

GCE

Mathematics (MEI)

Advanced GCE **A2 7895-8**

Advanced Subsidiary GCE **AS 3895-8**

Mark Schemes for the Units

June 2007

3895-8/7895-8/MS/R/06

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 870 6622
Facsimile: 0870 870 6621
E-mail: publications@ocr.org.uk

CONTENTS

- Advanced GCE Mathematics (MEI) (7895)
- Advanced GCE Further Mathematics (MEI) (7896)
- Advanced GCE Further Mathematics (Additional) (MEI) (7897)
- Advanced GCE Pure Mathematics (MEI) (7898)

- Advanced Subsidiary GCE Mathematics (MEI) (3895)
- Advanced Subsidiary GCE Further Mathematics (MEI) (3896)
- Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)
- Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)

MARK SCHEME FOR THE UNITS

Unit	Content	Page
4751	Introduction to Advanced Mathematics (C1)	
4752	Concepts for Advanced Mathematics (C2)	
4753	Methods for Advanced Mathematics (C3)	
4754	Applications of Advanced Mathematics (C4)	
4755	Further Concepts for Advanced Mathematics (FP1)	
4756	Further Methods for Advanced Mathematics (FP2)	
4757	Further Applications of Advanced Mathematics (FP3)	
4758	Differential Equations	
4761	Mechanics 1	
4762	Mechanics 2	
4763	Mechanics 3	
4764	Mechanics 4	
4766	Statistics 1	
4767	Statistics 2	
4768	Statistics 3	
4769	Statistics 4	
4771	Decision Mathematics 1	
4772	Decision Mathematics 2	
4773	Decision Mathematics Computation	
4776	Numerical Methods	
4777	Numerical Computation	
*	Grade Thresholds	

Mark Scheme 4751
June 2007

Section A

1	$x > -0.6$ o.e. eg $-3/5 < x$ isw	3	M2 for $-3 < 5x$ or $x > \frac{3}{-5}$ or M1 for $-5x < 3$ or $k < 5x$ or $-3 < kx$ [condone \leq for Ms]; if 0, allow SC1 for -0.6 found	3
2	$t = [\pm] \sqrt{\frac{2s}{a}}$ o.e.	3	B2 for t omitted or $t = \sqrt{\frac{s}{\frac{1}{2}a}}$ o.e. M1 for correct constructive first step in rearrangement and M1 (indep) for finding sq rt of their t^2	3
3	'If $2n$ is an even integer, then n is an odd integer' showing wrong eg 'if n is an even integer, $2n$ is an even integer'	1 1	or: $2n$ an even integer $\Rightarrow n$ an odd integer or counterexample eg $n = 2$ and $2n = 4$ seen [in either order]	2
4	$c = 6$ $k = -7$	1 2	M1 for $f(2) = 0$ used or for long division as far as $x^3 - 2x^2$ in working	3
5	(i) $4x^4y$ (ii) 32	2 2	M1 for two elements correct; condone y^1 M1 for $\left(\frac{2}{1}\right)^5$ or 2^5 soi or $\left(\frac{1}{32}\right)^{-1}$ or $\frac{1}{32}$	4
6	$-720 [x^3]$	4	B3 for 720; M1 for each of 3^2 and $\pm 2^3$ or $(-2x)^3$ or $(2x)^3$, and M1 for 10 or $(5 \times 4 \times 3)/(3 \times 2 \times 1)$ or for 1 5 10 10 5 1 seen but not for 5C_3	4
7	$\frac{-5}{10}$ o.e. isw	3	M1 for $4x + 5 = 2x \times -3$ and M1 for $10x = -5$ o.e. or M1 for $2 + \frac{5}{2x} = -3$ and M1 for $\frac{5}{2x} = -5$ o.e.	3
8	(i) $2\sqrt{2}$ or $\sqrt{8}$ (ii) $30 - 12\sqrt{5}$	2 3	M1 for $7\sqrt{2}$ or $5\sqrt{2}$ seen M1 for attempt to multiply num. and denom. by $2 - \sqrt{5}$ and M1 (dep) for denom -1 or $4 - 5$ soi or for numerator $12\sqrt{5} - 30$	5
9	(i) ± 5 (ii) $y = (x - 2)^2 - 4$ or $y = x^2 - 4x$ o.e. isw	2 2	B1 for one soln M1 if y omitted or for $y = (x + 2)^2 - 4$ or $y = x^2 + 4x$ o.e.	4
10	(i) $\frac{1}{2} \times (x + 1)(2x - 3) = 9$ o.e. $2x^2 - x - 3 = 18$ or $x^2 - \frac{1}{2}x - 3/2 = 9$ (ii) $(2x - 7)(x + 3)$ -3 and $7/2$ o.e. or ft their factors base 4, height 4.5 o.e. cao	M1 A1 B1 B1 B1	for clear algebraic use of $\frac{1}{2}bh$; condone $(x + 1)(2x - 3) = 18$ allow x terms uncollected. NB ans $2x^2 - x - 21 = 0$ given NB B0 for formula or comp. sq. if factors seen, allow omission of -3 B0 if also give $b = -9, h = -2$	5

Section B

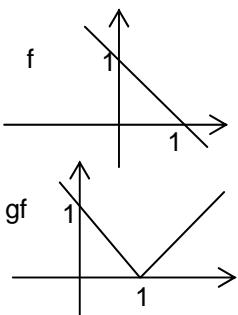
11	i	$\text{grad AC} = \frac{7-3}{3-1} \text{ or } 4/2 \text{ o.e.} [= 2]$ $\text{so grad AT} = -\frac{1}{2}$ $\text{eqn of AT is } y - 7 = -\frac{1}{2}(x - 3)$ one correct constructive step towards $x + 2y = 17$ [ans given]	M1	not from using $-\frac{1}{2}$	4
	ii	$x + 2(2x - 9) = 17$ $5x - 18 = 17 \text{ or } 5x = 35 \text{ o.e.}$ $x = 7 \text{ and } y = 5 \text{ [so } (7, 5)\text{]}$	M1	attempt at subst for x or y or elimination	
	iii	$(x - 1)^2 + (2x - 12)^2 = 20$ $5x^2 - 50x + 125 [= 0]$ $(x - 5)^2 = 0$ equal roots so tangent $(5, 1)$ <u>or</u> $y - 3 = -\frac{1}{2}(x - 1) \text{ o.e. seen}$ subst or elim. with $y = 2x - 9$ $x = 5$ $(5, 1)$ showing $(5, 1)$ on circle	M1 M1 A1 B1 B1	allow $2.5x = 17.5$ etc graphically: allow M2 for both lines correct or showing $(7, 5)$ fits both lines subst $2x - 9$ for y [oe for x] rearranging to 0; condone one error showing 5 is root and only root explicit statement of condition needed (may be obtained earlier in part) or showing line is perp. to radius at point of contact condone $x = 5, y = 1$ or if $y = 2x - 9$ is tgt then line through C with gradient $-\frac{1}{2}$ is radius or showing distance between $(1, 3)$ and $(5, 1) = \sqrt{20}$	

12	i	$4(x - 3)^2 - 9$	4	1 for $a = 4$, 1 for $b = 3$, 2 for $c = -9$ or M1 for $27 - 4 \times 3^2$ or $\frac{27}{4} - 3^2 = -\frac{9}{4}$	4
	ii	min at $(3, -9)$ or ft from (i)	B2	1 for each coord [e.g. may start again and use calculus to obtain $x = 3$]	2
	iii	$(2x - 3)(2x - 9)$ $x = 1.5$ or 4.5 o.e.	M1 A2	attempt at factorising or formula or use of their (i) to sq rt stage A1 for 1 correct; accept fractional equivs eg $36/8$ and $12/8$	3
	iv	sketch of quadratic the right way up crosses x axis at 1.5 and 4.5 or ft crosses y axis at 27	M1 A1 B1	allow unsimplified shown on graph or in table etc; condone not extending to negative x	3
13	i	$2x^3 + 5x^2 + 4x - 6x^2 - 15x - 12$	1	for correct interim step; allow correct long division of $f(x)$ by $(x - 3)$ to obtain $2x^2 + 5x + 4$ with no remainder	
		3 is root use of $b^2 - 4ac$ $5^2 - 4 \times 2 \times 4$ or -7 and [negative] implies no real root	B1 M1 A1	allow $f(3) = 0$ shown or equivalents for M1 and A1 using formula or completing square	4
	ii	divn of $f(x) + 22$ by $x - 2$ as far as $2x^3 - 4x^2$ used $2x^2 + 3x - 5$ obtained $(2x + 5)(x - 1)$ 1 and -2.5 o.e.	M1 A1 M1 A1 +A1	or inspection eg $(x - 2)(2x^2 \dots - 5)$ attempt at factorising/quad. formula/compl. sq.	
		or $2 \times 2^3 - 2^2 - 11 \times 2 - 12$ $16 - 4 - 22 - 12$ $x = 1$ is a root obtained by factor thm $x = -2.5$ obtained as root	M1 A1 B1 B2	or equivs using $f(x) + 22$ not just stated	5
	iii	cubic right way up crossing x axis only once $(3, 0)$ and $(0, -12)$ shown	G1 G1 G1	must have turning points must have max and min below x axis at intns with axes or in working (indep of cubic shape); ignore other intns	3

Mark Scheme 4752
June 2007

4752

Mark Scheme


June 2007

1	(i) $-\sqrt{3}$ (ii) $\frac{5}{3}\pi$	1 2	Accept any exact form accept $\frac{5\pi}{3}$, 1 $\frac{2}{3}\pi$. M1 π rad = 180° used correctly	
2	$y' = 6 \times \frac{3}{2}x^{\frac{1}{2}}$ or $9x^{\frac{1}{2}}$ o.e. $y'' = \frac{9}{2}x^{-\frac{1}{2}}$ o.e. $\sqrt{36} = 6$ used interim step to obtain $\frac{3}{4}$	2 1 M1 A1	1 if one error in coeff or power, or extra term f.t. their y' only if fractional power f.t. their y'' www answer given	5
3	(i) $y = 2f(x)$ (ii) $y = f(x - 3)$	2 2	1 if 'y=' omitted [penalise only once] M1 for $y = kf(x)$, $k > 0$ M1 for $y = f(x + 3)$ or $y = f(x - k)$	4
4	(i) 11 27 or ft from their 11 (ii) 20	1 1 2	M1 for $1 \times 2 + 2 \times 3 + 3 \times 4$ soi, or 2,6,12 identified, or for substituting $n = 3$ in standard formulae	4
5	$\theta = 0.72$ o.e 13.6 [cm]	2 3	M1 for $9 = \frac{1}{2} \times 25 \times \theta$ No marks for using degrees unless attempt to convert B2 ft for $10 + 5 \times$ their θ or for 3.6 found or M1 for $s = 5\theta$ soi	5
6	(i) $\log_a 1 = 0$, $\log_a a = 1$ (ii) showing both sides equivalent	1+1 3	NB, if not identified, accept only in this order M1 for correct use of 3 rd law and M1 for correct use of 1 st or 2 nd law. Completion www A1. Condone omission of a .	5
7	(i) curve with increasing gradient any curve through (0, 1) marked (ii) 2.73	G1 G1 3	correct shape in both quadrants M1 for $x \log 3 = \log 20$ (or $x = \log_3 20$) and M1 for $x = \log 20 \div \log 3$ or B2 for other versions of 2.726833.. or B1 for other answer 2.7 to 2.8	5
8	(i) $2(1 - \sin^2 \theta) + 7 \sin \theta = 5$ (ii) $(2 \sin \theta - 1)(\sin \theta - 3)$ $\sin \theta = \frac{1}{2}$ 30° and 150°	1 M1 DM1 A1 A1	for $\cos^2 \theta + \sin^2 \theta = 1$ o.e. used 1 st and 3 rd terms in expansion correct f.t. factors B1, B1 for each solution obtained by any valid method, ignore extra solns outside range, 30° , 150° plus extra soln(s) scores 1	5

9	i	$y' = 6x^2 - 18x + 12$ = 12 $y = 7$ when $x = 3$ tgt is $y - 7 = 12(x - 3)$ verifying $(-1, -41)$ on tgt	M1 M1 B1 M1 A1	condone one error subst of $x = 3$ in <u>their</u> y' f.t. their y and y' or B2 for showing line joining $(3, 7)$ and $(-1, -41)$ has gradient 12	5
	ii	$y' = 0$ soi quadratic with 3 terms $x = 1$ or 2 $y = 3$ or 2	M1 M1 A1 A1	Their y' Any valid attempt at solution or A1 for $(1, 3)$ and A1 for $(2, 2)$ marking to benefit of candidate	
	iii	cubic curve correct orientation touching x- axis only at $(0.2, 0)$ max and min correct curve crossing y axis only at -2	G1 G1	f.t.	
10	i	970 [m]	4	M3 for attempt at trap rule $\frac{1}{2} \times 10 \times (28+22+2[19+14+11+12+16])$ M2 with 1 error, M1 with 2 errors. Or M3 for 6 correct trapezia, M2 for 4 correct trapezia, M1 for 2 correct trapezia.	4
	ii	concave curve or line of traps is above curve $(19+14+11+11+12+16) \times 10$ 830 to 880 incl. [m]	1	Accept suitable sketch	
	iii	$t = 10$, $v_{\text{model}} = 19.5$ difference = 0.5 compared with 3% of 19 = 0.57	M1 A1 B1	M1 for 3 or more rectangles with values from curve.	
	iv	$28t - \frac{1}{2}t^2 + 0.005t^3$ o.e. value at 60 [- value at 0] 960	B1f.t. M1 M1 A1	or $\frac{0.5}{19} \times 100 \approx 2.6$ 2 terms correct, ignore + c ft from integrated attempt with 3 terms	
11	ai	13	1		1
	aii	120	2	M1 for attempt at AP formula ft their a , d or for $3 + 5 + \dots + 21$	2
	bi	$\frac{125}{1296}$	2	M1 for $\frac{1}{6} \times \left(\frac{5}{6}\right)^3$	2
	ii	$a = 1/6$, $r = 5/6$ s.o.i. $S_{\infty} = \frac{\frac{1}{6}}{1 - \frac{5}{6}}$ o.e.	1+1 1	If not specified, must be in right order	3
	iii	$\left(\frac{5}{6}\right)^{n-1} < 0.006$ $(n-1) \log_{10} \left(\frac{5}{6}\right) < \log_{10} 0.006$ $n-1 > \frac{\log_{10} 0.006}{\log_{10} \left(\frac{5}{6}\right)}$ $n_{\min} = 30$ Or $\log(1/6) + \log(5/6)^{n-1} < \log 0.001$ $(n-1) \log(5/6) < \log(0.001/(1/6))$	M1 M1 DM1 B1 M1 M1	condone omission of base, but not brackets NB change of sign must come at correct place	4

Mark Scheme 4753
June 2007

Section A

1 (i) $\frac{1}{2}(1+2x)^{-1/2} \times 2$ $= \frac{1}{\sqrt{1+2x}}$	M1 B1 A1 [3]	chain rule $\frac{1}{2}u^{-1/2}$ or $\frac{1}{2}(1+2x)^{-1/2}$ oe, but must resolve $\frac{1}{2} \times 2 = 1$
(ii) $y = \ln(1-e^{-x})$ $\Rightarrow \frac{dy}{dx} = \frac{1}{1-e^{-x}} \cdot (-e^{-x})(-1)$ $= \frac{e^{-x}}{1-e^{-x}}$ $= \frac{1}{e^x-1} *$	M1 B1 A1 E1 [4]	chain rule $\frac{1}{1-e^{-x}}$ or $\frac{1}{u}$ if substituting $u = 1-e^{-x}$ $\times(-e^{-x})(-1)$ or e^{-x} www (may imply $\times e^x$ top and bottom)
2 $gf(x) = 1-x $ 	B1 B1 B1 [3]	intercepts must be labelled line must extend either side of each axis condone no labels, but line must extend to left of y axis
3(i) Differentiating implicitly: $(4y+1)\frac{dy}{dx} = 18x$ $\Rightarrow \frac{dy}{dx} = \frac{18x}{4y+1}$ When $x = 1, y = 2, \frac{dy}{dx} = \frac{18}{9} = 2$	M1 A1 M1 A1cao [4]	$(4y+1)\frac{dy}{dx} = \dots$ allow $4y+1\frac{dy}{dx} = \dots$ condone omitted bracket if intention implied by following line. $4y\frac{dy}{dx} + 1$ M1 A0 substituting $x = 1, y = 2$ into their derivative (provided it contains x 's and y 's). Allow unsupported answers.
(ii) $\frac{dy}{dx} = 0$ when $x = 0$ $\Rightarrow 2y^2 + y = 1$ $\Rightarrow 2y^2 + y - 1 = 0$ $\Rightarrow (2y-1)(y+1) = 0$ $\Rightarrow y = \frac{1}{2}$ or $y = -1$ So coords are $(0, \frac{1}{2})$ and $(0, -1)$	B1 M1 A1 A1 [4]	$x = 0$ from their numerator = 0 (must have a denominator) Obtaining correct quadratic and attempt to factorise or use quadratic formula $y = \frac{-1 \pm \sqrt{1-4 \times -2}}{4}$ cao allow unsupported answers provided quadratic is shown

<p>4(i) $T = 25 + ae^{-kt}$. When $t = 0$, $T = 100$ $\Rightarrow 100 = 25 + ae^0$ $\Rightarrow a = 75$ When $t = 3$, $T = 80$ $\Rightarrow 80 = 25 + 75e^{-3k}$ $\Rightarrow e^{-3k} = 55/75$ $\Rightarrow -3k = \ln(55/75)$, $k = -\ln(55/75)/3$ $= 0.1034$</p>	M1 A1 M1 M1 A1cao [5]	substituting $t = 0$ and $T = 100$ into their equation (even if this is an incorrect version of the given equation) substituting $t = 3$ and $T = 80$ into (their) equation taking \ln s correctly at any stage 0.1 or better or $-\frac{1}{3}\ln(\frac{55}{75})$ o.e. if final answer
<p>(ii) (A) $T = 25 + 75e^{-0.1034 \times 5}$ $= 69.72$</p> <p>(B) 25°C</p>	M1 A1 B1cao [3]	substituting $t = 5$ into their equation 69.5 to 70.5, condone inaccurate rounding due to value of k .
<p>5</p> $n = 1, n^2 + 3n + 1 = 5$ prime $n = 2, n^2 + 3n + 1 = 11$ prime $n = 3, n^2 + 3n + 1 = 19$ prime $n = 4, n^2 + 3n + 1 = 29$ prime $n = 5, n^2 + 3n + 1 = 41$ prime $n = 6, n^2 + 3n + 1 = 55$ not prime so statement is false	M1 E1 [2]	One or more trials shown finding a counter-example – must state that it is not prime.
<p>6 (i) $-\pi/2 < \arctan x < \pi/2$ $\Rightarrow -\pi/4 < f(x) < \pi/4$ \Rightarrow range is $-\pi/4$ to $\pi/4$</p>	M1 A1cao [2]	$\pi/4$ or $-\pi/4$ or 45 seen not \leq
<p>(ii) $y = \frac{1}{2} \arctan x$ $x \leftrightarrow y$ $x = \frac{1}{2} \arctan y$ $\Rightarrow 2x = \arctan y$ $\Rightarrow \tan 2x = y$ $\Rightarrow y = \tan 2x$</p> <p>either $\frac{dy}{dx} = 2 \sec^2 2x$</p>	M1 A1cao M1 A1cao	$\tan(\arctan y \text{ or } x) = y \text{ or } x$ derivative of \tan is \sec^2 used
$or y = \frac{\sin 2x}{\cos 2x} \Rightarrow \frac{dy}{dx} = \frac{2\cos^2 2x + 2\sin^2 2x}{\cos^2 2x}$ $= \frac{2}{\cos^2 2x}$	M1 A1cao	quotient rule (need not be simplified but mark final answer)
When $x = 0$, $\frac{dy}{dx} = 2$	B1 [5]	www
<p>(iii) So gradient of $y = \frac{1}{2} \arctan x$ is $\frac{1}{2}$.</p>	B1ft [1]	ft their '2', but not 1 or 0 or ∞

Section B

8 (i) $x \cos 2x = 0$ when $x = 0$ or $\cos 2x = 0$ $\Rightarrow 2x = \pi/2$ $\Rightarrow x = \frac{1}{4}\pi$ $\Rightarrow P$ is $(\pi/4, 0)$	M1 M1 A1 [3]	$\cos 2x = 0$ or $x = \frac{1}{2} \cos^{-1} 0$ $x = 0.785..$ or 45° is M1 M1 A0
(ii) $f(-x) = -x \cos(-2x)$ $= -x \cos 2x$ $= -f(x)$ Half turn symmetry about O.	M1 E1 B1 [3]	$-x \cos(-2x)$ $= -x \cos 2x$ Must have two of: rotational, order 2, about O, (half turn = rotational order 2)
(iii) $f(x) = \cos 2x - 2x \sin 2x$	M1 A1 [2]	product rule
(iv) $f(x) = 0 \Rightarrow \cos 2x = 2x \sin 2x$ $\Rightarrow 2x \frac{\sin 2x}{\cos 2x} = 1$ $\Rightarrow x \tan 2x = \frac{1}{2} *$	M1 E1 [2]	$\frac{\sin}{\cos} = \tan$ www
(v) $f(0) = \cos 0 - 2.0 \sin 0 = 1$ $f'(x) = -2 \sin 2x - 2 \sin 2x - 4x \cos 2x$ $= -4 \sin 2x - 4x \cos 2x$ $\Rightarrow f''(0) = -4 \sin 0 - 4.0 \cos 0 = 0$	B1ft M1 A1 E1 [4]	allow ft on (their) product rule expression product rule on $(2x) \sin 2x$ correct expression – mark final expression www
(vi) Let $u = x$, $dv/dx = \cos 2x$ $\Rightarrow v = \frac{1}{2} \sin 2x$ $\int_0^{\pi/4} x \cos 2x dx = \left[\frac{1}{2} x \sin 2x \right]_0^{\pi/4} - \int_0^{\pi/4} \frac{1}{2} \sin 2x dx$ $= \frac{\pi}{8} + \left[\frac{1}{4} \cos 2x \right]_0^{\pi/4}$ $= \frac{\pi}{8} - \frac{1}{4}$ Area of region enclosed by curve and x -axis between $x = 0$ and $x = \pi/4$	M1 A1 A1 M1 A1 B1 [6]	Integration by parts with $u = x$, $dv/dx = \cos 2x$ $\left[\frac{1}{4} \cos 2x \right]$ - sign consistent with their previous line substituting limits – dep using parts www or graph showing correct area – condone P for $\pi/4$.

