ethanol) Equation: $C_6H_5CH_2Cl + CN^- \rightarrow C_6H_5CH_2CN + Cl^-$ <p>OR $C_6H_5CH_2Cl + NaCN \rightarrow C_6H_5CH_2CN + NaCl$</p> <p>(OR use of KCN)</p> <p>Stage 2: Formation of A, $C_6H_5CH_2COOH$</p> <ul style="list-style-type: none"> Reagents: H^+/H_2O (ALLOW 'acid hydrolysis') Equation: $C_6H_5CH_2CN + 2H_2O + H^+ \rightarrow C_6H_5CH_2COOH + NH_4^+$ <p>OR $C_6H_5CH_2CN + 2H_2O + HCl \rightarrow C_6H_5CH_2COOH + NH_4Cl$</p>
			Total	18	

Question		Answer	Marks	AO element	Guidance
20	(a)	<p>Stage 1</p> <p>1 mark for each curly arrow as shown.</p>	6	AO1.1 AO1.2 AO2.5	<p>ANNOTATE WITH TICKS AND CROSSES</p> <p>NOTE: curly arrows can be straight, snake-like, etc. but NOT double headed or half headed arrows</p> <p>Curly arrow from OH^- must</p> <ul style="list-style-type: none"> • go to the H of $\text{O}-\text{H}$ <p>AND</p> <ul style="list-style-type: none"> • start from, OR be traced back to any point across width of lone pair on O of OH^- <ul style="list-style-type: none"> • OR start from – charge OH^- ion <p>Curly arrow from $\text{O}-\text{H}$ bond must start from, OR be traced back to, any part of $\text{O}-\text{H}$ bond and go to O</p> <p>IGNORE dipoles on O-H bond</p> <p>IGNORE Na^+</p>

Question		Answer	Marks	AO element	Guidance
		<p>Stage 2</p> <p>Curly arrow from π-ring to C in CO_2 AND curly arrow from the C=O bond to O atom ✓</p>		AO2.5 AO1.2	<p>1st curly arrow must</p> <ul style="list-style-type: none"> • go to the C of CO_2 <p>AND</p> <ul style="list-style-type: none"> • start from, OR close to circle of benzene ring <p>2nd curly arrow must start from, OR be traced back to, any part of C=O bond and go to O</p> <p>ALLOW 2nd curly arrow from C=O to any O in CO_2</p> <p>DO NOT ALLOW the following intermediate:</p> <p>π-ring must cover more than half of the benzene ring structure AND the correct orientation, <i>i.e.</i> gap towards C with CO_2^-</p> <p>ALLOW + sign anywhere inside the 'hexagon' of the intermediate.</p>

Question		Answer	Marks	AO element	Guidance
					<p>DO NOT ALLOW mark for intermediate if phenolic O⁻ is missing</p> <p>curly arrow must start from, OR be traced back to, any part of C-H bond and go inside the 'hexagon'</p>
	(ii)	OH^- : base ✓ CO_2 : electrophile OR electron pair acceptor ✓	2	AO2.1 ×2	<p>ALLOW alkali</p> <p>IGNORE 'nucleophile', 'donates electron pair'</p> <p>IGNORE lone pair acceptor (<i>No lone pair involved</i>)</p>
	(iii)	<p>One ester link in organic product ✓</p> <p>Correct structure of organic product ✓</p> <p>Correct equation AND balanced ✓</p>	3	AO3.1 AO3.2 AO2.6	

Question		Answer	Marks	AO element	Guidance
		<p><i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i></p> <p>0 marks No response or no response worthy of credit.</p>			<p>Chemical structures E and F are shown. Structure E is a four-carbon chain with a carbonyl group (C=O) at the end. Structure F is a branched chain with a carbonyl group at the end of the top branch.</p>
			Total	6	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored