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• Write your name, centre number and candidate number in the spaces provided on the answer booklet.

• Answer all the questions in Section A and one question from Section B.

• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.
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Section A (54 marks)

Answer all the questions

1 (a) A curve has polar equation , where a is a positive constant.

(i) Sketch the curve. [2]

(ii) Find the area of the region enclosed by the section of the curve for which 

and the line [6]

(b) Use a trigonometric substitution to show that [4]

(c) In this part of the question, 

(i) Find [2]

(ii) Use a standard series to expand and hence find the series for in ascending
powers of x, up to the term in [4]

2 (a) Use de Moivre’s theorem to show that [5]

(b) (i) Find the cube roots of in the form where and [6]

These cube roots are represented by points A, B and C in the Argand diagram, with A in the
first quadrant and ABC going anticlockwise. The midpoint of AB is M, and M represents the
complex number w.

(ii) Draw an Argand diagram, showing the points A, B, C and M. [2]

(iii) Find the modulus and argument of w. [2]

(iv) Find in the form [3]a � bj.w6

�p � q � p.r � 0re jq�2 � 2j

sin 5q � 5 sin q � 20 sin3 q � 16 sin5 q.

x5.
f(x)f� (x),

f� (x).

f(x) � arccos (2x).
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3 Let 

(i) Show that the characteristic equation for M is [4]

You are given that is an eigenvector of M corresponding to the eigenvalue 0.

(ii) Find the other two eigenvalues of M, and corresponding eigenvectors. [8]

(iii) Write down a matrix P, and a diagonal matrix D, such that [3]

(iv) Use the Cayley-Hamilton theorem to find integers a and b such that [3]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (a) Find giving your answer in an exact logarithmic form. [5]

(b) (i) Starting from the definitions of and in terms of exponentials, prove that

[2]

(ii) Show that one of the stationary points on the curve

has coordinates and find the coordinates of the other two stationary points.

[7]

(iii) Show that [4]

[Question 5 is printed overleaf.]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 The curve with equation is to be investigated for different values of k.

(i) Use your graphical calculator to obtain rough sketches of the curve in the cases 
and [6]

(ii) Show that the equation of the curve may be written as 

Hence find the two values of k for which the curve is a straight line. [4]

(iii) When the curve is not a straight line, it is a conic.

(A) Name the type of conic. [1]

(B) Write down the equations of the asymptotes. [2]

(iv) Draw a sketch to show the shape of the curve when . This sketch should show
where the curve crosses the axes and how it approaches its asymptotes. Indicate the points A
and B on the curve where and respectively. [5]x � kx � 1

1 � k � 8

y � x � 2k �
2k(k � 1)

x � k
.

k � 1.k � �0.5
k � �2,

y �
x2 � kx � 2k

x � k
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