Mark Scheme 4754
June 2007

Section A

<p>1 $\sin \theta - 3 \cos \theta = R \sin(\theta - \alpha)$ $= R(\sin \theta \cos \alpha - \cos \theta \sin \alpha)$ $\Rightarrow R \cos \alpha = 1, R \sin \alpha = 3$ $\Rightarrow R^2 = 1^2 + 3^2 = 10 \Rightarrow R = \sqrt{10}$ $\tan \alpha = 3 \Rightarrow \alpha = 71.57^\circ$ $\sqrt{10} \sin(\theta - 71.57^\circ) = 1$ $\Rightarrow \theta - 71.57^\circ = \sin^{-1}(1/\sqrt{10})$ $\theta - 71.57^\circ = 18.43^\circ, 161.57^\circ$ $\Rightarrow \theta = 90^\circ, 233.1^\circ$ </p>	M1 B1 M1 A1 M1 B1 A1 [7]	equating correct pairs oe ft www cao (71.6° or better) oe ft R, α www and no others in range (MR-1 for radians)
<p>2 Normal vectors are $\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ $\Rightarrow \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} = 2 - 6 + 4 = 0$ \Rightarrow planes are perpendicular. </p>	B1 B1 M1 E1 [4]	
<p>3 (i) $y = \ln x \Rightarrow x = e^y$ $\Rightarrow V = \int_0^2 \pi x^2 dy$ $= \int_0^2 \pi (e^y)^2 dy = \int_0^2 \pi e^{2y} dy *$ </p>	B1 M1 E1 [3]	
<p>(ii) $\int_0^2 \pi e^{2y} dy = \pi \left[\frac{1}{2} e^{2y} \right]_0^2$ $= \frac{1}{2} \pi (e^4 - 1)$ </p>	B1 M1 A1 [3]	$\frac{1}{2} e^{2y}$ substituting limits in πe^{2y} or equivalent, but must be exact and evaluate e^0 as 1.
<p>4 $x = \frac{1}{t} - 1 \Rightarrow \frac{1}{t} = x + 1$ $\Rightarrow t = \frac{1}{x+1}$ $\Rightarrow y = \frac{2 + \frac{1}{x+1}}{1 + \frac{1}{x+1}} = \frac{2x+2+1}{x+1+1} = \frac{2x+3}{x+2}$ </p>	M1 A1 M1 E1	Solving for t in terms of x or y Subst their t which must include a fraction, clearing subsidiary fractions/ changing the subject oe www
<p>or $\frac{3+2x}{2+x} = \frac{3 + \frac{2-2t}{t}}{2 + \frac{1-t}{t}}$ $= \frac{3t+2-2t}{2t+1-t}$ $= \frac{t+2}{t+1} = y$ </p>	M1 A1 M1 E1 [4]	substituting for x or y in terms of t clearing subsidiary fractions/ changing the subject

Section B

7 (a) (i) $P_{\max} = \frac{2}{2-1} = 2$ $P_{\min} = \frac{2}{2+1} = 2/3.$	B1 B1 [2]	
(ii) $P = \frac{2}{2-\sin t} = 2(2-\sin t)^{-1}$ $\Rightarrow \frac{dP}{dt} = -2(2-\sin t)^{-2} \cdot -\cos t$ $= \frac{2\cos t}{(2-\sin t)^2}$ $\frac{1}{2}P^2 \cos t = \frac{1}{2} \frac{4}{(2-\sin t)^2} \cos t$ $= \frac{2\cos t}{(2-\sin t)^2} = \frac{dP}{dt}$	M1 B1 A1 DM1 E1 [5]	chain rule $-1(\dots)^{-2}$ soi (or quotient rule M1,numerator A1,denominator A1) attempt to verify or by integration as in (b)(ii)
(b)(i) $\frac{1}{P(2P-1)} = \frac{A}{P} + \frac{B}{2P-1}$ $= \frac{A(2P-1) + BP}{P(2P-1)}$ $\Rightarrow 1 = A(2P-1) + BP$ $P=0 \Rightarrow 1 = -A \Rightarrow A = -1$ $P = \frac{1}{2} \Rightarrow 1 = -1 + \frac{1}{2}B \Rightarrow B = 2$ So $\frac{1}{P(2P-1)} = -\frac{1}{P} + \frac{2}{2P-1}$	M1 M1 A1 A1 [4]	correct partial fractions substituting values, equating coeffs or cover up rule $A = -1$ $B = 2$
(ii) $\frac{dP}{dt} = \frac{1}{2}(2P - P^2) \cos t$ $\Rightarrow \int \frac{1}{2P^2 - P} dP = \int \frac{1}{2} \cos t dt$ $\Rightarrow \int \left(\frac{2}{2P-1} - \frac{1}{P} \right) dP = \int \frac{1}{2} \cos t dt$ $\Rightarrow \ln(2P-1) - \ln P = \frac{1}{2} \sin t + c$ When $t = 0, P = 1$ $\Rightarrow \ln 1 - \ln 1 = \frac{1}{2} \sin 0 + c \Rightarrow c = 0$ $\Rightarrow \ln\left(\frac{2P-1}{P}\right) = \frac{1}{2} \sin t *$	M1 A1 A1 B1 E1 [5]	separating variables $\ln(2P-1) - \ln P$ ft their A,B from (i) $\frac{1}{2} \sin t$ finding constant = 0
(iii) $P_{\max} = \frac{1}{2-e^{1/2}} = 2.847$ $P_{\min} = \frac{1}{2-e^{-1/2}} = 0.718$	M1A1 M1A1 [4]	www www

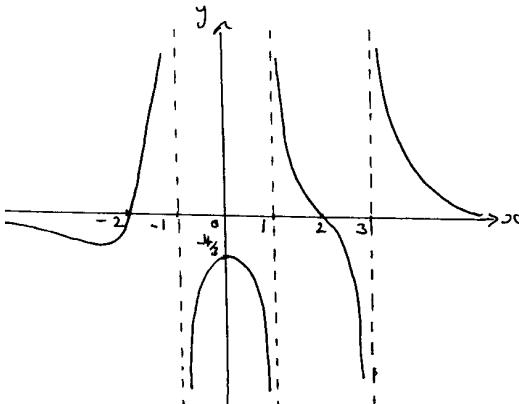
<p>8 (i) $\frac{dy}{dx} = \frac{10\cos\theta + 10\cos 2\theta}{-10\sin\theta - 10\sin 2\theta}$ $= -\frac{\cos\theta + \cos 2\theta}{\sin\theta + \sin 2\theta} *$</p> <p>When $\theta = \pi/3$, $\frac{dy}{dx} = -\frac{\cos\pi/3 + \cos 2\pi/3}{\sin\pi/3 + \sin 2\pi/3}$ $= 0$ as $\cos\pi/3 = 1/2$, $\cos 2\pi/3 = -1/2$</p>	M1 E1 B1	$dy/d\theta \div dx/d\theta$ or solving $\cos\theta + \cos 2\theta = 0$
<p>At A $x = 10 \cos \pi/3 + 5 \cos 2\pi/3$ $= 2\frac{1}{2}$</p> <p>$y = 10 \sin \pi/3 + 5 \sin 2\pi/3 = 15\sqrt{3}/2$</p>	M1 A1 A1 [6]	substituting $\pi/3$ into x or y $2\frac{1}{2}$ $15\sqrt{3}/2$ (condone 13 or better)
<p>(ii) $x^2 + y^2 = (10\cos\theta + 5\cos 2\theta)^2 + (10\sin\theta + 5\sin 2\theta)^2$ $= 100\cos^2\theta + 100\cos\theta\cos 2\theta + 25\cos^2 2\theta$ $+ 100\sin^2\theta + 100\sin\theta\sin 2\theta + 25\sin^2 2\theta$ $= 100 + 100\cos(2\theta - \theta) + 25$ $= 125 + 100\cos\theta *$</p>	B1 M1 DM1 E1 [4]	expanding $\cos 2\theta \cos \theta + \sin 2\theta \sin \theta = \cos(2\theta - \theta)$ or substituting for $\sin 2\theta$ and $\cos 2\theta$
<p>(iii) Max $\sqrt{125 + 100} = 15$ min $\sqrt{125 - 100} = 5$</p>	B1 B1 [2]	
<p>(iv) $2\cos^2\theta + 2\cos\theta - 1 = 0$ $\cos\theta = \frac{-2 \pm \sqrt{12}}{4} = \frac{-2 \pm 2\sqrt{3}}{4}$</p> <p>At B, $\cos\theta = \frac{-1 + \sqrt{3}}{2}$</p> <p>$OB^2 = 125 + 50(-1 + \sqrt{3}) = 75 + 50\sqrt{3} = 161.6\dots$</p> <p>$\Rightarrow OB = \sqrt{161.6\dots} = 12.7$ (m)</p>	M1 A1 M1 A1 [4]	quadratic formula or $\theta = 68.53^\circ$ or 1.20 radians, correct root selected or $OB = 10\sin\theta + 5\sin 2\theta$ ft their $\theta/\cos\theta$ oe cao

Paper B Comprehension

1)	M $(a\pi, 2a)$, $\theta=\pi$ N $(4a\pi, 0)$, $\theta=4\pi$	B1 B1	
2)	Compare the equations with equations given in text, $x = a\theta - b\sin\theta$, $y = b\cos\theta$	M1	Seeing $a=7$, $b=0.25$
	Wavelength = $2\pi a = 14\pi (\approx 44)$ Height = $2b = 0.5$	A1 B1	
3i)	Wavelength = $20 \Rightarrow a = \frac{10}{\pi} (=3.18\dots)$ Height = $2 \Rightarrow b = 1$	B1 B1	
ii)	In this case, the ratio is observed to be 12:8 Trough length : Peak length = $\pi a + 2b : \pi a - 2b$ and this is $(10 + 2 \times 1) : (10 - 2 \times 1)$ So the curve is consistent with the parametric equations	B1 M1 A1	substituting
4i)	$x = a\theta$, $y = b\cos\theta$ is the sine curve V and $x = a\theta - b\sin\theta$, $y = b\cos\theta$ is the curtate cycloid U . The sine curve is above mid-height for half its wavelength (or equivalent)	B1	
ii)	$d = a\theta - (a\theta - b\sin\theta)$ $\theta = \pi/2$, $d = \left(\frac{\pi a}{2}\right) - \left(\frac{\pi a}{2} - b\right) = b$	M1 E1	Subtraction Using $\theta = \pi/2$
iii)	Because b is small compared to a , the two curves are close together.	M1 E1	Comparison attempted Conclusion
5)	Measurements on the diagram give Wavelength ≈ 3.5 cm, Height ≈ 0.8 cm $\frac{\text{Wavelength}}{\text{Height}} \approx \frac{3.5}{0.8} = 4.375$ Since $4.375 < 7$, the wave will have become unstable and broken.	B1 M1 E1	measurements/reading ratio [18]

Mark Scheme 4755
June 2007

Section A			
1(i)	$\mathbf{M}^{-1} = \frac{1}{10} \begin{pmatrix} 3 & 1 \\ -4 & 2 \end{pmatrix}$	M1 A1 [2]	Attempt to find determinant
1(ii)	20 square units	B1 [1]	$2 \times$ their determinant
2	$ z - (3 - 2j) = 2$	B1 B1 B1 [3]	$z \pm (3 - 2j)$ seen radius = 2 seen Correct use of modulus
3	$x^3 - 4 = (x - 1)(Ax^2 + Bx + C) + D$ $\Rightarrow x^3 - 4 = Ax^3 + (B - A)x^2 + (C - B)x - C + D$ $\Rightarrow A = 1, B = 1, C = 1, D = -3$	M1 B1 B1 B1 [5]	Attempt at equating coefficients or long division (may be implied) For $A = 1$ B1 for each of B, C and D
4(i)		B1 B1 [2]	One for each correctly shown. s.c. B1 if not labelled correctly but position correct
4(ii)	$\alpha\beta = (1 - 2j)(-2 - j) = -4 + 3j$	M1 A1 [2]	Attempt to multiply
4(iii)	$\frac{\alpha + \beta}{\beta} = \frac{(\alpha + \beta)\beta^*}{\beta\beta^*} = \frac{\alpha\beta^* + \beta\beta^*}{\beta\beta^*} = \frac{5j + 5}{5} = j + 1$	M1 A1 A1 [3]	Appropriate attempt to use conjugate, or other valid method 5 in denominator or correct working consistent with their method All correct


5	<p>Scheme A</p> $w = 3x \Rightarrow x = \frac{w}{3}$ $\Rightarrow \left(\frac{w}{3}\right)^3 + 3\left(\frac{w}{3}\right)^2 - 7\left(\frac{w}{3}\right) + 1 = 0$ $\Rightarrow w^3 + 9w^2 - 63w + 27 = 0$ <p style="text-align: center;">OR</p>	<p>B1</p> <p>M1</p> <p>A3</p> <p>A1 [6]</p>	<p>Substitution. For substitution $x = 3w$ give B0 but then follow through for a maximum of 3 marks</p> <p>Substitute into cubic</p> <p>Correct coefficients consistent with x^3 coefficient, minus 1 each error</p> <p>Correct cubic equation c.a.o.</p>
	<p>Scheme B</p> $\alpha + \beta + \gamma = -3$ $\alpha\beta + \alpha\gamma + \beta\gamma = -7$ $\alpha\beta\gamma = -1$ <p>Let new roots be k, l, m then</p> $k + l + m = 3(\alpha + \beta + \gamma) = -9 = \frac{-B}{A}$ $kl + km + lm = 9(\alpha\beta + \alpha\gamma + \beta\gamma) = -63 = \frac{C}{A}$ $klm = 27\alpha\beta\gamma = -27 = \frac{-D}{A}$ $\Rightarrow \omega^3 + 9\omega^2 - 63\omega + 27 = 0$	<p>M1</p> <p>M1</p> <p>A3</p> <p>A1 [6]</p>	<p>Attempt to find sums and products of roots (at least two of three)</p> <p>Attempt to use sums and products of roots of original equation to find sums and products of roots in related equation</p> <p>Correct coefficients consistent with x^3 coefficient, minus 1 each error</p> <p>Correct cubic equation c.a.o.</p>
6(i)	$\frac{1}{r+2} - \frac{1}{r+3} = \frac{r+3-(r+2)}{(r+2)(r+3)} = \frac{1}{(r+2)(r+3)}$	<p>M1</p> <p>A1 [2]</p>	<p>Attempt at common denominator</p>
6(ii)	$\sum_{r=1}^{50} \frac{1}{(r+2)(r+3)} = \sum_{r=1}^{50} \left[\frac{1}{r+2} - \frac{1}{r+3} \right]$ $= \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{6} \right) + \dots$ $+ \left(\frac{1}{51} - \frac{1}{52} \right) + \left(\frac{1}{52} - \frac{1}{53} \right)$ $= \frac{1}{3} - \frac{1}{53} = \frac{50}{159}$	<p>M1</p> <p>M1,</p> <p>M1</p> <p>A1 [4]</p>	<p>Correct use of part (i) (may be implied)</p> <p>First two terms in full</p> <p>Last two terms in full (allow in terms of n)</p> <p>Give B4 for correct without working Allow 0.314 (3s.f.)</p>

<p>7</p> $\sum_{r=1}^n 3^{r-1} = \frac{3^n - 1}{2}$ <p>$n = 1$, LHS = RHS = 1</p> <p>Assume true for $n = k$</p> <p>Next term is 3^k</p> <p>Add to both sides</p> $\text{RHS} = \frac{3^k - 1}{2} + 3^k$ $= \frac{3^k - 1 + 2 \times 3^k}{2}$ $= \frac{3 \times 3^k - 1}{2}$ $= \frac{3^{k+1} - 1}{2}$ <p>But this is the given result with $k + 1$ replacing k. Therefore if it is true for k it is true for $k + 1$. Since it is true for $k = 1$, it is true for $k = 1, 2, 3$ and so true for all positive integers.</p>	B1	
	E1	Assuming true for k
	M1	Attempt to add 3^k to RHS
	A1	c.a.o. with correct simplification
	E1	Dependent on previous E1 and immediately previous A1
	E1	Dependent on B1 and both previous E marks

[6]

Section A Total: 36

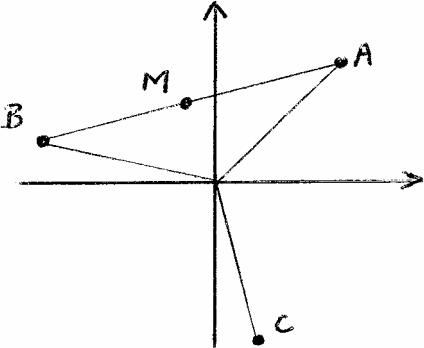
Section B

8(i)	$(2, 0), (-2, 0), \left(0, \frac{-4}{3}\right)$	B1 B1 B1 [3]	1 mark for each s.c. B2 for 2, -2, $\frac{-4}{3}$
8(ii)	$x = 3, x = -1, x = 1, y = 0$	B4 [4]	Minus 1 for each error
8(iii)	<p>Large positive x, $y \rightarrow 0^+$, approach from above (e.g. consider $x = 100$)</p> <p>Large negative x, $y \rightarrow 0^-$, approach from below (e.g. consider $x = -100$)</p>	B1 B1 M1 [3]	<p>Direction of approach must be clear for each B mark</p> <p>Evidence of method required</p>
8(iv)	<p>Curve</p> <p>4 branches correct</p> <p>Asymptotes correct and labelled</p> <p>Intercepts labelled</p>	B2 B1 B1 [4]	Minus 1 each error, min 0

9(i)	$x = 1 - 2j$	B1 [1]	
	Complex roots occur in conjugate pairs. A cubic has three roots, so one must be real. Or, valid argument involving graph of a cubic or behaviour for large positive and large negative x .	E1 [1]	
9(ii)			
9(iii)	Scheme A $(x - 1 - 2j)(x - 1 + 2j) = x^2 - 2x + 5$ $(x - \alpha)(x^2 - 2x + 5) = x^3 + Ax^2 + Bx + 15$ <p>comparing constant term: $-5\alpha = 15 \Rightarrow \alpha = -3$</p> <p>So real root is $x = -3$</p> $(x + 3)(x^2 - 2x + 5) = x^3 + Ax^2 + Bx + 15$ $\Rightarrow x^3 + x^2 - x + 15 = x^3 + Ax^2 + Bx + 15$ $\Rightarrow A = 1, B = -1$ <p>OR</p> <p>Scheme B</p> <p>Product of roots = -15</p> $(1 + 2j)(1 - 2j) = 5$ $\Rightarrow 5\alpha = -15$ $\Rightarrow \alpha = -3$ <p>Sum of roots = $-A$</p> $\Rightarrow -A = 1 + 2j + 1 - 2j - 3 = -1 \Rightarrow A = 1$ <p>Substitute root $x = -3$ into cubic</p> $(-3)^3 + (-3)^2 - 3B + 15 = 0 \Rightarrow B = -1$ <p>$A = 1$ and $B = -1$</p> <p>OR</p> <p>Scheme C</p> <p>$\alpha = -3$</p> $(1 + 2j)^3 + A(1 + 2j)^2 + B(1 + 2j) + 15 = 0$ $\Rightarrow A(-3 + 4j) + B(1 + 2j) + 4 - 2j = 0$ $\Rightarrow -3A + B + 4 = 0 \text{ and } 4A + 2B - 2 = 0$ $\Rightarrow A = 1 \text{ and } B = -1$	M1 A1 A1(ft) M1 M1 A1(ft) M1 M1 A1 [9]	Attempt to use factor theorem Correct factors Correct quadratic(using their factors) Use of factor involving real root Comparing constant term From their quadratic Expand LHS Compare coefficients 1 mark for both values

Section B (continued)			
10(i)	$\mathbf{AB} = \begin{pmatrix} 1 & -2 & k \\ 2 & 1 & 2 \\ 3 & 2 & -1 \end{pmatrix} \begin{pmatrix} -5 & -2+2k & -4-k \\ 8 & -1-3k & -2+2k \\ 1 & -8 & 5 \end{pmatrix}$ $= \begin{pmatrix} k-21 & 0 & 0 \\ 0 & k-21 & 0 \\ 0 & 0 & k-21 \end{pmatrix}$	M1 A1 [2]	Attempt to multiply matrices (can be implied)
10(ii)	$\mathbf{A}^{-1} = \frac{1}{k-21} \begin{pmatrix} -5 & -2+2k & -4-k \\ 8 & -1-3k & -2+2k \\ 1 & -8 & 5 \end{pmatrix}$	M1 M1 A1	Use of B Attempt to use their answer to (i) Correct inverse
10 (iii)	<p>Scheme A</p> $\frac{1}{-20} \begin{pmatrix} -5 & 0 & -5 \\ 8 & -4 & 0 \\ 1 & -8 & 5 \end{pmatrix} \begin{pmatrix} 1 \\ 12 \\ 3 \end{pmatrix} = \frac{1}{-20} \begin{pmatrix} -20 \\ -40 \\ -80 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}$ <p>$x = 1, y = 2, z = 4$</p> <p>OR</p> <p>Scheme B</p> <p>Attempt to eliminate 2 variables Substitute in their value to attempt to find others $x = 1, y = 2, z = 4$</p>	A1 [4] M1 M1 A3 [5]	Accept n in place of 21 for full marks Attempt to use inverse Their inverse with $k = 1$ One for each correct (ft)
		M1 M1 A3 [5]	s.c. award 2 marks only for $x = 1, y = 2, z = 4$ with no working.

