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INSTRUCTIONS TO CANDIDATES

. Write your name, centre number and candidate number in the spaces provided on the answer booklet.
. Answer any three questions.

. You are permitted to use a graphical calculator in this paper.

. Final answers should be given to a degree of accuracy appropriate to the context.

. The acceleration due to gravity is denoted by g ms=2. Unless otherwise instructed, when a
numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES
. The number of marks is given in brackets [ ] at the end of each question or part question.

. The total number of marks for this paper is 72.
. There is an insert for use in Question 3.

ADVICE TO CANDIDATES

. Read each question carefully and make sure that you know what you have to do before starting
your answer.

. You are advised that an answer may receive no marks unless you show sufficient detail of the
working to indicate that a correct method is being used.

This document consists of 4 printed pages and an insert.
HN/6 © OCR 2007 [R/102/2661] OCR is an exempt Charity [Turn over




www.xtrapapers.com

2

1 An object is suspended from one end of a vertical spring in a resistive medium. The other end of
the spring is made to oscillate and the differential equation describing the motion of the object is

y +4y+29y = 3cost,

where y is the displacement at time ¢ of the object from its equilibrium position.

(i) Find the general solution. [11]
(ii) Find the particular solution subject to the conditions y = y = 0 when ¢ = 0. What is the
amplitude of the motion for large values of #? [8]

(iii) Find the displacement and velocity of the object when ¢ = 107. [2]

At t = 10x, the upper end of the spring stops oscillating and the differential equation describing
the motion of the object is now

$ +4y+29y = 0.

(iv) Write down the general solution. Describe briefly the motion for + > 10 7. [3]

2 The differential equation

dy
x——2y=1+x",
dx

where 7 is a positive constant, is to be solved for x > 0.

First suppose that n # 2.

(i) Find the general solution for y in terms of x. [8]

(ii) Use your general solution to find the limit of y as x — 0. Show how the value of this limit can

d
be deduced from the differential equation, provided that di]c tends to a finite limit as x — 0.

[3]

(iii) Find the particular solution given that y = —% when x = 1. Sketch a graph of the solution in
the casen = 1. [4]

Now consider the case n = 2.

(iv) Find y in terms of x, given that y has the same value at x = 1 as at x = 2. [9]
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There is an insert for use with part (iii) of this question.

Water is draining from a tank. The depth of water in the tank is initially 1 m, and after # minutes
the depth is y m.

The depth is first modelled by the differential equation

Y -ty (1+0.1c05250),

where k is a constant.
(i) Find y in terms of 7 and k. [8]

(ii) If the depth of water is 0.5 m after 1 minute, show that k = 0.586 correct to three significant
figures. Hence calculate the depth after 2 minutes. (4]

An alternative model is proposed, giving the differential equation

dy

i = 0586 (\y +0.1cos251). ()

The insert shows a tangent field for this differential equation.

(iii) Sketch the solution curve starting at (0, 1) and hence estimate the time for the tank to empty.

[4]

Euler’s method is now used. The algorithm is givenby ¢ . =17 +h, y =y + hj)r, where y is
given by (*).

(iv) Using a step length of 0.1, verify that this gives an estimate of y = 0.93554 when ¢ = 0.1 for
the solution through (0, 1) and calculate an estimate for y whenz = 0.2. [6]

d
(v) Use (*) to show that when the depth of water is less than 1 cm the model predicts that df is

positive for some values of ¢. [2]

[Question 4 is printed overleaf.]
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4 The following simultaneous differential equations are to be solved.

%=—5x+4y+e_2t,

dr
%z —9x+7y+3e”>,
(i) Show that (3;)26 - 22: +x = 3e 2. [5]
(ii) Find the general solution for x in terms of ¢. [8]
(iii) Hence obtain the corresponding general solution for y, simplifying your answer. (4]

dx d
(iv) Given thatx = y = 0 when t = 0, find the particular solutions. Find the values of & and d)t)

when ¢ = 0. Sketch graphs of the solutions. [7]
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