
INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the spaces provided on the answer booklet.

• Answer any three questions.

• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

• The acceleration due to gravity is denoted by g m s–2. Unless otherwise instructed, when a
numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.

• The total number of marks for this paper is 72.

• There is an insert for use in Question 3.

ADVICE TO CANDIDATES

• Read each question carefully and make sure that you know what you have to do before starting
your answer.

• You are advised that an answer may receive no marks unless you show sufficient detail of the
working to indicate that a correct method is being used.
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1 An object is suspended from one end of a vertical spring in a resistive medium. The other end of
the spring is made to oscillate and the differential equation describing the motion of the object is 

where y is the displacement at time t of the object from its equilibrium position.

(i) Find the general solution. [11]

(ii) Find the particular solution subject to the conditions when What is the
amplitude of the motion for large values of t? [8]

(iii) Find the displacement and velocity of the object when [2]

At the upper end of the spring stops oscillating and the differential equation describing
the motion of the object is now

.

(iv) Write down the general solution. Describe briefly the motion for [3]

2 The differential equation 

where n is a positive constant, is to be solved for 

First suppose that 

(i) Find the general solution for y in terms of x. [8]

(ii) Use your general solution to find the limit of y as Show how the value of this limit can

be deduced from the differential equation, provided that tends to a finite limit as 

[3]

(iii) Find the particular solution given that when Sketch a graph of the solution in

the case [4]

Now consider the case 

(iv) Find y in terms of x, given that y has the same value at as at [9]x � 2.x � 1

n � 2.

n � 1.

x � 1.y � �1
2
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dy

dx

x Æ 0.

n � 2.

x � 0.

x 
dy

dx
 � 2y � 1 � x n,

t � 10 p.

y
..
 � 4y

.
� 29y � 0

t � 10 p,

t � 10 p.
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3 There is an insert for use with part (iii) of this question.

Water is draining from a tank. The depth of water in the tank is initially 1m, and after t minutes
the depth is y m.

The depth is first modelled by the differential equation

where k is a constant.

(i) Find y in terms of t and k. [8]

(ii) If the depth of water is 0.5 m after 1 minute, show that correct to three significant
figures. Hence calculate the depth after 2 minutes. [4]

An alternative model is proposed, giving the differential equation

(*)

The insert shows a tangent field for this differential equation.

(iii) Sketch the solution curve starting at and hence estimate the time for the tank to empty.
[4]

Euler’s method is now used. The algorithm is given by where is
given by (*).

(iv) Using a step length of 0.1, verify that this gives an estimate of when for
the solution through and calculate an estimate for y when [6]

(v) Use (*) to show that when the depth of water is less than 1cm the model predicts that is

positive for some values of t. [2]

[Question 4 is printed overleaf.]

dy

dt

t � 0.2.(0, 1)
t � 0.1y � 0.935 54

y
.

tr�1 � tr � h,   yr�1 � yr � hyr ,
.

(0, 1)

d
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k � 0.586
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t

k y t= - +( )1 0 1 25. cos ,
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4 The following simultaneous differential equations are to be solved.

(i) Show that  [5]

(ii) Find the general solution for x in terms of t. [8]

(iii) Hence obtain the corresponding general solution for y, simplifying your answer. [4]

(iv) Given that when find the particular solutions. Find the values of and 

when Sketch graphs of the solutions. [7]t � 0.

dy

dt

dx

dt
t � 0,x � y � 0

d2x

dt2  � 2 
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dt
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