Mark Scheme 4756
June 2007


1(a)(i)		B2	2 Must include a sharp point at O and have infinite gradient at $\theta = \pi$ Give B1 for r increasing from zero for $0 < \theta < \pi$, or decreasing to zero for $-\pi < \theta < 0$
(ii)	$\text{Area is } \int \frac{1}{2} r^2 d\theta = \int_0^{\frac{1}{2}\pi} \frac{1}{2} a^2 (1 - \cos \theta)^2 d\theta$ $= \frac{1}{2} a^2 \int_0^{\frac{1}{2}\pi} \left(1 - 2 \cos \theta + \frac{1}{2} (1 + \cos 2\theta) \right) d\theta$ $= \frac{1}{2} a^2 \left[\frac{3}{2} \theta - 2 \sin \theta + \frac{1}{4} \sin 2\theta \right]_0^{\frac{1}{2}\pi}$ $= \frac{1}{2} a^2 \left(\frac{3}{4}\pi - 2 \right)$	M1 A1 B1 B1B1 ft B1	For integral of $(1 - \cos \theta)^2$ For a correct integral expression including limits (<i>may be implied by later work</i>) Using $\cos^2 \theta = \frac{1}{2}(1 + \cos 2\theta)$ Integrating $a + b \cos \theta$ and $k \cos 2\theta$ Accept $0.178a^2$
(b)	Put $x = 2 \sin \theta$ Integral is $\int_0^{\frac{1}{6}\pi} \frac{1}{(4 - 4 \sin^2 \theta)^{\frac{3}{2}}} (2 \cos \theta) d\theta$ $= \int_0^{\frac{1}{6}\pi} \frac{2 \cos \theta}{8 \cos^3 \theta} d\theta = \int_0^{\frac{1}{6}\pi} \frac{1}{4} \sec^2 \theta d\theta$ $= \left[\frac{1}{4} \tan \theta \right]_0^{\frac{1}{6}\pi}$ $= \frac{1}{4} \times \frac{1}{\sqrt{3}} = \frac{1}{4\sqrt{3}}$	M1 A1 M1 A1 ag	or $x = 2 \cos \theta$ Limits not required For $\int \sec^2 \theta d\theta = \tan \theta$ SR If $x = 2 \tanh u$ is used M1 for $\frac{1}{4} \sinh(\frac{1}{2} \ln 3)$ A1 for $\frac{1}{8}(\sqrt{3} - \frac{1}{\sqrt{3}}) = \frac{1}{4\sqrt{3}}$ (max 2 / 4)
(c)(i)	$f'(x) = \frac{-2}{\sqrt{1-4x^2}}$	B2	2 Give B1 for any non-zero real multiple of this (or for $\frac{-2}{\sin y}$ etc)
(ii)	$f'(x) = -2(1 - 4x^2)^{-\frac{1}{2}}$ $= -2(1 + 2x^2 + 6x^4 + \dots)$ $f(x) = C - 2x - \frac{4}{3}x^3 - \frac{12}{5}x^5 + \dots$ $f(0) = \frac{1}{2}\pi \Rightarrow C = \frac{1}{2}\pi$ $f(x) = \frac{1}{2}\pi - 2x - \frac{4}{3}x^3 - \frac{12}{5}x^5 + \dots$	M1 A1 M1 A1	Binomial expansion (3 terms, $n = -\frac{1}{2}$) Expansion of $(1 - 4x^2)^{-\frac{1}{2}}$ correct (accept unsimplified form) Integrating series for $f'(x)$ Must obtain a non-zero x^5 term C not required

4756

Mark Scheme

June 2007

	OR by repeated differentiation		
	Finding $f^{(5)}(x)$	M1	
	Evaluating $f^{(5)}(0)$ ($= -288$)	M1	Must obtain a non-zero value
	$f'(x) = -2 - 4x^2 - 12x^4 + \dots$	A1 ft	ft from (c)(i) when B1 given
	$f(x) = \frac{1}{2}\pi - 2x - \frac{4}{3}x^3 - \frac{12}{5}x^5 + \dots$	A1	

2 (a)	$ \begin{aligned} & (\cos \theta + j \sin \theta)^5 \\ &= c^5 + 5jc^4s - 10c^3s^2 - 10jc^2s^3 + 5cs^4 + js^5 \end{aligned} $ <p>Equating imaginary parts</p> $ \begin{aligned} \sin 5\theta &= 5c^4s - 10c^2s^3 + s^5 \\ &= 5(1-s^2)^2s - 10(1-s^2)s^3 + s^5 \\ &= 5s - 10s^3 + 5s^5 - 10s^3 + 10s^5 + s^5 \\ &= 5 \sin \theta - 20 \sin^3 \theta + 16 \sin^5 \theta \end{aligned} $	M1 M1 A1 M1 A1 ag	5
(b)(i)	$ -2+2j = \sqrt{8}, \quad \arg(-2+2j) = \frac{3}{4}\pi$ $r = \sqrt{2}$ $\theta = \frac{1}{4}\pi$ $\theta = \frac{11}{12}\pi, -\frac{5}{12}\pi$	B1B1 B1 ft B1 ft M1 A1	Accept 2.8; 2.4, 135° (Implies B1 for $\sqrt{8}$) One correct (Implies B1 for $\frac{3}{4}\pi$) Adding or subtracting $\frac{2}{3}\pi$ Accept $\theta = \frac{1}{4}\pi + \frac{2}{3}k\pi, k=0,1,-1$
(ii)		B2 2	Give B1 for two of B, C, M in the correct quadrants Give B1 ft for all four points in the correct quadrants
(iii)	$ w = \frac{1}{2}\sqrt{2}$ $\arg w = \frac{1}{2}(\frac{1}{4}\pi + \frac{11}{12}\pi) = \frac{7}{12}\pi$	B1 ft B1 2	Accept 0.71 Accept 1.8
(iv)	$ w^6 = (\frac{1}{2}\sqrt{2})^6 = \frac{1}{8}$ $\arg(w^6) = 6 \times \frac{7}{12}\pi = \frac{7}{2}\pi$ $ \begin{aligned} w^6 &= \frac{1}{8}(\cos \frac{7}{2}\pi + j \sin \frac{7}{2}\pi) \\ &= -\frac{1}{8}j \end{aligned} $	M1 A1 ft A1 3	Obtaining either modulus or argument Both correct (ft) Allow from $\arg w = \frac{1}{4}\pi$ etc
			SR If B, C interchanged on diagram (ii) B1 (iii) B1 B1 for $-\frac{1}{12}\pi$ (iv) M1A1A1

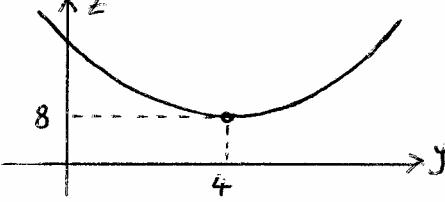
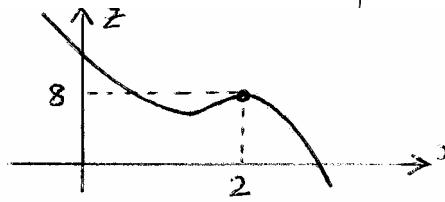
3 (i)	$\begin{aligned} \det(\mathbf{M} - \lambda \mathbf{I}) &= (3 - \lambda)[(3 - \lambda)(-4 - \lambda) - 4] \\ &\quad - 5[5(-4 - \lambda) + 4] + 2[-10 - 2(3 - \lambda)] \\ &= (3 - \lambda)(-16 + \lambda + \lambda^2) - 5(-16 - 5\lambda) + 2(-16 + 2\lambda) \\ &= -48 + 19\lambda + 2\lambda^2 - \lambda^3 + 80 + 25\lambda - 32 + 4\lambda \\ &= 48\lambda + 2\lambda^2 - \lambda^3 \\ \text{Characteristic equation is } &\lambda^3 - 2\lambda^2 - 48\lambda = 0 \end{aligned}$	M1 A1 M1 A1 ag	Obtaining $\det(\mathbf{M} - \lambda \mathbf{I})$ Any correct form Simplification
(ii)	$\lambda(\lambda - 8)(\lambda + 6) = 0$ Other eigenvalues are 8, -6 When $\lambda = 8$, $3x + 5y + 2z = 8x$ $(5x + 3y - 2z = 8y)$ $2x - 2y - 4z = 8z$ $y = x$ and $z = 0$; eigenvector is $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ When $\lambda = -6$, $3x + 5y + 2z = -6x$ $5x + 3y - 2z = -6y$ $y = -x$, $z = -2x$; eigenvector is $\begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$	M1 A1 M1 M1 A1 M1 M1 A1	Solving to obtain a non-zero value Two independent equations Obtaining a non-zero eigenvector <i>(-5x + 5y + 2z = 8x etc can earn M0M1)</i> Two independent equations Obtaining a non-zero eigenvector
(iii)	$\mathbf{P} = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & -1 \\ 1 & 0 & -2 \end{pmatrix}$ $\begin{aligned} \mathbf{D} &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & -6 \end{pmatrix}^2 \\ &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 36 \end{pmatrix} \end{aligned}$	B1 ft M1 A1	B0 if \mathbf{P} is clearly singular Order must be consistent with \mathbf{P} when B1 has been earned
(iv)	$\begin{aligned} \mathbf{M}^3 - 2\mathbf{M}^2 - 48\mathbf{M} &= \mathbf{0} \\ \mathbf{M}^3 &= 2\mathbf{M}^2 + 48\mathbf{M} \\ \mathbf{M}^4 &= 2\mathbf{M}^3 + 48\mathbf{M}^2 \\ &= 2(2\mathbf{M}^2 + 48\mathbf{M}) + 48\mathbf{M}^2 \\ &= 52\mathbf{M}^2 + 96\mathbf{M} \end{aligned}$	M1 M1 A1	3

4 (a)	$\int_0^1 \frac{1}{\sqrt{9x^2+16}} dx = \left[\frac{1}{3} \operatorname{arsinh} \frac{3x}{4} \right]_0^1$ $= \frac{1}{3} \operatorname{arsinh} \frac{3}{4}$ $= \frac{1}{3} \ln \left(\frac{3}{4} + \sqrt{\frac{9}{16} + 1} \right)$ $= \frac{1}{3} \ln 2$	M1 A1 A1 M1 A1	For arsinh or for any \sinh substitution For $\frac{3}{4}x$ or for $3x = 4 \sinh u$ For $\frac{1}{3}$ or for $\int \frac{1}{3} du$
OR	$\left[\frac{1}{3} \ln(3x + \sqrt{9x^2 + 16}) \right]_0^1$ $= \frac{1}{3} \ln 8 - \frac{1}{3} \ln 4$ $= \frac{1}{3} \ln 2$	M2 A1A1 A1	For $\ln(kx + \sqrt{k^2x^2 + \dots})$ [Give M1 for $\ln(ax + \sqrt{bx^2 + \dots})$] or $\frac{1}{3} \ln(x + \sqrt{x^2 + \frac{16}{9}})$
(b)(i)	$2 \sinh x \cosh x = 2 \times \frac{1}{2} (e^x - e^{-x}) \frac{1}{2} (e^x + e^{-x})$ $= \frac{1}{2} (e^{2x} - e^{-2x})$ $= \sinh 2x$	M1 A1	$(e^x - e^{-x})(e^x + e^{-x}) = (e^{2x} - e^{-2x})$ For completion
(ii)	$\frac{dy}{dx} = 20 \sinh x - 6 \sinh 2x$ <p>For stationary points,</p> $20 \sinh x - 12 \sinh x \cosh x = 0$ $4 \sinh x (5 - 3 \cosh x) = 0$ $\sinh x = 0 \text{ or } \cosh x = \frac{5}{3}$ $x = 0, y = 17$ $x = (\pm) \ln \left(\frac{5}{3} + \sqrt{\frac{25}{9} - 1} \right) = \ln 3$ $y = 10 \left(3 + \frac{1}{3} \right) - \frac{3}{2} \left(9 + \frac{1}{9} \right) = \frac{59}{3}$ $x = -\ln 3, y = \frac{59}{3}$	B1B1 M1 A1 A1 ag A1 ag B1	When exponential form used, give B1 for any 2 terms correctly differentiated Solving $\frac{dy}{dx} = 0$ to obtain a value of $\sinh x$, $\cosh x$ or e^x (or $x = 0$ stated) Correctly obtained Correctly obtained <i>The last A1A1 ag can be replaced by B1B1 ag for a full verification</i>
(iii)	$\left[20 \sinh x - \frac{3}{2} \sinh 2x \right]_{-\ln 3}^{\ln 3}$ $= \left\{ 10 \left(3 - \frac{1}{3} \right) - \frac{3}{4} \left(9 - \frac{1}{9} \right) \right\} \times 2$ $= \left(\frac{80}{3} - \frac{20}{3} \right) \times 2 = 40$	B1B1 M1 A1 ag	When exponential form used, give B1 for any 2 terms correctly integrated Exact evaluation of $\sinh(\ln 3)$ and $\sinh(2 \ln 3)$

5 (i)	<p>Four graphs of the function $y = (x+k)(x-2k) + 2k^2 + 2k$ for different values of k:</p> <ul style="list-style-type: none"> For $k = -2$, the graph is a curve with a local maximum on the left branch and a local minimum on the right branch, crossing the x-axis at $x = -2$ and $x = 4$. For $k = 1$, the graph is a curve with a local minimum on the left branch and a local maximum on the right branch, crossing the x-axis at $x = -1$ and $x = 3$. For $k = -0.5$, the graph consists of two branches, both with positive gradients, crossing the x-axis at $x = -0.5$ and $x = 1.5$. A straight line graph is also shown, passing through the points $(-2, 0)$, $(0, 2)$, and $(2, 0)$. 	B1 B1 B1 B1 B1 B1 6	<p>Maximum on LH branch and minimum on RH branch Crossing axes correctly</p> <p>Two branches with positive gradient Crossing axes correctly</p> <p>Maximum on LH branch and minimum on RH branch Crossing positive y-axis and minimum in first quadrant</p>
(ii)	$y = \frac{(x+k)(x-2k) + 2k^2 + 2k}{x+k}$ $= x - 2k + \frac{2k(k+1)}{x+k}$ <p>Straight line when $2k(k+1) = 0$ $k = 0, k = -1$</p>	M1 A1 (ag) B1B1 4	<p>Working in either direction</p> <p>For completion</p>
(iii)(A)	Hyperbola	B1 1	
(B)	$x = -k$ $y = x - 2k$	B1 B1 2	

(iv)		B1 B1 B1 B1 B1	Asymptotes correctly drawn Curve approaching asymptotes correctly (both branches) Intercept 2 on y-axis, and not crossing the x-axis Points A and B marked, with minimum point between them 5 Points A and B at the same height (y=1)
------	--	----------------------------	--

Mark Scheme 4757
June 2007



1 (i)	$\mathbf{d}_K = \begin{pmatrix} 8 \\ -1 \\ -14 \end{pmatrix} \times \begin{pmatrix} 6 \\ 2 \\ -5 \end{pmatrix} = \begin{pmatrix} 33 \\ -44 \\ 22 \end{pmatrix} \quad [= 11 \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix}]$ $\mathbf{d}_L = \begin{pmatrix} 8 \\ -1 \\ -14 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 15 \\ -20 \\ 10 \end{pmatrix} \quad [= 5 \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix}]$ <p>Hence K and L are parallel For a point on K, $z = 0$, $x = 3$, $y = 4$ i.e. $(3, 4, 0)$ For a point on L, $z = 0$, $x = 6$, $y = 28$ i.e. $(6, 28, 0)$</p>	M1* A1*	Finding direction of K or L One direction correct <i>* These marks can be earned anywhere in the question</i>
	<p>A1 M1* A1*</p> $\left[\begin{pmatrix} 6 \\ 28 \\ 0 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix} \right] \times \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 24 \\ 0 \end{pmatrix} \times \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = \begin{pmatrix} 48 \\ -6 \\ -84 \end{pmatrix}$ <p>Distance is $\frac{\sqrt{48^2 + 6^2 + 84^2}}{\sqrt{3^2 + 4^2 + 2^2}} = \frac{\sqrt{9396}}{\sqrt{29}} = 18$</p>	A1* M1 A1 9	Correctly shown Finding one point on K or L or $(6, 0, 2)$ or $(0, 8, -2)$ etc Or $(27, 0, 14)$ or $(0, 36, -4)$ etc
	<p>OR $\begin{pmatrix} 6+3\lambda-3 \\ 28-4\lambda-4 \\ 2\lambda \end{pmatrix} \cdot \begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} = 0$</p> $-87 + 29\lambda = 0, \quad \lambda = 3$ <p>Distance is $\sqrt{12^2 + 12^2 + 6^2} = 18$</p>	M1 M1 A1	For $(\mathbf{b} - \mathbf{a}) \times \mathbf{d}$ Correct method for finding distance
(ii)	<p>Distance from $(3, 4, 0)$ to R is</p> $\left \frac{2 \times 3 + 4 - 0 - 40}{\sqrt{2^2 + 1^2 + 1^2}} \right $ $= \frac{30}{\sqrt{6}} = \frac{30\sqrt{6}}{6} = 5\sqrt{6}$	M1A1 ft A1 ag 3	
(iii)	<p>K, M intersect if $1 + 5\lambda = 3 + 3\mu \quad (1)$ $-4 - 4\lambda = 4 - 4\mu \quad (2)$ $3\lambda = 2\mu \quad (3)$</p> <p>Solving (2) and (3): $\lambda = 4, \mu = 6$</p> <p>Check in (1): LHS = $1 + 20 = 21$, RHS = $3 + 18 = 21$</p> <p>Hence K, M intersect, at $(21, -20, 12)$</p> <p>OR M meets P when $8(1 + 5\lambda) - (-4 - 4\lambda) - 14(3\lambda) = 20$ M meets Q when $6(1 + 5\lambda) + 2(-4 - 4\lambda) - 5(3\lambda) = 26$ Both equations have solution $\lambda = 4$ Point is on P, Q and M; hence on K and M M2 Point of intersection is $(21, -20, 12)$</p>	M1 A1 ft M1M1 M1A1 A1 7	<p>At least 2 eqns, different parameters Two equations correct</p> <p>Intersection correctly shown <i>Can be awarded after MIAIMIM0M0</i></p> <p>Intersection of M with both P and Q</p>

4757

Mark Scheme

June 2007

(iv)	$\left[\begin{pmatrix} 6 \\ 28 \\ 0 \end{pmatrix} - \begin{pmatrix} 1 \\ -4 \\ 0 \end{pmatrix} \right] \cdot \left[\begin{pmatrix} 3 \\ -4 \\ 2 \end{pmatrix} \times \begin{pmatrix} 5 \\ -4 \\ 3 \end{pmatrix} \right] = \begin{pmatrix} 5 \\ 32 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} -4 \\ 1 \\ 8 \end{pmatrix} = 12$	M1A1 ft M1 A1 ft A1	For evaluating $\mathbf{d}_L \times \mathbf{d}_M$ For $(\mathbf{b} - \mathbf{c}) \cdot (\mathbf{d}_L \times \mathbf{d}_M)$ Numerical expression for distance 5
	Distance is $\frac{12}{\sqrt{4^2 + 1^2 + 8^2}} = \frac{12}{9} = \frac{4}{3}$		

2 (i)	$\frac{\partial z}{\partial x} = y^2 - 8xy - 6x^2 + 54x - 36$ $\frac{\partial z}{\partial y} = 2xy - 4x^2$	B2 B1 3	Give B1 for 3 terms correct
(ii)	At stationary points, $\frac{\partial z}{\partial x} = 0$ and $\frac{\partial z}{\partial y} = 0$ When $x = 0$, $y^2 - 36 = 0$ $y = \pm 6$; points $(0, 6, 20)$ and $(0, -6, 20)$ When $y = 2x$, $4x^2 - 16x^2 - 6x^2 + 54x - 36 = 0$ $-18x^2 + 54x - 36 = 0$ $x = 1, 2$ Points $(1, 2, 5)$ and $(2, 4, 8)$	M1 M1 A1A1 M1 M1A1 A1 8	If A0, give A1 for $y = \pm 6$ or $y = 2, 4$ A0 if any extra points given
(iii)	When $x = 2$, $z = 2y^2 - 16y + 40$ When $y = 4$, $z = -2x^3 + 11x^2 - 20x + 20$ $\left(\frac{d^2z}{dx^2} = -12x + 22 = -2 \text{ when } x = 2 \right)$ 	B1 B1 B1 B1 B1 B1 6	‘Upright’ parabola $(2, 4, 8)$ identified as a minimum (in the first quadrant) ‘Negative cubic’ curve $(2, 4, 8)$ identified as a stationary point Fully correct (unambiguous minimum and maximum)
(iv)	Require $\frac{\partial z}{\partial x} = -36$ and $\frac{\partial z}{\partial y} = 0$ When $x = 0$, $y^2 - 36 = -36$ $y = 0$; point $(0, 0, 20)$ When $y = 2x$, $4x^2 - 16x^2 - 6x^2 + 54x - 36 = -36$ $-18x^2 + 54x = 0$ $x = 0, 3$ $x = 0$ gives $(0, 0, 20)$ same as above $x = 3$ gives $(3, 6, -7)$	M1 M1 A1 M1 M1 A1 A1 7	$\frac{\partial z}{\partial x} = 36$ can earn all M marks Solving to obtain x (or y) or stating ‘no roots’ if appropriate (e.g. when +36 has been used)

4757

Mark Scheme

June 2007

(v)	Differentiating partially w.r.t. p $0 = x^2 - 2p \ln x$ $p = \frac{x^2}{2 \ln x}$ and $y = \frac{x^4}{2 \ln x} - \frac{x^4}{4 \ln x}$ $y = \frac{x^4}{4 \ln x}$	M1 A1 M1 A1	4
-----	--	----------------------	---

4 (i)	By Lagrange's theorem, a proper subgroup has order 2 or 5 A group of prime order is cyclic Hence every proper subgroup is cyclic	M1 A1 M1 A1	Using Lagrange (need not be mentioned explicitly) or equivalent For completion	
(ii)	e.g. $2^2 = 4$, $2^3 = 8$, $2^4 = 5$, $2^5 = 10$, $2^6 = 9$, $2^7 = 7$, $2^8 = 3$, $2^9 = 6$, $2^{10} = 1$ 2 has order 10, hence M is cyclic	M1 A1 A1 A1	Considering order of an element Identifying an element of order 10 (2, 6, 7 or 8) Fully justified For conclusion (can be awarded after M1A1A0)	
(iii)	$\{1, 10\}$ $\{1, 3, 4, 5, 9\}$	B1 B2	Ignore $\{1\}$ and M Deduct 1 mark (from B1B2) for each (proper) subgroup given in excess of 2	
(iv)	E is the identity A, C, G, I are rotations B, D, F, H, J are reflections	B1 M1 A1 A1	Considering elements of order 2 (or equivalent) <i>Implied by four of B, D, F, H, J in the same set</i> Give A1 if one element is in the wrong set; or if two elements are interchanged	
(v)	P and M are not isomorphic M is abelian, P is non-abelian	B1 B1	Valid reason e.g. M has one element of order 2 P has more than one	
(vi)		A B C D E F G H I J		
	Order	5 2 5 2 1 2 5 2 5 2	B3 3	Give B2 for 7 correct B1 for 4 correct
(vii)	$\{E, B\}, \{E, D\}, \{E, F\}, \{E, H\}, \{E, J\}$ $\{E, A, C, G, I\}$	M1 A1 ft B2 cao	Ignore $\{E\}$ and P <i>Subgroups of order 2</i> Using elements of order 2 (allow two errors/omissions) Correct or ft. A0 if any others given <i>Subgroups of order greater than 2</i> Deduct 1 mark (from B2) for each extra subgroup given	

Pre-multiplication by transition matrix

5 (i)	$P = \begin{pmatrix} 0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.7 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0 \end{pmatrix}$	B2	2	Give B1 for two columns correct
(ii)	$P^4 = \begin{pmatrix} 0.3366 & 0.3317 & 0 & 0 \\ 0.6634 & 0.6683 & 0 & 0 \\ 0 & 0 & 0.3366 & 0.3317 \\ 0 & 0 & 0.6634 & 0.6683 \end{pmatrix}$	B2		Give B1 for two non-zero elements correct to at least 2dp
	$P^7 = \begin{pmatrix} 0 & 0 & 0.3334 & 0.3333 \\ 0 & 0 & 0.6666 & 0.6667 \\ 0.3335 & 0.3333 & 0 & 0 \\ 0.6665 & 0.6667 & 0 & 0 \end{pmatrix}$	B2	4	Give B1 for two non-zero elements correct to at least 2dp
(iii)	$P^7 = \begin{pmatrix} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \end{pmatrix} = \begin{pmatrix} 0.1000 \\ 0.2000 \\ 0.2334 \\ 0.4666 \end{pmatrix}$ P(8th letter is C) = 0.233	M1 A1	2	Using P^7 (or P^8) and initial probs
(iv)	$0.1000 \times 0.3366 + 0.2000 \times 0.6683 + 0.2334 \times 0.3366 + 0.4666 \times 0.6683 = 0.558$	M1 M1 A1 ft A1	4	Using probabilities for 8th letter Using diagonal elements from P^4
(v)(A)	$P^n = \begin{pmatrix} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \end{pmatrix} \approx \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & \frac{2}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & \frac{2}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \end{pmatrix} = \begin{pmatrix} 0.2333 \\ 0.4667 \\ 0.1 \\ 0.2 \end{pmatrix}$ P((n+1)th letter is A) = 0.233	M1 A1		Approximating P^n when n is large and even
(B)	$P^n = \begin{pmatrix} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \end{pmatrix} \approx \begin{pmatrix} 0 & 0 & \frac{1}{3} & \frac{1}{3} \\ 0 & 0 & \frac{2}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & \frac{2}{3} & 0 & 0 \end{pmatrix} \begin{pmatrix} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0.2 \\ 0.2333 \\ 0.4667 \end{pmatrix}$ P((n+1)th letter is A) = 0.1	M1 A1	4	Approximating P^n when n is large and odd
(vi)	$Q = \begin{pmatrix} 0 & 0 & 0.4 & 0.3 \\ 0 & 0 & 0.6 & 0.6 \\ 0.8 & 0.1 & 0 & 0 \\ 0.2 & 0.9 & 0 & 0.1 \end{pmatrix}$	B1	1	

4757

Mark Scheme

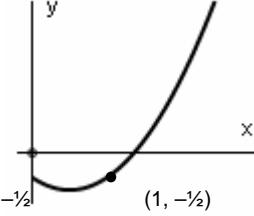
June 2007

(vii)	$\mathbf{Q}^n \rightarrow \begin{pmatrix} 0.1721 & 0.1721 & 0.1721 & 0.1721 \\ 0.3105 & 0.3105 & 0.3105 & 0.3105 \\ 0.1687 & 0.1687 & 0.1687 & 0.1687 \\ 0.3487 & 0.3487 & 0.3487 & 0.3487 \end{pmatrix}$ <p>Probabilities are 0.172, 0.310, 0.169, 0.349</p>	M1 M1	<p>Considering \mathbf{Q}^n for large n OR at least two eqns for equilib probs</p> <p>Probabilities from equal columns OR solving to obtain equilib probs</p> <p>Give A1 for two correct</p>
(viii)	$0.3487 \times 0.1 \times 0.1 \\ = 0.0035$	M1M1 A1	<p>Using 0.3487 and 0.1</p>

Post-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \end{pmatrix}$	B2	2	Give B1 for two rows correct
(ii)	$\mathbf{P}^4 = \begin{pmatrix} 0.3366 & 0.6634 & 0 & 0 \\ 0.3317 & 0.6683 & 0 & 0 \\ 0 & 0 & 0.3366 & 0.6634 \\ 0 & 0 & 0.3317 & 0.6683 \end{pmatrix}$	B2		Give B1 for two non-zero elements correct to at least 2dp
	$\mathbf{P}^7 = \begin{pmatrix} 0 & 0 & 0.3335 & 0.6665 \\ 0 & 0 & 0.3333 & 0.6667 \\ 0.3334 & 0.6666 & 0 & 0 \\ 0.3333 & 0.6667 & 0 & 0 \end{pmatrix}$	B2	4	Give B1 for two non-zero elements correct to at least 2dp
(iii)	$(0.4 \ 0.3 \ 0.2 \ 0.1)\mathbf{P}^7 \\ = (0.1000 \ 0.2000 \ 0.2334 \ 0.4666) \\ P(\text{8th letter is C}) = 0.233$	M1 A1	2	Using \mathbf{P}^7 (or \mathbf{P}^8) and initial probs
(iv)	$0.1000 \times 0.3366 + 0.2000 \times 0.6683 \\ + 0.2334 \times 0.3366 + 0.4666 \times 0.6683 \\ = 0.558$	M1 M1A1 ft A1	4	Using probabilities for 8th letter Using diagonal elements from \mathbf{P}^4
(v)(A)	$\mathbf{u}\mathbf{P}^n \approx (0.4 \ 0.3 \ 0.2 \ 0.1) \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \end{pmatrix} \\ = (0.2333 \ 0.4667 \ 0.1 \ 0.2) \\ P((n+1)\text{th letter is } A) = 0.233$	M1 A1		Approximating \mathbf{P}^n when n is large and even
(B)	$\mathbf{u}\mathbf{P}^n \approx (0.4 \ 0.3 \ 0.2 \ 0.1) \begin{pmatrix} 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ 0 & 0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \\ \frac{1}{3} & \frac{2}{3} & 0 & 0 \end{pmatrix} \\ = (0.1 \ 0.2 \ 0.2333 \ 0.4667) \\ P((n+1)\text{th letter is } A) = 0.1$	M1 A1	4	Approximating \mathbf{P}^n when n is large and odd
(vi)	$\mathbf{Q} = \begin{pmatrix} 0 & 0 & 0.8 & 0.2 \\ 0 & 0 & 0.1 & 0.9 \\ 0.4 & 0.6 & 0 & 0 \\ 0.3 & 0.6 & 0 & 0.1 \end{pmatrix}$	B1	1	

4757


Mark Scheme

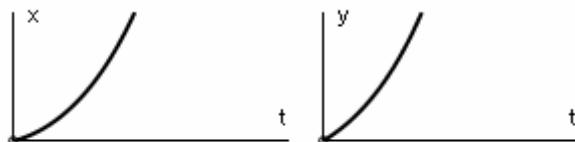
June 2007

(vii)	$\mathbf{Q}^n \rightarrow \begin{pmatrix} 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \\ 0.1721 & 0.3105 & 0.1687 & 0.3487 \end{pmatrix}$ <p>Probabilities are 0.172, 0.310, 0.169, 0.349</p>	M1 M1 A2	Considering \mathbf{Q}^n for large n OR at least two eqns for equilib probs Probabilities from equal rows OR solving to obtain equilib probs Give A1 for two correct 4
(viii)	$0.3487 \times 0.1 \times 0.1 \\ = 0.0035$	M1 M1 A1	3 Using 0.3487 and 0.1

Mark Scheme 4758
June 2007

1(i)	$\lambda^2 + 4\lambda + 29 = 0$ $\lambda = -2 \pm 5j$ CF $y = e^{-2t} (A \cos 5t + B \sin 5t)$ PI $y = a \cos t + b \sin t$ $\dot{y} = -a \sin t + b \cos t, \ddot{y} = -a \cos t - b \sin t$ $-a \cos t - b \sin t + 4(-a \sin t + b \cos t)$ $+29(a \cos t + b \sin t) = 3 \cos t$ $4b + 28a = 3$ $-4a + 28b = 0$ $a = 0.105$ $b = 0.015$ $y = e^{-2t} (A \cos 5t + B \sin 5t) + 0.105 \cos t + 0.015 \sin t$	M1 Auxiliary equation M1 Solve for complex roots A1 F1 CF for their roots (if complex, must be exp/trig form) B1 Correct form for PI M1 Differentiate twice M1 Substitute M1 Compare coefficients (both sin and cos) M1 Solve for two coefficients A1 Both F1 GS = PI + CF (with two arbitrary constants)	11
(ii)	$t = 0, y = 0 \Rightarrow 0 = A + 0.105$ $\Rightarrow A = -0.105$ $\dot{y} = -2e^{-2t} (A \cos 5t + B \sin 5t)$ $+ e^{-2t} (-5A \sin 5t + 5B \cos 5t) - 0.105 \sin t + 0.015 \cos t$ $t = 0, \dot{y} = 0 \Rightarrow 0 = -2A + 5B + 0.015$ $\Rightarrow B = -0.045$ $y = -e^{-2t} (0.105 \cos 5t + 0.045 \sin 5t) + 0.105 \cos t + 0.015 \sin t$ For large t , $y \approx 0.105 \cos t + 0.015 \sin t$ amplitude $\approx \sqrt{0.105^2 + 0.015^2} \approx 0.106$	M1 Use condition on y F1 M1 Differentiate (product rule) M1 Use condition on \dot{y} A1 cao M1 Ignore decaying terms M1 Calculate amplitude from solution of this form A1 cao	8
(iii)	$y(10\pi) \approx 0.105$ $\dot{y}(10\pi) \approx 0.015$	B1 Their a from PI, provided GS of correct form B1 Their b from PI, provided GS of correct form	2
(iv)	$y = e^{-2t} (C \cos 5t + D \sin 5t)$ oscillations with decaying amplitude (or tends to zero)	F1 Correct or follows previous CF Must not use same arbitrary constants as before B1 B1 Must indicate that y approaches zero, not that $y \approx 0$ for $t > 10\pi$	3

2(i)	$\frac{dy}{dx} - \frac{2}{x}y = \frac{1}{x} + x^{n-1}$ $I = \exp\left(\int -\frac{2}{x} dx\right)$ $= \exp(-2 \ln x)$ $= x^{-2}$ $\frac{d}{dx}(yx^{-2}) = x^{-3} + x^{n-3}$ $yx^{-2} = -\frac{1}{2}x^{-2} + \frac{1}{n-2}x^{n-2} + A$ $y = -\frac{1}{2} + \frac{1}{n-2}x^n + Ax^2$	M1 Rearrange M1 Attempt IF M1 Integrate to get $k \ln x$ A1 Simplified form of IF M1 Multiply both sides by IF and recognise derivative M1 Integrate A1 RHS including constant F1 Their integral (with constant) divided by IF	8
(ii)	From solution, $x \rightarrow 0 \Rightarrow y \rightarrow -\frac{1}{2}$ From DE, $x = 0 \Rightarrow 0 - 2y = 1$ $\Rightarrow y = -\frac{1}{2}$	B1 Limit consistent with their solution M1 Use DE with $x = 0$ E1 Correctly deduced	3
(iii)	$y = -\frac{1}{2}, x = 1 \Rightarrow -\frac{1}{2} = -\frac{1}{2} + \frac{1}{n-2} + A$ $\Rightarrow A = -\frac{1}{n-2}$ $y = -\frac{1}{2} + \frac{1}{n-2}(x^n - x^2)$ $n = 1, y = -\frac{1}{2} - x + x^2$	M1 Use condition F1 Consistent with their GS and given condition	
(iv)	$\frac{d}{dx}(yx^{-2}) = x^{-3} + x^{-1}$ $yx^{-2} = -\frac{1}{2}x^{-2} + \ln x + B$ $y = -\frac{1}{2} + x^2 \ln x + Bx^2$ $y(1) = -\frac{1}{2} + B$ $y(2) = -\frac{1}{2} + 4 \ln 2 + 4B$ $y(1) = y(2) \Rightarrow 3B = -4 \ln 2 \Rightarrow B = -\frac{4}{3} \ln 2$ $y = -\frac{1}{2} + x^2 \left(\ln x - \frac{4}{3} \ln 2\right)$	B1 Shape for $x > 0$ consistent with their solution (provided not $y = \text{constant}$) B1 Through $(1, -\frac{1}{2})$ or $(0, \text{their value from (ii)})$	4


3(i)	$\int y^{-\frac{1}{2}} dy = \int -k(1 + 0.1 \cos 25t) dt$ $2y^{\frac{1}{2}} = -k(t + 0.004 \sin 25t) + c$ $t = 0, y = 1 \Rightarrow c = 2$ $y = \left(1 - \frac{1}{2}k(t + 0.004 \sin 25t)\right)^2$	M1 Separate M1 Integrate A1 LHS A1 RHS (condone no constant) M1 Use condition (must have constant) F1 M1 Rearrange, dealing properly with constant A1 cao	8
(ii)	$t = 1, y = 0.5 \Rightarrow 2(0.5)^{\frac{1}{2}} = -k(1 + 0.004 \sin 25) + 2$ $\Rightarrow k \approx 0.586$ $t = 2 \Rightarrow y = \left(1 - \frac{1}{2} \times 0.586(2 + 0.004 \sin 50)\right)^2 \approx 0.172$	M1 Substitute E1 Calculate k (must be from correct solution) M1 Substitute A1 cao	4
(iii)	solution curve on insert tank empty after 3.0 minutes	M1 Reasonable attempt at curve A1 From (0,1) and decreasing A1 Curve broadly in line with tangent field F1 Answer must be consistent with their curve	4
(iv)	$x(0.1) = 1 + 0.1(-0.6446)$ $= 0.93554$ $x(0.2) = 0.93554 + 0.1(-0.51985)$ $= 0.88356$	M1 A1 E1 M1 A1 A1 A1 A1 awrt 0.884	6
(v)	$y < 0.01 \Rightarrow \sqrt{y} < 0.1 \Rightarrow \sqrt{y} + 0.1 \cos 25t < 0$ for some t $\Rightarrow \frac{dy}{dt} > 0$ for some values of t	M1 Consider size of \sqrt{y} and sign of $\sqrt{y} + 0.1 \cos 25t$ E1 Complete argument	2

4758

Mark Scheme

June 2007

4(i)	$\ddot{x} = -5\dot{x} + 4\dot{y} - 2e^{-2t}$ $= -5\dot{x} + 4(-9x + 7y + 3e^{-2t}) - 2e^{-2t}$ $= -5\dot{x} - 36x + \frac{28}{4}(\dot{x} + 5x - e^{-2t}) + 10e^{-2t}$ $\ddot{x} - 2\dot{x} + x = 3e^{-2t}$	M1 Differentiate M1 Substitute for \dot{y} M1 y in terms of x, \dot{x} M1 Substitute for y E1	5
(ii)	$\lambda^2 - 2\lambda + 1 = 0$ $\lambda = 1$ (repeated) CF $x = (A + Bt)e^t$ PI $x = ae^{-2t}$ $\dot{x} = -2ae^{-2t}, \ddot{x} = 4ae^{-2t}$ $4ae^{-2t} - 2(-2e^{-2t}) + ae^{-2t} = 3e^{-2t}$ $a = \frac{1}{3}$ GS $x = \frac{1}{3}e^{-2t} + (A + Bt)e^t$	M1 Auxiliary equation A1 F1 CF for their roots B1 Correct form for PI M1 Differentiate twice M1 Substitute and compare A1 F1 GS = PI + CF (with two arbitrary constants)	8
(iii)	$y = \frac{1}{4}(\dot{x} + 5x - e^{-2t})$ $= \frac{1}{4}\left(-\frac{2}{3}e^{-2t} + B e^t + (A + Bt)e^t + \frac{5}{3}e^{-2t} + 5(A + Bt)e^t - e^{-2t}\right)$ $y = \frac{1}{4}e^t(6A + B + 6Bt)$	M1 y in terms of x, \dot{x} M1 Differentiate x F1 \dot{x} follows their x (but must use product rule)	4
(iv)	$\frac{1}{3} + A = 0$ $\frac{1}{4}(6A + B) = 0$ $A = -\frac{1}{3}, B = 2$ $x = \frac{1}{3}e^{-2t} + \left(2t - \frac{1}{3}\right)e^t$ $y = 3te^t$ $t = 0 \Rightarrow \dot{x} = 1, \dot{y} = 3$	M1 Condition on x M1 Condition on y A1 Both solutions correct B1 Both values correct B1 x through origin and consistent with their solution for large t (but not linear) B1 y through origin and consistent with their solution for large t (but not linear) B1 Gradient of both curves at origin consistent with their values of \dot{x}, \dot{y}	7

Mark Scheme 4761
June 2007

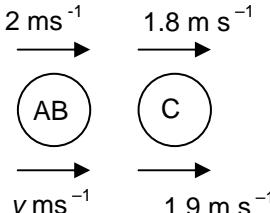
Q1				
(i)	$\rightarrow 40 - P \cos 60 = 0$ $P = 80$	M1 A1 A1	For any resolution in an equation involving P . Allow for $P = 40 \cos 60$ or $P = 40 \cos 30$ or $P = 40 \sin 60$ or $P = 40 \sin 30$ Correct equation cao	3
(ii)	$\downarrow Q + P \cos 30 = 120$ $Q = 40(3 - \sqrt{3}) = 50.7179\dots \text{ so } 50.7 \text{ (3 s.f.)}$	M1 A1	Resolve vert. All forces present. Allow $\sin \leftrightarrow \cos$ No extra forces. Allow wrong signs. cao	2
				5

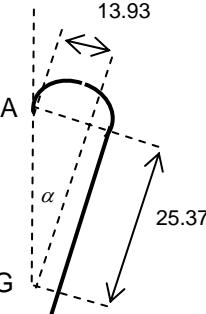
Q2				
(i)	Straight lines connecting $(0, 10)$, $(10, 30)$, $(25, 40)$ and $(45, 40)$	B1 B1 B1	Axes with labels (words or letter). Scales indicated. Accept no arrows. Use of straight line segments and horiz section All correct with salient points clearly indicated	3
(ii)	$0.5(10+30) \times 10 + 0.5(30+40) \times 15 + 40 \times 20$ $= 200 + 525 + 800 = 1525$	M1 M1 A1	Attempt at area(s) or use of appropriate <i>uvast</i> Evidence of attempt to find whole area cao	3
(iii)	$0.5 \times 40 \times T = 1700 - 1525$ $\text{so } 20T = 175 \text{ and } T = 8.75$	M1 F1	Equating triangle area to $1700 - \text{their (ii)}$ $(1700 - \text{their (ii)})/20$. Do not award for -ve answer.	2
				8

Q3				
(i)	String light and pulley smooth	E1	Accept pulley smooth alone	1
(ii)	5g (49) N thrust	M1 B1 A1	Three forces in equilibrium. Allow sign errors. for 15g (147) N used as a tension 5g (49) N thrust. Accept $\pm 5g (49)$. Ignore diagram. [Award SC2 for $\pm 5g (49)$ N without 'thrust' and SC3 if it is]	3
				4

Q4				
(i)	$P - 800 = 20000 \times 0.2$ $P = 4800$	M1 A1 A1	N2L. Allow $F = mga$. Allow wrong or zero resistance. No extra forces. Allow sign errors. If done as 1 equn need $m = 20\ 000$. If A and B analysed separately, must have 2 equns with 'T'. N2L correct.	3
(ii)	New accn $4800 - 2800 = 20000a$ $a = 0.1$	M1 A1	$F = ma$. Finding new accn. No extra forces. Allow 500 N but not 300 N omitted. Allow sign errors. FT their P	2
(iii)	$T - 2500 = 10000 \times 0.1$ $T = 3500$ so 3500 N	M1 A1	N2L with new a . Mass 10000. All forces present for A or B except allow 500 N omitted on A. No extra forces cao	2
				7

Q5				
	Take F +ve up the plane $F + 40 \cos 35 = 100 \sin 35$ $F = 24.5915\dots$ so 24.6 N (3 s. f.) up the plane	M1 B1 A1 A1	Resolve // plane (or horiz or vert). All forces present. At least one resolved. Allow $\sin \leftrightarrow \cos$ and sign errors. Allow 100g used. Either $\pm 40 \cos 35$ or $\pm 100 \sin 35$ or equivalent seen Accept $\pm 24.5915\dots$ or $\pm 90.1237\dots$ even if inconsistent or wrong signs used. 24.6 N up the plane (specified or from diagram) or equiv all obtained from consistent and correct working.	4
				4

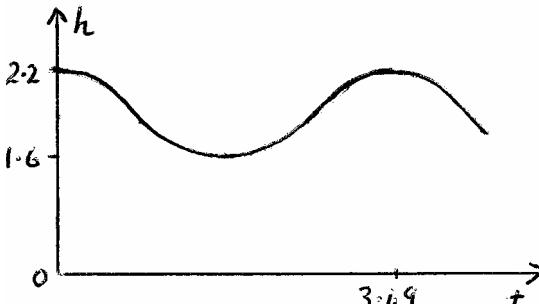

Q6				
(i)	$(-\mathbf{i} + 16\mathbf{j} + 72\mathbf{k}) + (-80\mathbf{k}) = 8\mathbf{a}$ $\mathbf{a} = \left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right) \text{ m s}^{-2}$	M1 E1	Use of N2L. All forces present. Need at least the \mathbf{k} term clearly derived	2
(ii)	$\mathbf{r} = 4(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k}) + 0.5 \times 16 \left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right)$ $= 3\mathbf{i} + 4\mathbf{k}$	M1 A1 A1	Use of appropriate uvast or integration (twice) Correct substitution (or limits if integrated)	3
(iii)	$\sqrt{3^2 + 4^2} = 5$ so 5 m	B1	FT their (ii) even if it not a displacement. Allow surd form	1
(iv)	$\arctan \frac{4}{3}$ $= 53.130\dots$ so 53.1° (3 s. f.)	M1 A1	Accept $\arctan \frac{3}{4}$. FT their (ii) even if not a displacement. Condone sign errors. (May use $\arcsin 4/5$ or equivalent. FT their (ii) and (iii) even if not displacement. Condone sign errors) cao	2
				8


Q7				
(i)	8 m s ⁻¹ (in the negative direction)	B1	Allow \pm and no direction indicated	1
(ii)	$(t+2)(t-4)=0$ so $t = -2$ or 4	M1 A1	Equating v to zero and solving or subst If subst used then both must be clearly shown	2
(iii)	$a = 2t - 2$ $a = 0$ when $t = 1$ $v(1) = 1 - 2 - 8 = -9$ so 9 m s ⁻¹ in the negative direction (1, -9)	M1 A1 F1 A1 B1	Differentiating Correct Accept -9 but not 9 without comment FT	5
(iv)	$\int_1^4 (t^2 - 2t - 8) \, dt$ $= \left[\frac{t^3}{3} - t^2 - 8t \right]_1^4$ $= \left(\frac{64}{3} - 16 - 32 \right) - \left(\frac{1}{3} - 1 - 8 \right)$ $= -18$ distance is 18 m	M1 A1 M1 A1 A1	Attempt at integration. Ignore limits. Correct integration. Ignore limits. Attempt to sub correct limits and subtract Limits correctly evaluated. Award if -18 seen but no need to evaluate Award even if -18 not seen. Do not award for -18. cao	5
(v)	$2 \times 18 = 36$ m	F1	Award for $2 \times$ their (iv).	1
(vi)	$\int_4^5 (t^2 - 2t - 8) \, dt = \left[\frac{t^3}{3} - t^2 - 8t \right]_4^5$ $= \left(\frac{125}{3} - 25 - 40 \right) - \left(-\frac{80}{3} \right) = 3\frac{1}{3}$ so $3\frac{1}{3} + 18 = 21\frac{1}{3}$ m	M1 A1 A1	\int_4^5 attempted or, otherwise, complete method seen. Correct substitution Award for $3\frac{1}{3} +$ their (positive) (iv)	3
				17

Q8				
(i)	$y = 25 \sin \theta t + 0.5 \times (-9.8)t^2$ $= 7t - 4.9t^2$ $x = 25 \cos \theta t = 25 \times 0.96t = 24t$	M1 E1 B1	Use of $s = ut + \frac{1}{2}at^2$. Accept sin, cos, 0.96, 0.28, ± 9.8 , ± 10 , $u = 25$ and derivation of -4.9 not clear. Shown including deriv of -4.9 . Accept $25 \sin \theta t = 7t$ WW Accept $25 \times 0.96t$ or $25 \cos \theta t$ seen WW	3
(ii)	$0 = 7^2 - 19.6s$ $s = 2.5$ so 2.5 m	M1 A1	Accept sequence of $uvast$. Accept $u=24$ but not 25. Allow $u \leftrightarrow v$ and ± 9.8 and ± 10 +ve answer obtained by correct manipulation.	2
(iii)	Need $7t - 4.9t^2 = 1.25$ so $4.9t^2 - 7t + 1.25 = 0$ $t = 0.209209\dots$ and $1.219361\dots$ need $24 \times (1.219\dots - 0.209209\dots)$ = $24 \times 1.01\dots$ so 24.2 m (3 s.f.)	M1 M1 A1 B1	Equate y to their (ii)/2 or equivalent. Correct sub into quad formula of their 3 term quadratic being solved (i.e. allow manipulation errors before using the formula). Both. cao. [Award M1 A1 for two correct roots WW] FT their roots (only if both positive)	4
(iv) (A)	$\dot{y} = 7 - 9.8t$ $\dot{y}(1.25) = 7 - 9.8 \times 1.25 = -5.25 \text{ m s}^{-1}$	M1 A1	Attempt at \dot{y} . Accept sign errors and $u = 24$ but not 25	
(B)	Falling as velocity is negative	E1	Reason must be clear. FT their \dot{y} even if not a velocity Could use an argument involving time.	
(C)	Speed is $\sqrt{24^2 + (-5.25)^2}$ = $24.5675\dots$ so 24.6 m s^{-1} (3 s. f.)	M1 A1	Use of Pythag and 24 or 7 with their \dot{y} cao	5

(v)	$y = 7t - 4.9t^2, x = 24t$ so $y = \frac{7x}{24} - 4.9\left(\frac{x}{24}\right)^2$ $y = \frac{7x}{24} - 4.9 \times \frac{x^2}{576} = \frac{0.7x}{576}(240 - 7x)$ either Need $y = 0$ so $x = 0$ or $\frac{240}{7}$ so $\frac{240}{7}$ m or	M1 A1 E1 M1 A1 B1 B1	Elimination of t Elimination correct. Condone wrong notation with interpretation correct for the problem. If not wrong accept as long as $24^2 = 576$ seen. Condone wrong notation with interpretation correct for the problem. Accept $x = 0$ not mentioned. Condone $0 \leq X \leq \frac{240}{7}$. Time of flight $\frac{10}{7}$ s Range $\frac{240}{7}$ m. Condone $0 \leq X \leq \frac{240}{7}$.	
				5
				19

Mark Scheme 4762
June 2007


Q 1				
(a) (i)	Impulse has magnitude $2 \times 9 = 18 \text{ N s}$ speed is $\frac{18}{6} = 3 \text{ m s}^{-1}$.	B1 B1		2
(ii)	PCLM \rightarrow $3 \times 6 - 1 \times 2 = 8v$ $v = 2$ so 2 m s^{-1} in orig direction of A	M1 A1 E1	Use of PCLM + combined mass RHS All correct Must justify direction (diag etc)	3
(iii)	$\rightarrow 2 \times 2 - 2 \times -1 = 6 \text{ N s}$	M1 A1	Attempted use of $mv - mu$ for 6 N s dir specified (accept diag)	2
(iv) (A)		B1	Accept masses not shown	1
(B)	PCLM \rightarrow $2 \times 8 + 10 \times 1.8 = 8v + 10 \times 1.9$ $v = 1.875$	M1 A1 A1	PCLM. All terms present Allow sign errors only	3
(C)	NEL $\frac{1.9 - 1.875}{1.8 - 2} = -e$ so $e = 0.125$	M1 A1 F1	Use of NEL with their v Any form. FT their v FT their v (only for $0 < e \leq 1$)	3
(b)	Using $v^2 = u^2 + 2as$ $v = \sqrt{2 \times 10 \times 9.8} = 14$ rebounds at $14 \times \frac{4}{7}$ $= 8 \text{ m s}^{-1}$ No change to the horizontal component Since both horiz and vert components are 8 m s^{-1} the angle is 45°	B1 M1 F1 B1 A1	Allow ± 14 Using their vertical component FT from their 14. Allow \pm Need not be explicitly stated cao	5
	19			

Q 2				
(i)	$\theta = \frac{\pi}{2}$ gives CG = $\frac{8 \sin \frac{\pi}{2}}{\frac{\pi}{2}} = \frac{16}{\pi}$ $\left(-\frac{16}{\pi}, 8\right)$ justified	B1 E1 E1		3
(ii)	$(8\pi + 72) \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = 8\pi \begin{pmatrix} -\frac{16}{\pi} \\ 8 \end{pmatrix} + 72 \begin{pmatrix} 36 \\ 0 \end{pmatrix}$ $\begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} 25.3673\dots \\ 2.06997\dots \end{pmatrix} = \begin{pmatrix} 25.37 \\ 2.07 \end{pmatrix}$ (4 s. f.)	M1 B1 A1 A1 E1 E1	Method for c.m. Correct mass of 8 1 st RHS term correct 2 nd RHS term correct [If separate cpts award the A1s for x- and y- cpts correct on RHS]	6
(iii)	 $\tan \alpha = \frac{13.93}{25.37}$ $\alpha = 28.7700\dots$ so 28.8° (3 s. f.)	B1 M1 M1 A1 A1	General position and angle (lengths need not be shown) Angle or complement attempted. arctan or equivalent. Attempt to get $16 - 2.0699\dots$ Obtaining $13.93\dots$ cao Accept use of $2.0699\dots$ but not 16. cao	5
(iv)	c. w. moments about A $12 \times 13.93 - 16F = 0$ so $F = 10.4475\dots$	M1 A1 A1	[FT use of 2.0699...] Moments about any point, all forces present (1.5525... if 2.0699... used)	3
		17		

Q 3				
(i)	Moments c.w. about B $200 \times 0.6 - 0.8R_A = 0$ $R_A = 150$ so 150 N Resolve or moments $R_B = 50$ so 50 N	M1 A1 M1 F1	Accept about any point. Allow sign errors.	4
(ii)	Moments c.w. about D $-0.8R_C + 1.2 \times 200 = 0$ $R_C = 300 \uparrow$ Resolve or moments $R_D = 100 \downarrow$	M1 A1 M1 A1 E1	Or equiv. Accept about any point. All terms present. No extra terms. Allow sign errors. Neglect direction Or equiv. All terms present. No extra terms. Allow sign errors. Neglect direction Both directions clearly shown (on diag)	5
(iii)	Moments c.w. about P $0.4 \times 200 \cos \alpha - 0.8R_Q = 0$ $R_Q = 96$ so 96 N resolve perp to plank $R_p = 200 \cos \alpha + R_Q$ $R_p = 288$ so 288 N	M1 A1 A1 M1 A1 A1	Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct [No direction required but no sign errors in working] Or equiv. Must have some resolution. All terms present. No extra terms. Allow sign errors. Correct [No direction required but no sign errors in working]	6
(iv)	Need one with greatest normal reaction So at P Resolve parallel to the plank $F = 200 \sin \alpha$ so $F = 56$ $\mu = \frac{F}{R}$ $= \frac{56}{288} = \frac{7}{36} (= 0.194 \text{ (3 s. f.)})$	B1 B1 M1 A1	FT their reactions Must use their F and R cao	4
		19		

Q 4				
(i)	<p>either</p> $0.5 \times 20 \times 0.5^2 + 20 \times 9.8 \times 4$ $= 786.5 \text{ J}$ <p>or</p> $a = \frac{1}{32}$ $T - 20g = 20 \times \frac{1}{32}$ $T = 196.625$ <p>WD is $4T = 786.5$ so 786.5 J</p>	M1 B1 B1 A1 B1 M1 A1 A1	KE or GPE terms KE term GPE term cao N2L. All terms present. cao	4
(ii)	$20g \times 0.5 = 10g$ so 98 W	M1 A1 A1	Use of $P = Fv$ or $\Delta \text{WD} / \Delta t$ All correct	3
(iii)	GPE lost is $35 \times 9.8 \times 3 = 1029 \text{ J}$ KE gained is $0.5 \times 35 \times (3^2 - 1^2) = 140 \text{ J}$ so WE gives WD against friction is $1029 - 140 = 889 \text{ J}$	B1 M1 A1 M1 A1	ΔKE The 140 J need not be evaluated Use of WE equation cao	5
(iv)	<p>either</p> $0.5 \times 35 \times 3^2 + 35 \times 9.8 \times 0.1x = 150x$ $x = 1.36127\dots$ so 1.36 m (3 S. F.) <p>or</p> $35g \times 0.1 - 150 = 35a$ $a = -3.3057\dots$ $0 = 9 - 2ax$ $x = 1.36127\dots$ so 1.36 m (3 S. F.)	M1 B1 B1 A1 A1 M1 A1 A1 M1 A1	WE equation. Allow 1 missing term. No extra terms. One term correct (neglect sign) Another term correct (neglect sign) All correct except allow sign errors cao Use of N2L. Must have attempt at weight component. No extra terms. Allow sign errors, otherwise correct cao Use of appropriate <i>uvast</i> or sequence cao	5
		17		

Mark Scheme 4763
June 2007

1(a)(i)	$[\text{Velocity}] = \text{LT}^{-1}$ $[\text{Acceleration}] = \text{LT}^{-2}$ $[\text{Force}] = \text{MLT}^{-2}$ $[\text{Density}] = \text{ML}^{-3}$ $[\text{Pressure}] = \text{ML}^{-1}\text{T}^{-2}$	B1 B1 B1 B1 B1	(Deduct 1 mark if answers given as ms^{-1} , ms^{-2} , kg m s^{-2} etc) 5
(ii)	$[P] = \text{ML}^{-1}\text{T}^{-2}$ $[\frac{1}{2}\rho v^2] = (\text{ML}^{-3})(\text{LT}^{-1})^2$ $= \text{ML}^{-1}\text{T}^{-2}$ $[\rho gh] = (\text{ML}^{-3})(\text{LT}^{-2})(\text{L}) = \text{ML}^{-1}\text{T}^{-2}$ All 3 terms have the same dimensions	M1 A1 A1 E1	Finding dimensions of 2nd or 3rd term Allow e.g. 'Equation is dimensionally consistent' following correct work 4
(b)(i)		M1 A1	For a 'cos' curve (starting at the highest point) Approx correct values marked on both axes 2
(ii)	Period $\frac{2\pi}{\omega} = 3.49$ $\omega = 1.8$ $h = 1.9 + 0.3 \cos 1.8t$	M1 A1 M1 F1	Accept $\frac{2\pi}{3.49}$ For $h = c + a \cos/\sin$ with either $c = \frac{1}{2}(1.6 + 2.2)$ or $a = \frac{1}{2}(2.2 - 1.6)$ 4
(iii)	When $h = 1.7$, float is 0.2 m below centre Acceleration is $\omega^2 x = 1.8^2 \times 0.2$ $= 0.648 \text{ ms}^{-2}$ upwards	M1A1 A1 cao	Award M1 if there is at most one error 3
	OR When $h = 1.7$, $\cos 1.8t = -\frac{2}{3}$ $(1.8t = 2.30, t = 1.28)$ Acceleration $\ddot{h} = -0.3 \times 1.8^2 \cos 1.8t$ $= -0.3 \times 1.8^2 \times (-\frac{2}{3})$ $= 0.648 \text{ ms}^{-2}$ upwards	M1 A1 A1 cao	

2 (i)	$R \cos 60 = 0.4 \times 9.8$ Normal reaction is 7.84 N	M1 A1 2	Resolving vertically (e.g. $R \sin 60 = mg$ is M1A0 $R = mg \cos 60$ is M0)
(ii)	$R \sin 60 = 0.4 \times \frac{v^2}{2.7 \sin 60}$ Speed is 6.3 ms^{-1}	M1 M1 A1 4 A1 cao	Horizontal equation of motion Acceleration $\frac{v^2}{r}$ (M0 for $\frac{v^2}{2.7}$)
	OR $R \sin 60 = 0.4 \times (2.7 \sin 60)\omega^2$ $\omega = 2.694$ $v = (2.7 \sin 60)\omega$ Speed is 6.3 ms^{-1}	M1 A1 4 M1 A1 cao	Horizontal equation of motion or $R = 0.4 \times 2.7 \times \omega^2$ For $v = r\omega$ (M0 for $v = 2.7\omega$)
(iii)	By conservation of energy, $\frac{1}{2} \times 0.4 \times (9^2 - v^2) = 0.4 \times 9.8 \times (2.7 + 2.7 \cos \theta)$ $81 - v^2 = 52.92 + 52.92 \cos \theta$ $v^2 = 28.08 - 52.92 \cos \theta$	M1 A1 3 A1	Equation involving KE and PE Any (reasonable) correct form e.g. $v^2 = 81 - 52.92(1 + \cos \theta)$
(iv)	$R + 0.4 \times 9.8 \cos \theta = 0.4 \times \frac{v^2}{2.7}$ $R + 3.92 \cos \theta = \frac{0.4}{2.7} (28.08 - 52.92 \cos \theta)$ $R + 3.92 \cos \theta = 4.16 - 7.84 \cos \theta$ $R = 4.16 - 11.76 \cos \theta$	M1 A1 5 M1 A1 5 E1	Radial equation with 3 terms Substituting expression for v^2 SR If θ is taken to the downward vertical, maximum marks are: M1A0A0 in (iii) M1A1M1A1E0 in (iv)
(v)	Leaves surface when $R = 0$ $\cos \theta = \frac{4.16}{11.76}$ $v^2 = 28.08 - 52.92 \times \frac{4.16}{11.76}$ ($= 9.36$) Speed is 3.06 ms^{-1}	M1 A1 4 M1 A1 cao	<i>Dependent on previous M1</i> or using $mg \cos \theta = \frac{mv^2}{r}$

3 (i)	Tension is $637 \times 0.1 = 63.7 \text{ N}$ Energy is $\frac{1}{2} \times 637 \times 0.1^2 = 3.185 \text{ J}$	B1 M1 A1 3	
(ii)	Let θ be angle between RA and vertical $\cos \theta = \frac{5}{13}$ ($\theta = 67.4^\circ$) $T \cos \theta = mg$ $63.7 \times \frac{5}{13} = m \times 9.8$ Mass of ring is 2.5 kg	B1 M1 A1 E1 4	Resolving vertically
(iii)	Loss of PE is $2.5 \times 9.8 \times (0.9 - 0.5)$ EE at lowest point is $\frac{1}{2} \times 637 \times 0.3^2$ (= 28.665) By conservation of energy, $2.5 \times 9.8 \times 0.4 + \frac{1}{2} \times 2.5u^2 = \frac{1}{2} \times 637 \times 0.3^2 - 3.185$ $9.8 + 1.25u^2 = 25.48$ $u^2 = 12.544$ $u = 3.54$	M1 A1 M1 A1 M1 F1 A1 cao 7	Considering PE or PE at start and finish Award M1 if not more than one error Equation involving KE, PE and EE
(iv)	From lowest point to level of A, Loss of EE is 28.665 Gain in PE is $2.5 \times 9.8 \times 0.9 = 22.05$ Since $28.665 > 22.05$, Ring will rise above level of A	M1 M1 M1 A1 cao 4	EE at 'start' and at level of A PE at 'start' and at level of A (For M2 it must be the same 'start') Comparing EE and PE (or equivalent, e.g. $\frac{1}{2}mu^2 + 3.185 = mg \times 0.5 + \frac{1}{2}mv^2$) Fully correct derivation
			SR If 637 is used as modulus, maximum marks are: (i) B0M1A0 (ii) B1M1A1E0 (iii) M1A1M1A1M1F1A0 (iv) M1M1M1A0

4 (a)	<p>Area is $\int_0^2 x^3 dx = \left[\frac{1}{4}x^4 \right]_0^2 = 4$</p> $\int xy dx = \int_0^2 x^4 dx$ $= \left[\frac{1}{5}x^5 \right]_0^2 = 6.4$ $\bar{x} = \frac{6.4}{4} = 1.6$ $\int \frac{1}{2}y^2 dx = \int_0^2 \frac{1}{2}x^6 dx$ $= \left[\frac{1}{14}x^7 \right]_0^2 = \frac{64}{7}$ $\bar{y} = \frac{\int \frac{1}{2}y^2 dx}{\int y dx}$ $= \frac{\frac{64}{7}}{4} = \frac{16}{7}$	<p>B1</p> <p>M1</p> <p>A1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>M1</p> <p>A1</p>	<p>Condone omission of $\frac{1}{2}$</p> <p>Accept 2.3 from correct working</p> <p>8</p>
(b)(i)	<p>Volume is $\int \pi y^2 dx = \int_1^2 \pi(4 - x^2) dx$</p> $= \pi \left[4x - \frac{1}{3}x^3 \right]_1^2 = \frac{5}{3}\pi$ $\int \pi x y^2 dx = \int_1^2 \pi x(4 - x^2) dx$ $= \pi \left[2x^2 - \frac{1}{4}x^4 \right]_1^2 = \frac{9}{4}\pi$ $\bar{x} = \frac{\int \pi x y^2 dx}{\int \pi y^2 dx}$ $= \frac{\frac{9}{4}\pi}{\frac{5}{3}\pi} = \frac{27}{20} = 1.35$	<p>M1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>M1</p> <p>E1</p>	<p>π may be omitted throughout</p> <p>For $\frac{5}{3}$</p> <p>For $\frac{9}{4}$</p> <p>6</p> <p>Must be fully correct</p>
(ii)	<p>Height of solid is $h = 2\sqrt{3}$</p> $Th = mg \times 0.35$ $F = T = 0.101mg, R = mg$ <p>Least coefficient of friction is $\frac{F}{R} = 0.101$</p>	<p>B1</p> <p>M1</p> <p>F1</p> <p>A1</p>	<p>Taking moments</p> <p>4</p> <p>Must be fully correct (e.g. A0 if $m = \frac{5}{3}\pi$ is used)</p>

Mark Scheme 4764
June 2007

1(i)	$x = PB$ $x = \sqrt{a^2 + y^2}$ $V = \frac{1}{2}kx^2 - mgy$ $= \frac{1}{2}k(a^2 + y^2) - mgy$	M1 May be implied A1 M1 EPE term M1 GPE term A1 cao	5
(ii)	$\frac{dV}{dy} = ky - mg$ equilibrium $\Rightarrow \frac{dV}{dy} = 0$ $\Rightarrow y = \frac{mg}{k}$ $\frac{d^2V}{dy^2} = k > 0$ \Rightarrow stable	M1 Differentiate their V B1 Seen or implied A1 cao M1 Consider sign of V'' (or V' either side) E1 Complete argument	5
(iii)	$R = T \sin P\hat{B}A = k \cdot PB \cdot \frac{a}{PB}$ $= ka$	M1 Use Hooke's law and resolve A1	2
2(i)	$\frac{d}{dt}(mv) = 0 \Rightarrow mv$ constant hence $mv = m_0u$ $\frac{dm}{dt} = k$ $\Rightarrow m = m_0 + kt$ $v = \frac{m_0u}{m} = \frac{m_0u}{m_0 + kt}$ $x = \int \frac{m_0u}{m_0 + kt} dt$ $= \frac{m_0u}{k} \ln(m_0 + kt) + A$ $x = 0, t = 0 \Rightarrow A = -\frac{m_0u}{k} \ln m_0$ $x = \frac{m_0u}{k} \ln\left(\frac{m_0 + kt}{m_0}\right)$	M1 Or no external forces \Rightarrow momentum conserved, or attempt using δ terms. A1 B1 $\frac{dm}{dt} = k$ seen B1 $m_0 + kt$ stated or clearly used as mass E1 Complete argument (dependent on all previous marks and $m_0 + kt$ derived, not just stated) M1 Integrate v A1 cao M1 Use condition A1 cao	9
(ii)	$v = \frac{1}{2}u \Rightarrow m_0 + kt = 2m_0$ $\Rightarrow x = \frac{m_0u}{k} \ln\left(\frac{2m_0}{m_0}\right)$ $\Rightarrow x = \frac{m_0u}{k} \ln 2$	M1 Attempt to calculate value of m or t M1 Substitute their m or t into x F1 $t = \frac{m_0}{k}$ or $m = 2m_0$ in their x	3

3(i)	$I = \int_{-a}^a \rho x^2 dx$ $\rho = \frac{m}{2a}$ $I = \frac{m}{2a} \left[\frac{1}{3}x^3 \right]_{-a}^a$ $= \frac{1}{6}ma^2 - - \frac{1}{6}ma^2$ $\frac{1}{3}ma^2$	M1 Set up integral A1 Or equivalent M1 Use mass per unit length in integral or I M1 Integrate M1 Use limits E1 Complete argument	6
(ii)	$I_{\text{rod}} = \frac{1}{3} \times 1.2 \times 0.4^2 + 1.2 \times 0.4^2$ $I_{\text{sphere}} = \frac{2}{5} \times 2 \times 0.1^2 + 2 \times 0.9^2$ $I = I_{\text{rod}} + I_{\text{sphere}} = 1.884$	M1 Use $\frac{1}{3}ma^2$ or $\frac{4}{3}ma^2$ A1 Rod term(s) all correct M1 Use formula for sphere M1 Use parallel axis theorem A1 Sphere terms all correct M1 Add moment of inertia for rod and sphere A1 cao	7
(iii)	$\frac{1}{2}I\dot{\theta}^2 - 1.2g \times 0.4 \cos \theta - 2g \times 0.9 \cos \theta$ $= -1.2g \times 0.4 \cos \alpha - 2g \times 0.9 \cos \alpha$ $\dot{\theta}^2 = \frac{4.56g}{1.884} (\cos \theta - \cos \alpha)$	M1 Use energy M1 KE term M1 Reasonable attempt at GPE terms A1 All terms correct (but ignore signs) M1 Rearrange F1 Only follow an incorrect I	6
(iv)	$2\dot{\theta}\ddot{\theta} = \frac{4.56g}{1.884} (-\sin \theta \dot{\theta})$ or $I\ddot{\theta} = -1.2g \times 0.4 \sin \theta - 2g \times 0.9 \sin \theta$ $\sin \theta \approx \theta \Rightarrow \ddot{\theta} = -11.86\theta$ i.e. SHM $T \approx \frac{2\pi}{\sqrt{11.86}} \approx 1.82$	M1 Differentiate, or use moment = $I\ddot{\theta}$ F1 Equation for $\ddot{\theta}$ (only follow their I or $\dot{\theta}^2$) M1 Use small angle approximation (in terms of θ) E1 All correct (for their I) and make conclusion F1 $\frac{2\pi}{\text{their } \omega}$	5

4(i)	$2v \frac{dv}{dx} = 2 - 8v^2$	M1 N2L
		A1
	$\int \frac{v}{1-4v^2} dv = \int dx$	M1 Separate
	$-\frac{1}{8} \ln 1-4v^2 = x + c_1$	A1 LHS
	$x = 0, v = 0 \Rightarrow c_1 = 0$	M1 Use condition
	$1-4v^2 = e^{-8x}$	M1 Rearrange
	$v^2 = \frac{1}{4}(1-e^{-8x})$	E1 Complete argument
		7
(ii)	$F = 2 - 8v^2 = 2 - 2(1-e^{-8x})$ $= 2e^{-8x}$ Work done = $\int_0^2 F dx$ $= \int_0^2 2e^{-8x} dx$ $= \left[-\frac{1}{4}e^{-8x} \right]_0^2$ $= \frac{1}{4}(1-e^{-16})$	M1 Substitute given v^2 into F A1 cao M1 Set up integral of F A1 cao M1 Integrate A1 Accept $\frac{1}{4}$ or 0.25 from correct working
		6
(iii)	$2 \frac{dv}{dt} = 2 - 8v^2$ $\frac{1}{4} \int \frac{1}{\frac{1}{4}-v^2} dv = \int dt$ $\frac{1}{4} \ln \left \frac{\frac{1}{2}+v}{\frac{1}{2}-v} \right = t + c_2$ $t = 0, v = 0 \Rightarrow c_2 = 0$ $\frac{\frac{1}{2}+v}{\frac{1}{2}-v} = e^{4t}$ $1+2v = e^{4t}(1-2v)$ $2v(1+e^{4t}) = e^{4t}-1$ $v = \frac{1}{2} \left(\frac{e^{4t}-1}{e^{4t}+1} \right) = \frac{1}{2} \left(\frac{1-e^{-4t}}{1+e^{-4t}} \right)$	M1 N2L M1 Separate A1 LHS M1 Use condition M1 Rearrange (remove log) M1 Rearrange (v in terms of t) E1 Complete argument
		7
(v)	$t = 1 \Rightarrow v = 0.4820$ $t = 2 \Rightarrow v = 0.4997$ Impulse = $mv_2 - mv_1$ $= 0.0353$	B1 B1 M1 Use impulse-momentum equation A1 Accept anything in interval [0.035, 0.036]
		4

Mark Scheme 4766
June 2007

Q1 (i)	$\binom{8}{4}$ ways to select = 70	M1 for $\binom{8}{4}$ A1 CAO	2										
(ii)	$4! = 24$	B1 CAO	1										
		TOTAL	3										
Q2 (i)	<table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td>Amount</td> <td>0- <20</td> <td>20- <50</td> <td>50- <100</td> <td>100- <200</td> </tr> <tr> <td>Frequency</td> <td>800</td> <td>480</td> <td>400</td> <td>200</td> </tr> </table>	Amount	0- <20	20- <50	50- <100	100- <200	Frequency	800	480	400	200	B1 for amounts	2
Amount	0- <20	20- <50	50- <100	100- <200									
Frequency	800	480	400	200									
B1 for frequencies													
(ii)	Total $\approx 10 \times 800 + 35 \times 480 + 75 \times 400 + 150 \times 200 = \text{£}84800$	M1 for their midpoints \times their frequencies A1 CAO	2										
		TOTAL	4										
Q3 (i)	Mean = $\frac{3026}{56} = 54.0$ $S_{xx} = 178890 - \frac{3026^2}{56} = 15378$ $s = \sqrt{\frac{15378}{55}} = 16.7$	B1 for mean M1 for attempt at S_{xx} A1 CAO	3										
(ii)	$\bar{x} + 2s = 54.0 + 2 \times 16.7 = 87.4$ So 93 is an outlier	M1 for their $\bar{x} + 2 \times$ their s A1 FT for 87.4 and comment	2										
(iii)	New mean = $1.2 \times 54.0 - 10 = 54.8$ New $s = 1.2 \times 16.7 = 20.1$	B1 FT M1A1 FT	3										
		TOTAL	8										
Q4 (i)	(A) $P(\text{at least one}) = \frac{36}{50} = \frac{18}{25} = 0.72$	B1 aef	3										
	(B) $P(\text{exactly one}) = \frac{9+6+5}{50} = \frac{20}{50} = \frac{2}{5} = 0.4$	M1 for $(9+6+5)/50$ A1 aef											
(ii)	$P(\text{not paper} \mid \text{aluminium}) = \frac{13}{24}$	M1 for denominator 24 or $24/50$ or 0.48 A1 CAO	2										
(iii)	$P(\text{one kitchen waste}) = 2 \times \frac{18}{50} \times \frac{32}{49} = \frac{576}{1225} = 0.470$	M1 for both fractions M1 for $2 \times$ product of both, or sum of 2 pairs A1	3										
		TOTAL	8										

Q5 (i)	11 th value is 4, 12 th value is 4 so median is 4 Interquartile range = 5 – 2 = 3	B1 M1 for either quartile A1 CAO	3
(ii)	No, not valid any two valid reasons such as : <ul style="list-style-type: none"> the sample is only for two years, which may not be representative the data only refer to the local area, not the whole of Britain even if decreasing it may have nothing to do with global warming more days with rain does not imply more total rainfall a five year timescale may not be enough to show a long term trend 	B1 E1 E1	3
		TOTAL	6
Q6 (i)	Either $P(\text{all 4 correct}) = \frac{4}{7} \times \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{35}$ or $P(\text{all 4 correct}) = \frac{1}{{}^7C_4} = \frac{1}{35}$	M1 for fractions, or 7C_4 seen A1 NB answer given	2
(ii)	$E(X) = 1 \times \frac{4}{35} + 2 \times \frac{18}{35} + 3 \times \frac{12}{35} + 4 \times \frac{1}{35} = \frac{80}{35} = 2\frac{2}{7} = 2.29$ $E(X^2) = 1 \times \frac{4}{35} + 4 \times \frac{18}{35} + 9 \times \frac{12}{35} + 16 \times \frac{1}{35} = \frac{200}{35} = 5.714$ $\text{Var}(X) = \frac{200}{35} - \left(\frac{80}{35}\right)^2 = \frac{24}{49} = 0.490 \text{ (to 3 s.f.)}$	M1 for $\sum rp$ (at least 3 terms correct) A1 CAO M1 for $\sum x^2 p$ (at least 3 terms correct) M1 <i>dep</i> for – their $E(X)^2$ A1 FT their $E(X)$ provided $\text{Var}(X) > 0$	5
		TOTAL	7

Section B			
Q7 (i)		G1 probabilities of result G1 probabilities of disease G1 probabilities of clear G1 labels	4
(ii)	$\begin{aligned} P(\text{negative and clear}) &= 0.91 \times 0.99 \\ &= 0.9009 \end{aligned}$	M1 for their 0.91×0.99 A1 CAO	2
(iii)	$\begin{aligned} P(\text{has disease}) &= 0.03 \times 0.95 + 0.06 \times 0.10 + 0.91 \times 0.01 \\ &= 0.0285 + 0.006 + 0.0091 \\ &= 0.0436 \end{aligned}$	M1 three products M1 <i>dep</i> sum of three products A1 FT their tree	3
(iv)	$\begin{aligned} P(\text{negative} \mid \text{has disease}) &= \frac{P(\text{negative and has disease})}{P(\text{has disease})} = \frac{0.0091}{0.0436} = 0.2087 \end{aligned}$	M1 for their 0.01×0.91 or 0.0091 on its own or as numerator M1 <i>indep</i> for their 0.0436 as denominator A1 FT their tree	3
(v)	<p>Thus the test result is not very reliable.</p> <p>A relatively large proportion of people who have the disease will test negative.</p>	E1 FT for idea of 'not reliable' or 'could be improved', etc E1 FT	2
(vi)	$\begin{aligned} P(\text{negative or doubtful and declared clear}) &= 0.91 + 0.06 \times 0.10 \times 0.02 + 0.06 \times 0.90 \times 1 \\ &= 0.91 + 0.00012 + 0.054 = 0.96412 \end{aligned}$	M1 for their $0.91 +$ M1 for either triplet M1 for second triplet A1 CAO	4
		TOTAL	18

Q8			
(i)	$X \sim B(17, 0.2)$ $P(X \geq 4) = 1 - P(X \leq 3)$ $= 1 - 0.5489 = 0.4511$	B1 for 0.5489 M1 for 1 – their 0.5489 A1 CAO	3
(ii)	$E(X) = np = 17 \times 0.2 = 3.4$	M1 for product A1 CAO	2
(iii)	$P(X = 2) = 0.3096 - 0.1182 = 0.1914$ $P(X = 3) = 0.5489 - 0.3096 = 0.2393$ $P(X = 4) = 0.7582 - 0.5489 = 0.2093$ So 3 applicants is most likely	B1 for 0.2393 B1 for 0.2093 A1 CAO <i>dep</i> on both B1s	3
(iv)	(A) Let p = probability of a randomly selected maths graduate applicant being successful (for population) $H_0: p = 0.2$ $H_1: p > 0.2$ (B) H_1 has this form as the suggestion is that mathematics graduates are <u>more</u> likely to be successful.	B1 for definition of p in context B1 for H_0 B1 for H_1 E1	4
(v)	Let $X \sim B(17, 0.2)$ $P(X \geq 6) = 1 - P(X \leq 5) = 1 - 0.8943 = 0.1057 > 5\%$ $P(X \geq 7) = 1 - P(X \leq 6) = 1 - 0.9623 = 0.0377 < 5\%$ So critical region is {7,8,9,10,11,12,13,14,15,16,17}	B1 for 0.1057 B1 for 0.0377 M1 for at least one comparison with 5% A1 CAO for critical region <i>dep</i> on M1 and at least one B1	4
(vi)	Because $P(X \geq 6) = 0.1057 > 10\%$ Either: comment that 6 is still outside the critical region Or comparison $P(X \geq 7) = 0.0377 < 10\%$	E1 E1	2
		TOTAL	18

Mark Scheme 4767
June 2007

Question 1

(i)	$X \sim N(11, 3^2)$ $P(X < 10) = P\left(Z < \frac{10-11}{3}\right)$ $= P(Z < -0.333)$ $= \Phi(-0.333) = 1 - \Phi(0.333)$ $= 1 - 0.6304 = 0.3696$	M1 for standardizing M1 for use of tables with their z -value M1 <i>dep</i> for correct tail A1 CAO (must include use of differences)	4
(ii)	$P(3 \text{ of } 8 \text{ less than ten})$ $= \binom{8}{3} \times 0.3696^3 \times 0.6304^5 = 0.2815$	M1 for coefficient M1 for $0.3696^3 \times 0.6304^5$ A1 FT (min 2sf)	3
(iii)	$\mu = np = 100 \times 0.3696 = 36.96$ $\sigma^2 = npq = 100 \times 0.3696 \times 0.6304 = 23.30$ $Y \sim N(36.96, 23.30)$ $P(Y \geq 50) = P\left(Z > \frac{49.5 - 36.96}{\sqrt{23.30}}\right)$ $= P(Z > 2.598) = 1 - \Phi(2.598) = 1 - 0.9953$ $= 0.0047$	M1 for Normal approximation with correct (FT) parameters B1 for continuity corr. M1 for standardizing and using correct tail A1 CAO (FT 50.5 or omitted CC)	4
(iv)	$H_0: \mu = 11; \quad H_1: \mu > 11$ Where μ denotes the mean time taken by the new hairdresser	B1 for H_0 , as seen. B1 for H_1 , as seen. B1 for definition of μ	3
(v)	Test statistic $= \frac{12.34 - 11}{3/\sqrt{25}} = \frac{1.34}{0.6} = 2.23$ 5% level 1 tailed critical value of $z = 1.645$ $2.23 > 1.645$, so significant. There is sufficient evidence to reject H_0 It is reasonable to conclude that the new hairdresser does take longer on average than other staff.	M1 must include $\sqrt{25}$ A1 (FT their μ) B1 for 1.645 M1 for sensible comparison leading to a conclusion A1 for conclusion in words in context (FT their μ)	5
			19

Question 2

(i)	<table border="1" data-bbox="239 287 895 512"> <tr><td>x</td><td>2.61</td><td>2.73</td><td>2.87</td><td>2.96</td><td>3.05</td><td>3.14</td><td>3.17</td><td>3.24</td><td>3.76</td><td>4.1</td></tr> <tr><td>y</td><td>3.2</td><td>2.6</td><td>3.5</td><td>3.1</td><td>2.8</td><td>2.7</td><td>3.4</td><td>3.3</td><td>4.4</td><td>4.1</td></tr> <tr><td>Rank x</td><td>10</td><td>9</td><td>8</td><td>7</td><td>6</td><td>5</td><td>4</td><td>3</td><td>2</td><td>1</td></tr> <tr><td>Rank y</td><td>6</td><td>10</td><td>3</td><td>7</td><td>8</td><td>9</td><td>4</td><td>5</td><td>1</td><td>2</td></tr> <tr><td>d</td><td>4</td><td>-1</td><td>5</td><td>0</td><td>-2</td><td>-4</td><td>0</td><td>-2</td><td>1</td><td>-1</td></tr> <tr><td>d^2</td><td>16</td><td>1</td><td>25</td><td>0</td><td>4</td><td>16</td><td>0</td><td>4</td><td>1</td><td>1</td></tr> </table> $r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 68}{10 \times 99}$ $= 0.588 \text{ (to 3 s.f.)} \quad [\text{allow 0.59 to 2 s.f.}]$	x	2.61	2.73	2.87	2.96	3.05	3.14	3.17	3.24	3.76	4.1	y	3.2	2.6	3.5	3.1	2.8	2.7	3.4	3.3	4.4	4.1	Rank x	10	9	8	7	6	5	4	3	2	1	Rank y	6	10	3	7	8	9	4	5	1	2	d	4	-1	5	0	-2	-4	0	-2	1	-1	d^2	16	1	25	0	4	16	0	4	1	1	M1 for ranking (allow all ranks reversed) M1 for d^2 A1 for $\sum d^2 = 68$ M1 for method for r_s A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
x	2.61	2.73	2.87	2.96	3.05	3.14	3.17	3.24	3.76	4.1																																																											
y	3.2	2.6	3.5	3.1	2.8	2.7	3.4	3.3	4.4	4.1																																																											
Rank x	10	9	8	7	6	5	4	3	2	1																																																											
Rank y	6	10	3	7	8	9	4	5	1	2																																																											
d	4	-1	5	0	-2	-4	0	-2	1	-1																																																											
d^2	16	1	25	0	4	16	0	4	1	1																																																											
(ii)	H_0 : no association between x and y H_1 : positive association between x and y Looking for positive association (one-tail test): critical value at 5% level is 0.5636 Since $0.588 > 0.5636$, there is sufficient evidence to reject H_0 , i.e. conclude that there is positive association between true weight x and estimated weight y .	B1 for H_0 , in context. B1 for H_1 , in context. NB $H_0 H_1$ <u>not</u> ito ρ B1 for ± 0.5636 M1 for sensible comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words & in context, f.t. their r_s and sensible cv	5																																																																		
(iii)	$\Sigma x = 31.63$, $\Sigma y = 33.1$, $\Sigma x^2 = 101.92$, $\Sigma y^2 = 112.61$, $\Sigma xy = 106.51$. $S_{xy} = \Sigma xy - \frac{1}{n} \Sigma x \Sigma y = 106.51 - \frac{1}{10} \times 31.63 \times 33.1$ $= 1.8147$ $S_{xx} = \Sigma x^2 - \frac{1}{n} (\Sigma x)^2 = 101.92 - \frac{1}{10} \times 31.63^2 = 1.8743$ $S_{yy} = \Sigma y^2 - \frac{1}{n} (\Sigma y)^2 = 112.61 - \frac{1}{10} \times 33.1^2 = 3.049$ $r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{1.8147}{\sqrt{1.8743 \times 3.049}} = 0.759$	M1 for method for S_{xy} M1 for method for at least one of S_{xx} or S_{yy} A1 for at least one of S_{xy} , S_{xx} , S_{yy} correct. M1 for structure of r A1 (awrt 0.76)	5																																																																		
(iv)	Use of the PMCC is better since it takes into account not just the ranking but the actual value of the weights. Thus it has more information than Spearman's and will therefore provide a more discriminatory test. Critical value for rho = 0.5494 PMCC is very highly significant whereas Spearman's is only just significant.	E1 for has values, not just ranks E1 for contains more information Allow alternatives. B1 for a cv E1 dep	4																																																																		
			19																																																																		

Question 3

(i)	$(A) P(X=1) = 0.1712 - 0.0408 = 0.1304$ $OR \quad = e^{-3.2} \frac{3.2^1}{1!} = 0.1304$ $(B) P(X \geq 6) = 1 - P(X \leq 5) = 1 - 0.8946$ $= 0.1054$	M1 for tables A1 (2 s.f. WWW) M1 A1	4
(ii)	$(A) \lambda = 3.2 \div 5 = 0.64$ $P(X=1) = e^{-0.64} \frac{0.64^1}{1!} = 0.3375$ $(B) P(\text{exactly one in each of 5 mins})$ $= 0.3375^5 = 0.004379$	B1 for mean (SOI) M1 for probability A1 B1 (FT to at least 2 s.f.)	4
(iii)	Mean no. of calls in 1 hour = $12 \times 3.2 = 38.4$ Using Normal approx. to the Poisson, $X \sim N(38.4, 38.4)$ $P(X \leq 45.5) = P\left(Z \leq \frac{45.5 - 38.4}{\sqrt{38.4}}\right)$ $= P(Z \leq 1.146) = \Phi(1.146) = 0.874 \text{ (3 s.f.)}$	B1 for Normal approx. with correct parameters (SOI) B1 for continuity corr. M1 for probability using correct tail A1 CAO, (but FT 44.5 or omitted CC)	4
(iv)	$(A) \text{ Suitable arguments for/against each assumption:}$ $(B) \text{ Suitable arguments for/against each assumption:}$	E1, E1 E1, E1	4
			16

Question 4

(i)	<p>H_0: no association between age group and sex; H_1: some association between age group and sex;</p> <table border="1" data-bbox="238 336 921 943"> <thead> <tr> <th colspan="2" data-bbox="238 336 397 426">Expected</th> <th colspan="2" data-bbox="397 336 714 426">Sex</th> <th data-bbox="714 336 921 426" rowspan="2">Row totals</th> </tr> <tr> <th colspan="2"></th> <th>Male</th> <th>Female</th> </tr> </thead> <tbody> <tr> <td data-bbox="238 426 397 583" rowspan="3">Age group</td> <td>Under 40</td> <td>81.84</td> <td>42.16</td> <td>124</td> </tr> <tr> <td>40 – 49</td> <td>73.92</td> <td>38.08</td> <td>112</td> </tr> <tr> <td>50 and over</td> <td>42.24</td> <td>21.76</td> <td>64</td> </tr> <tr> <td data-bbox="238 583 397 651">Column totals</td> <td>198</td> <td>102</td> <td>300</td> <td></td> </tr> <tr> <td colspan="2" data-bbox="238 651 397 763" rowspan="3">Contribution to test statistic</td> <th colspan="2" data-bbox="397 651 714 763">Sex</th> <td></td> </tr> <tr> <th>Male</th> <th>Female</th> <td></td> </tr> <tr> <td>Under 40</td> <td>1.713</td> <td>3.325</td> <td></td> </tr> <tr> <td>40 – 49</td> <td>0.059</td> <td>0.114</td> <td></td> </tr> <tr> <td>50 and over</td> <td>2.255</td> <td>4.378</td> <td></td> </tr> </tbody> </table> <p>$X^2 = 11.84$</p> <p>Refer to Ξ_2^2 Critical value at 5% level = 5.991 Result is significant There is some association between age group and sex .</p> <p>NB if H_0 H_1 reversed, or ‘correlation’ mentioned, do not award first B1 or final E1</p>	Expected		Sex		Row totals			Male	Female	Age group	Under 40	81.84	42.16	124	40 – 49	73.92	38.08	112	50 and over	42.24	21.76	64	Column totals	198	102	300		Contribution to test statistic		Sex			Male	Female		Under 40	1.713	3.325		40 – 49	0.059	0.114		50 and over	2.255	4.378		<p>B1 (in context)</p> <p>M1 A1 for expected values (to 2dp)</p> <p>M1 for valid attempt at $(O-E)^2/E$</p> <p>M1dep for summation</p>	<p>6</p> <p>4</p>
Expected		Sex		Row totals																																														
		Male	Female																																															
Age group	Under 40	81.84	42.16	124																																														
	40 – 49	73.92	38.08	112																																														
	50 and over	42.24	21.76	64																																														
Column totals	198	102	300																																															
Contribution to test statistic		Sex																																																
		Male	Female																																															
		Under 40	1.713	3.325																																														
40 – 49	0.059	0.114																																																
50 and over	2.255	4.378																																																
(ii)	<p>The analysis suggests that there are more females in the under 40 age group and less in the 50 and over age group than would be expected if there were no association. The reverse is true for males. Thus these data do support the suggestion.</p>	<p>E1</p> <p>E1</p> <p>E1dep (on at least one of the previous E1s)</p>	<p>3</p>																																															
(iii)	<p>Binomial(300, 0.03) soi $n = 300, p = 0.03$ so EITHER: use Poisson approximation to Binomial with $\lambda = np = 9$ Using tables: $P(X \geq 12) = 1 - P(X \leq 11)$ $= 1 - 0.8030 = 0.197$</p> <p>OR: use Normal approximation $N(9, 8.73)$</p> $P(X > 11.5) = P\left(Z > \frac{11.5 - 9}{\sqrt{8.73}}\right)$ $= P(Z > 0.846) = 1 - 0.8012 = 0.199$	<p>B1 CAO</p> <p>EITHER:</p> <p>B1 for Poisson</p> <p>B1dep for Poisson(9)</p> <p>M1 for using tables to find $1 - P(X \leq 11)$</p> <p>A1</p> <p>OR:</p> <p>B1 for Normal</p> <p>B1dep for parameters</p> <p>M1 for using tables with correct tail (cc not required for M1)</p> <p>A1</p>	<p>5</p> <p>18</p>																																															

Mark Scheme 4768
June 2007

Q1	$f(t) = kt^3(2-t) \quad 0 < t \leq 2$			
(i)	$\int_0^2 kt^3(2-t)dt = 1$ $\therefore \left[k\left(\frac{2t^4}{4} - \frac{t^5}{5}\right) \right]_0^2 = 1$ $\therefore k\left(8 - \frac{32}{5}\right) - 0 = 1$ $\therefore k \times \frac{8}{5} = 1 \quad \therefore k = \frac{5}{8}$	M1 E1	<p>Integral of $f(t)$, including limits (possibly implied later), equated to 1.</p> <p>Convincingly shown. Beware printed answer.</p>	2
(ii)	$\frac{df}{dt} = \frac{5}{8}(6t^2 - 4t^3) = 0$ $\therefore 6t^2 - 4t^3 = 0$ $\therefore 2t^2(3 - 2t) = 0$ $\therefore t = (0 \text{ or}) \frac{3}{2}$	M1 A1	<p>Differentiate and set equal to zero.</p> <p>c.a.o.</p>	2
(iii)	$E(T) = \int_0^{\frac{2}{5}} t^4(2-t)dt$ $= \left[\frac{5}{8} \left(\frac{2t^5}{5} - \frac{t^6}{6} \right) \right]_0^{\frac{2}{5}} = \frac{5}{8} \times \left(\frac{64}{5} - \frac{64}{6} \right) = \frac{4}{3}$ $E(T^2) = \int_0^{\frac{2}{5}} t^5(2-t)dt$ $= \left[\frac{5}{8} \left(\frac{2t^6}{6} - \frac{t^7}{7} \right) \right]_0^{\frac{2}{5}} = \frac{5}{8} \times \left(\frac{128}{6} - \frac{128}{7} \right) = \frac{40}{21}$ $\text{Var}(T) = \frac{40}{21} - \left(\frac{4}{3} \right)^2 = \frac{120 - 112}{63} = \frac{8}{63}$	M1 A1 M1 M1 A1	<p>Integral for $E(T)$ including limits (which may appear later).</p> <p>Integral for $E(T^2)$ including limits (which may appear later).</p> <p>Convincingly shown. Beware printed answer.</p>	5
(iv)	$\bar{T} \sim N\left(\frac{4}{3}, \frac{8}{63n}\right)$	B1 B1 B1	<p>Normal distribution.</p> <p>Mean. ft c's $E(T)$.</p> <p>Correct variance.</p>	3

(v)	$n = 100, \bar{t} = \frac{145 \cdot 2}{100} = 1.452,$ $s_{n-1}^2 = \frac{223 \cdot 41 - 100 \times 1.452^2}{99} = 0.12707$	B1	Both mean and variance. Accept sd = 0.3565
	CI is given by $1.452 \pm \frac{1.96}{\sqrt{100}} \times \frac{0.3565}{\sqrt{100}} = 1.452 \pm 0.0698 = (1.382, 1.522)$	M1 B1 M1	ft c's $\bar{t} \pm .$ ft c's $s_{n-1}^2.$
	Since $E(T) (= 4/3)$ lies outside this interval it seems the model may not be appropriate.	A1	c.a.o. Must be expressed as an interval.
		E1	6

Q2	$Ca \sim N(60.2, 5.2^2)$ $Co \sim N(33.9, 6.3^2)$ $L \sim N(52.4, 4.9^2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$P(Co < 40) = P(Z < \frac{40 - 33.9}{6.3} = 0.9683)$ $= 0.8336$	M1 A1 A1	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	Want $P(L > Ca)$ i.e. $P(L - Ca > 0)$ $L - Ca \sim N(52.4 - 60.2 = -7.8, 4.9^2 + 5.2^2 = 51.05)$ $P(\text{this} > 0) = P(Z > \frac{0 - (-7.8)}{\sqrt{51.05}} = 1.0917)$ $= 1 - 0.8625 = 0.1375$	M1 B1 B1 A1	Allow $Ca - L$ provided subsequent work is consistent. Mean. Variance. Accept $sd = \sqrt{51.05} = 7.1449\dots$ c.a.o.	4
(iii)	Want $P(Ca_1 + Ca_2 + Ca_3 + Ca_4 > 225)$ $Ca_1 + \dots \sim N(60.2 + 60.2 + 60.2 + 60.2 = 240.8, 5.2^2 + 5.2^2 + 5.2^2 + 5.2^2 = 108.16)$ $P(\text{this} > 225) = P(Z > \frac{225 - 240.8}{\sqrt{108.16}} = -1.519)$ $= 0.9356$ Must assume that the weeks are independent of each other.	M1 B1 B1 A1 B1	Mean. Variance. Accept $sd = \sqrt{108.16} = 10.4$. c.a.o.	5
(iv)	$R \sim N(0.05 \times 60.2 + 0.1 \times 33.9 + 0.2 \times 52.4 = 16.88, 0.05^2 \times 5.2^2 + 0.1^2 \times 6.3^2 + 0.2^2 \times 4.9^2 = 1.4249)$ $P(R > 20) = P(Z > \frac{20 - 16.88}{\sqrt{1.4249}} = 2.613)$ $= 1 - 0.9955 = 0.0045$	M1 A1 M1 M1 A1 A1	Mean. For 0.05^2 etc. For $\times 5.2^2$ etc. Accept $sd = \sqrt{1.4249} = 1.1937$. c.a.o.	6
				18

Q3				
(a) (i)	$H_0 : \mu_D = 0$ $H_1 : \mu_D > 0$ Where μ_D is the (population) mean reduction in absenteeism. Must assume Normality of differences.	B1 B1 B1 B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H_1 , or $\mu_A - \mu_B$ etc provided adequately defined. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X} = \dots$ " or similar unless \bar{X} is clearly and explicitly stated to be a <u>population</u> mean. Hypotheses in words only must include "population". 4	
(ii)	Differences (reductions) (before – after) $1.7, 0.7, 0.6, -1.3, 0.1, -0.9, 0.6, -0.7, 0.4, 2.7, 0.9$ $\bar{x} = 0.4364, s_{n1} = 1.1518 (s_{n1}^2 = 1.3265)$ Test statistic is $\frac{0.4364 - 0}{\sqrt{1.1518}} = 1.256(56\dots)$ Refer to t_{10} . Upper 5% point is 1.812. $1.256 < 1.812, \therefore$ Result is not significant. Seems there has been no reduction in mean absenteeism.	B1 M1 A1 M1 A1 E1 E1	Allow "after – before" if consistent with alternatives above. Do not allow $s_n = 1.098 (s_n^2 = 1.205)$. Allow c's \bar{x} and/or s_{n1} . Allow alternative: $0 \pm (c's 1.812) \times \frac{1.1518}{\sqrt{11}} (= -0.6293, 0.6293)$ for subsequent comparison with \bar{x} . (Or $\bar{x} \pm (c's 1.812) \times \frac{1.1518}{\sqrt{11}} (= -0.1929, 1.0657)$ for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \bar{x}$ scores M1A0, but ft.	
			No ft from here if wrong. No ft from here if wrong. For alternative H_1 expect -1.812 unless it is clear that absolute values are being used. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	7

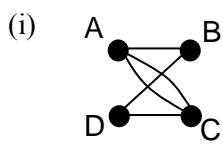
(b)	<p>For “days lost after” $\bar{x} = 4.6182, s_{n1} = 1.4851 (s_{n1}^2 = 2.2056)$</p> <p>CI is given by 4.6182 ± 2.228 $\times \frac{1.4851}{\sqrt{11}}$ $= 4.6182 \pm 0.9976 = (3.620(6), 5.615(8))$</p> <p>Assume Normality of population of “days lost after”. Since 3.5 lies outside the interval it seems that the target has not been achieved.</p>	B1 M1 B1 M1 A1 E1 E1	Do not allow $s_n = 1.4160 (s_n^2 = 2.0051)$. ft c's $\bar{x} \pm$. ft c's s_{n1} . c.a.o. Must be expressed as an interval. ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.	7
				18

Q4																																					
(i)	<table border="1"> <tr> <td>Obs</td><td>21</td><td>24</td><td>12</td><td>15</td><td>13</td><td>9</td><td>6</td></tr> <tr> <td>Exp</td><td>26.53</td><td>17.22</td><td>20.25</td><td>11.00</td><td>10.94</td><td>8.74</td><td>5.32</td></tr> </table> $\therefore X^2 = \frac{(21-26.53)^2}{26.53} + \text{etc}$ $= 1.1527 + 2.6695 + 3.3611 + 1.4545 + 0.3879$ $+ 0.0077 + 0.0869$ $= 9.1203$ <p>d.o.f. = 7 - 1 = 6 Refer to χ^2_6. Upper 5% point is 12.59 $9.1203 < 12.59 \therefore$ Result is not significant. Evidence suggests the model fits the data at the 5% level.</p>	Obs	21	24	12	15	13	9	6	Exp	26.53	17.22	20.25	11.00	10.94	8.74	5.32	M1 A1 M1 A1 A1 M1 A1 E1 E1	Probabilities $\times 100$. All Expected frequencies correct. At least 4 values correct. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	9																	
Obs	21	24	12	15	13	9	6																														
Exp	26.53	17.22	20.25	11.00	10.94	8.74	5.32																														
(ii)	<table border="1"> <thead> <tr> <th>Data</th><th>Diff = data - 124</th><th>Rank of diff </th></tr> </thead> <tbody> <tr><td>239</td><td>115</td><td>9</td></tr> <tr><td>77</td><td>-47</td><td>3</td></tr> <tr><td>179</td><td>55</td><td>4</td></tr> <tr><td>221</td><td>97</td><td>7</td></tr> <tr><td>100</td><td>-24</td><td>2</td></tr> <tr><td>312</td><td>188</td><td>10</td></tr> <tr><td>52</td><td>-72</td><td>5</td></tr> <tr><td>129</td><td>5</td><td>1</td></tr> <tr><td>236</td><td>112</td><td>8</td></tr> <tr><td>42</td><td>-82</td><td>6</td></tr> </tbody> </table> $W_- = 3 + 2 + 5 + 6 = 16$ <p>Refer to Wilcoxon single sample (/paired) tables for $n = 10$. Lower two-tail 10% point is 10. $16 > 10 \therefore$ Result is not significant.</p> <p>Seems there is no evidence against the median length being 124.</p>	Data	Diff = data - 124	Rank of diff	239	115	9	77	-47	3	179	55	4	221	97	7	100	-24	2	312	188	10	52	-72	5	129	5	1	236	112	8	42	-82	6	M1 M1 A1 B1 M1 M1A1 E1 E1	For differences. For ranks of difference . All correct. ft from here if ranks wrong. Or $W_+ = 9 + 4 + 7 + 10 + 1 + 8 = 39$ No ft from here if wrong. Or, if 39 used, upper point is 45. No ft from here if wrong. Or $39 < 45$. ft only c's test statistic. ft only c's test statistic.	9
Data	Diff = data - 124	Rank of diff																																			
239	115	9																																			
77	-47	3																																			
179	55	4																																			
221	97	7																																			
100	-24	2																																			
312	188	10																																			
52	-72	5																																			
129	5	1																																			
236	112	8																																			
42	-82	6																																			
				18																																	

Mark Scheme 4769
June 2007

1)	$f(x) = \frac{1}{\theta} \quad 0 \leq x \leq \theta$	B1		
(i)	$E[X] = \frac{\theta}{2}$ $E[2\bar{X}] = 2E[\bar{X}] = 2E[X] = \theta$ \therefore unbiased	M1 A1 E1	Write-down, or by symmetry, or by integration.	4
(ii)	$\sum x = 2.3 \quad \therefore \bar{x} = \frac{2.3}{5} = 0.46 \quad \therefore 2\bar{x} = 0.92$ But we know $\theta \geq 1$ \therefore estimator can give nonsense answers, i.e. essentially useless	B1 E1 E2	(E1, E1)	4
(iii)	$Y = \max\{X_i\}, g(y) = \frac{ny^{n-1}}{\theta^n} \quad 0 \leq y \leq \theta$ $MSE(kY) = E[(kY - \theta)^2] =$ $E[k^2Y^2 - 2k\theta Y + \theta^2] =$ $k^2E[Y^2] - 2k\theta E[Y] + \theta^2$ $\frac{dMSE}{dk} =$ $2kE[Y^2] - 2\theta E[Y] = 0$ for $k = \frac{\theta E[Y]}{E[Y^2]}$ $\frac{d^2MSE}{dk^2} = 2E[Y^2] > 0 \quad \therefore$ this is a minimum $E[Y] = \int_0^\theta \frac{ny^n}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+1}}{n+1} = \frac{n\theta}{n+1}$ $E[Y^2] = \int_0^\theta \frac{ny^{n+1}}{\theta^n} dy = \frac{n}{\theta^n} \frac{\theta^{n+2}}{n+2} = \frac{n\theta^2}{n+2}$ \therefore minimising $k = \theta \frac{n\theta}{n+1} \frac{n+2}{n\theta^2} = \frac{n+2}{n+1}$	M1 1 M1 M1 A1 M1 M1 A1 M1 M1 A1 M1 A1 M1 A1	BEWARE PRINTED ANSWER	12
(iv)	With this k , kY is always greater than the sample maximum So it does not suffer from the disadvantage in part (ii)	E2 E2	(E1 E1) (E1 E1)	4

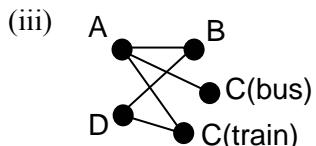
2(i)	$\begin{aligned} G(t) &= E[t^X] = \sum_{x=0}^n \binom{n}{x} (pt)^x (1-p)^{n-x} \\ &= [(1-p) + pt]^n \\ &= (q + pt)^n \end{aligned}$	M1 2 1	Available as B2 for write-down or as 1+1 for algebra	4
(ii)	$\begin{aligned} \mu &= G'(1) & G'(t) &= np(q + pt)^{n-1} \\ G'(1) &= np \times 1 = np \\ \sigma^2 &= G''(1) + \mu - \mu^2 \\ G''(t) &= n(n-1)p^2(q + pt)^{n-2} \\ G''(1) &= n(n-1)p^2 \\ \therefore \sigma^2 &= n^2 p^2 - np^2 + np - n^2 p^2 \\ &= -np^2 + np = npq \end{aligned}$	1 1 1 1 1 M1 1		6
(iii)	$Z = \frac{X - \mu}{\sigma} \quad \text{Mean 0, Variance 1}$	B1	For <u>BOTH</u>	1
(iv)	$\begin{aligned} M(\theta) &= G(e^\theta) = (q + pe^\theta)^n \\ Z &= aX + b \text{ with:} \\ a &= \frac{1}{\sigma} = \frac{1}{\sqrt{npq}} \quad \text{and} \quad b = -\frac{\mu}{\sigma} = -\sqrt{\frac{np}{q}} \\ M_Z(\theta) &= e^{b\theta} M_X(a\theta) \\ \therefore M_Z(\theta) &= e^{-\sqrt{\frac{np}{q}}\theta} \left(q + pe^{\frac{1}{\sqrt{npq}}\theta} \right)^n \\ &= \frac{\left(qe^{-\frac{p\theta}{\sqrt{npq}}} + pe^{\frac{1-p}{\sqrt{npq}}\theta} \right)^n}{\dots} \end{aligned}$	1 M1 1 1 1 1	BEWARE PRINTED ANSWER	5
(v)	$\begin{aligned} M_Z(\theta) &= \left(q - \frac{qp\theta}{\sqrt{npq}} + \frac{qp^2\theta^2}{2npq} + \right. \\ &\quad \text{terms in } n^{-\frac{3}{2}}, n^{-2}, \dots + \\ &\quad \left. p + \frac{pq\theta}{\sqrt{npq}} + \frac{pq^2\theta^2}{2npq} + \dots \right)^n = \\ &\quad \left(1 + \frac{\theta^2}{2n} + \dots \right)^n \rightarrow \\ &\quad e^{\frac{\theta^2}{2}} \end{aligned}$	M1 M1 1 1	For expansion of exponential terms For indication that these can be neglected as $n \rightarrow \infty$. Use of result given in question	4


(vi)	N(0,1) Because $e^{\theta/2}$ is the mgf of N(0,1) and the relationship between distributions and their mgfs is unique	1 E1 E1		3
(vii)	“Unstandardising”, N(μ, σ^2) ie N(np, npq)	1	Parameters need to be given.	1

3(i)	$H_0: \mu_A = \mu_B$ $H_1: \mu_A \neq \mu_B$ <p>Where μ_A, μ_B are the population means</p> <p>Test statistic</p> $\frac{26.4 - 25.38}{\sqrt{\frac{2.45}{7} + \frac{1.40}{5}}} =$ $\frac{1.02}{\sqrt{0.63}} = 0.7937$ <p>Refer to $N(0,1)$ Double-tailed 5% point is 1.96 Not significant No evidence that the population means differ</p>	1 1 M1 M1 M1 A1 1 1 1 1	Do NOT allow $\bar{X} = \bar{Y}$ or similar Accept absence of "population" if correct notation μ is used. Hypotheses stated verbally <u>must</u> include the word "population". Numerator Denominator two separate terms correct No FT if wrong No FT if wrong	10
(ii)	CI (for $\mu_A - \mu_B$) is $1.02 \pm$ $1.645 \times$ $0.7937 =$ $1.02 \pm 1.3056 =$ $(-0.2856, 2.3256)$	M1 B1 M1 A1 cao	Zero out of 4 if not $N(0,1)$	4
(iii)	H_0 is accepted if $-1.96 < \text{test statistic} < 1.96$ i.e. if $-1.96 < \frac{\bar{x} - \bar{y}}{0.7937} < 1.96$ i.e. if $-1.556 < \bar{x} - \bar{y} < 1.556$ In fact, $\bar{X} - \bar{Y} \sim N(2, 0.7937^2)$ So we want $P(-1.556 < N(2, 0.7937^2) < 1.556) =$ $P\left(\frac{-1.556 - 2}{0.7937} < N(0,1) < \frac{1.556 - 2}{0.7937}\right) =$ $P(-4.48 < N(0,1) < -0.5594) = 0.2879$	M1 M1 A1 M1 M1 M1 M1 A1 cao	SC1 Same wrong test can get M1,M1,A0. SC2 Use of 1.645 gets 2 out of 3. BEWARE PRINTED ANSWER Standardising	7
(iv)	Wilcoxon would give protection if assumption of Normality is wrong. Wilcoxon could not really be applied if underlying variances are indeed different. Wilcoxon would be less powerful (worse Type II error behaviour) with such small samples if Normality is correct.	E1 E1 E1		3

4 (i)	There might be some consistent source of plot-to-plot variation that has inflated the residual and which the design has failed to cater for.	E2	E1 – Some reference to extra variation. E1 – Some indication of a reason.	2															
(ii)	Variation between the fertilisers should be compared with experimental error. If the residual is inflated so that it measures more than experimental error, the comparison of between - fertilisers variation with it is less likely to reach significance.	E1 E2	(E1, E1)	3															
(iii)	Randomised blocks <table border="1" data-bbox="244 631 774 804"><tr><td>C</td><td>.</td><td>.</td></tr><tr><td>B</td><td>.</td><td>.</td></tr><tr><td>A</td><td>.</td><td>.</td></tr><tr><td>D</td><td>.</td><td>.</td></tr><tr><td>E</td><td>.</td><td>.</td></tr></table> SPECIAL CASE: Latin Square $\frac{2}{4}$ (1, E1)	C	.	.	B	.	.	A	.	.	D	.	.	E	.	.	1 E1 E1	Blocks (strips) clearly correctly oriented w.r.t. fertiliser gradient. All fertilisers appear in a block. Different (random) arrangements in the blocks.	4
C	.	.																	
B	.	.																	
A	.	.																	
D	.	.																	
E	.	.																	
(iv)	Totals are: 95.0 123.2 86.8 130.2 67.4 (each from sample of size 4) Grand total 502.6 "Correction factor" $CF = \frac{502.6^2}{20} = 12630.338$ Total SS = $13610.22 - CF = 979.882$ Between fertilisers SS = $\frac{95.0^2}{4} + \dots + \frac{67.4^2}{4} - CF = 13308.07 - CF = 677.732$ Residual SS (by subtraction) = $979.882 - 677.732 = 302.15$ Source of variation SS df MS MS Ratio	M1 M1 A1 M1 M1 1	For correct method for any two If each calculated SS is correct																
(v)	Between fertiliser 677.732 4 169.433 → 8.41 Residual 302.15 15 20.143 Total 979.882 19 Refer to $F_{4,15}$ -upper 5% point is 3.06 Significant - seems effects of fertilisers are not all the same	1 1 1 1	No FT if wrong No FT if wrong	12															
(vii)	Independent $N(0, \sigma^2 [\text{constant}])$	1 1 1		3															

Mark Scheme 4771
June 2007


1.

M1 4 nodes and 5 arcs
A1

(ii) No. Two arcs AC.

M1 A1

M1 5 nodes and 5 arcs
A1

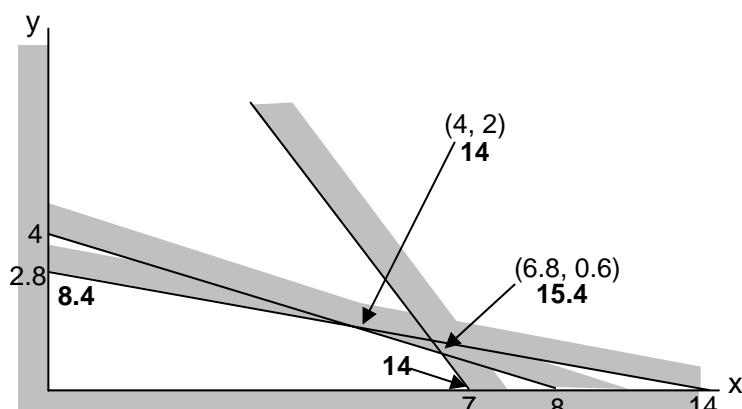
(iv) No. ABDC(train)A is a cycle.

M1 A1

2.

(i) Rucksack 1: 14; 6
Rucksack 2: 11; 9
final item will not fit.

M1 6 must be in R1
A1
B1


(ii) Order: 14, 11, 9, 6, 6
Rucksack 1: 14; 11
Rucksack 2: 9; 6; 6

B1 ordering
M1 11 in R1
A1

(iii) Rucksack 1: 14; 9
Rucksack 2: 11; 6; 6
e.g. weights.

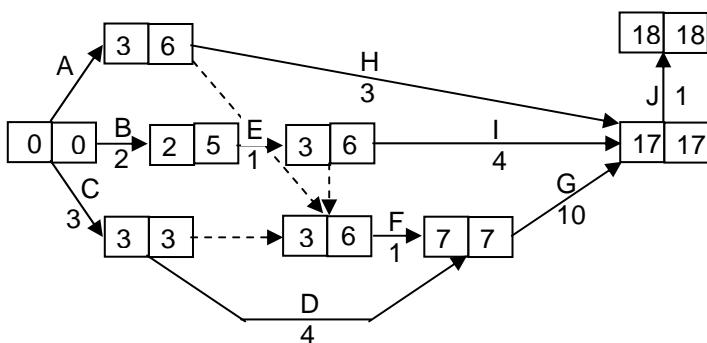
B1
B1

3.

B1 axes scaled & used lines
M1
A1
B1 shading
M1 two intersection points
A1 solution
A1 (or by using the objective gradient to identify the optimal point)

4.

(i)


Activity		Duration (minutes)	Immediate predecessors
A	Rig foresail	3	—
B	Lower sprayhood	2	—
C	Start engine	3	—
D	Pump out bilges	4	C
E	Rig mainsail	1	B
F	Cast off mooring ropes	1	A, C, E
G	Motor out of harbour	10	D, F
H	Raise foresail	3	A
I	Raise mainsail	4	E
J	Stop engine and start sailing	1	G, H, I

B1 A, B, C,
D, E, H & I

B1 F

B1 G and J

(ii)

M1 A1 forward pass

M1 A1 backward pass

Critical activities: C; D; G; J
Project duration: 18 minutes

B1
B1

(iii) H and I

B1

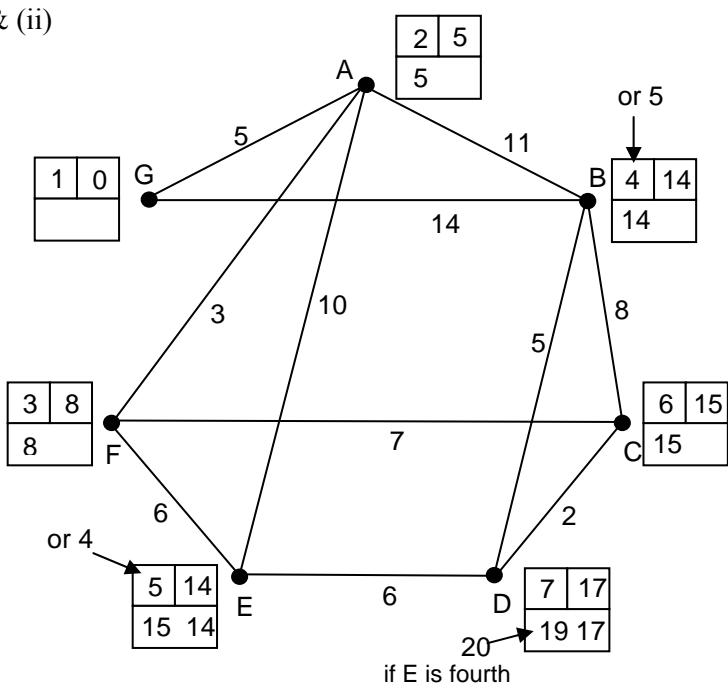
(iv) 25 mins

B1

Must do A, B, E, C, F, D (in appropriate order) then H and I with G, then J.

B1

(v) 18 mins


B1

e.g. Colin does C, D
Crew does A, B, E, F
Thence G et al

B1
B1
B1

5.

(i) & (ii)

M1
 A1 arcs
 A1 arc weights

M1 Dijkstra
 A1 labels
 A1 order of labelling
 A2 working values

Route: G A F C D Weight: 17

B1 B1

(iii) Route: G B C F E D or G B A E D Weight: 6
 Any capacitated route application.

B1 B1
 B1

(iv) Compute $\min(\text{label}, \text{arc})$ and update working value if result is
 larger than current working value.
 Label unlabelled vertex with largest working value.

B1 B1
 B1

6.

(i)(a) e.g.	Dry: 00 – 39 Wet: 40 – 69 Snowy: 70 – 99	M1 A1	proportions efficient
(b) e.g.	Dry: 00 – 19 Wet: 20 – 69 Snowy: 70 – 99	M1 A1	proportions efficient
(c) e.g.	Dry: 00 – 27 Wet: 28 – 55 Snowy: 56 – 97 Reject: 98 & 99	M1 A1 A1	reject some proportions reject 2
(ii)	D (today) → D → S → S → W → S → D → D	M1 A1 A1 A1	applying their rules sometimes dry rules wet rules snowy rules
(iii)	3/7 (or 4/8)	B1	
(iv)	a (much) longer simulation run, with a "settling in" period ignored.	B1 B1	
(v)	Defining days as dry, wet or snowy is problematical. Assuming that the transition probabilities remain constant. Weather depends on more than just previous day's weather	B1 B1	

Mark Scheme 4772
June 2007

1.

(a)(i) He should salute it.

Since all objects which don't move are painted any unpainted object must move, and anything that moves must be saluted.

B1

M1 A1

(ii) We do not know.

We do not know about painted objects. Some will have been painted because they do not move, but there may be some objects which move which are painted. We do not know whether this object moves or not.

B1

M1 A1

(b)

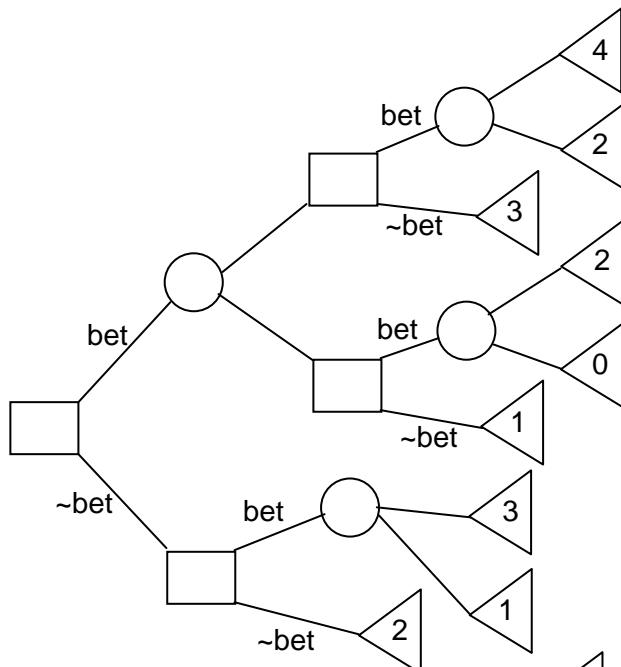
((m	\Rightarrow	s)	\wedge	$(\sim$	m	\Rightarrow	p))	\wedge	\sim	p	\Rightarrow	s
1	1	1	1	0	1	1	1	0	0	1	1	1
1	1	1	1	0	1	1	0	1	1	0	1	1
1	0	0	0	0	1	1	1	0	0	1	1	0
1	0	0	0	0	1	1	0	0	1	0	1	0
0	1	1	1	1	0	1	1	0	0	1	1	1
0	1	1	0	1	0	0	0	0	1	0	1	1
0	1	0	1	1	0	1	1	0	0	1	1	0
0	1	0	0	1	0	0	0	0	1	0	1	0

$$(c) ((m \Rightarrow s) \wedge (\sim m \Rightarrow p)) \wedge \sim p$$

$$\Leftrightarrow (\sim p \wedge (\sim m \Rightarrow p)) \wedge (m \Rightarrow s)$$

$$\Leftrightarrow (\sim p \wedge (\sim p \Rightarrow m)) \wedge (m \Rightarrow s) \text{ (contrapositive)}$$

$$\Rightarrow m \wedge (m \Rightarrow s) \text{ (modus ponens)}$$


$$\Rightarrow s \text{ (modus ponens)}$$

M1 8 rows
 A1 $m \Rightarrow s$
 A1 $\sim m \Rightarrow p$
 A1 first \wedge
 A1 second \wedge
 A1 result

M1
 A1 reordering
 A1 contrapositive
 A1 modus ponens

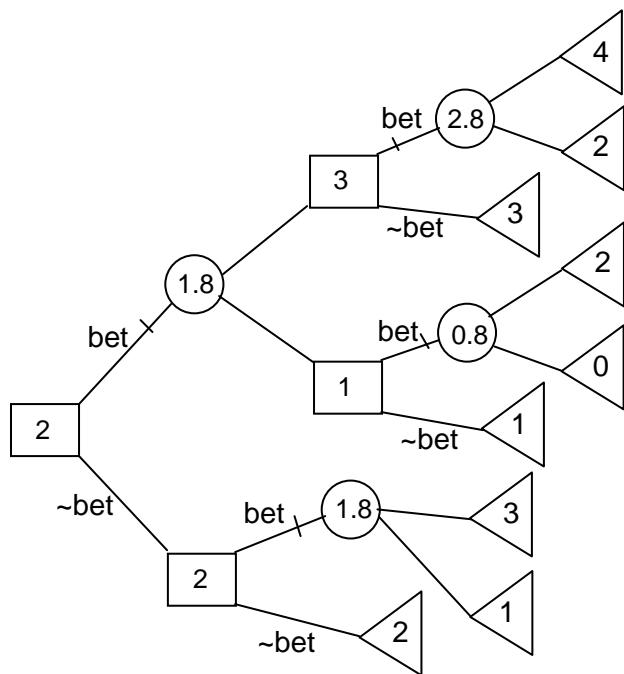
2.

(i)

M1
 A1 first D box
 A1 D box on \sim bet branch
 A1 P box on bet branch
 A1 D boxes following P box
 A1 remaining P boxes

M1
 A1 outcomes

(ii)(A)


M1
 A1

EMV = 2.4 by betting and betting again

B1 course of action

2(cont).

(ii)(B)

EMV = 2 by not betting

A1

B1 course of action

(iii) $2^{0.5} \times 0.4 = 0.566 < 1$, but $2^{1.5} \times 0.4 = 1.131 > 1$

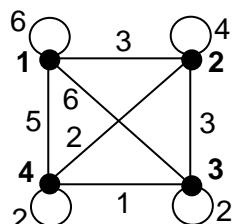
M1 A1 A1

3.

(i)

	1	2	3	4
1	6	3	6	5
2	3	4	3	2
3	6	3	2	1
4	5	2	1	2

	1	2	3	4
1	2	2	2	2
2	1	4	4	4
3	4	4	4	4
4	2	2	3	3


M1 distances
 A2 6 changes
 (-1 each error)
 M1 a correct update
 A1 1 to 3 route (2)
 A2 rest
 (-1 each error)

(ii) Distance from row 1 col 3 of distance matrix (6)

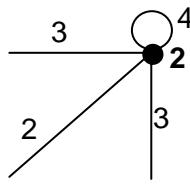
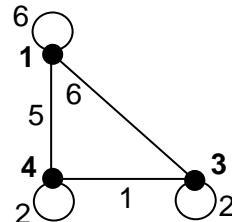
Route from row 1 col 3 of route matrix (2), then from row 2 col 3 (4), then from row 4 col 3 (3). So 1 2 4 3.

B1 B1
 B1
 B1

(iii)

B1 whether or not loops included

(iv)



1 2 4 3 1

length = 12

1 2 4 3 4 2 1

B1
 B1
 B1

(v)

M1
 A1 MST
 A1 add back

MST has length 6, so lower bound = $6 + 2 + 3 = 11$

(vi)

TSP length is either 11 or 12

B1 11 to 12
 B1 either 11 or 12

4.

(i)

P	x	y	s ₁	s ₂	RHS
1	-1	-1	0	0	0
0	2	1	1	0	1250
0	2	-1	0	1	0
1	1	0	1	0	1250
0	2	1	1	0	1250
0	4	0	1	1	1250

1250 m² of paving and no deckingM1 initial tableau
A1M1 pivot
A2 (-1 each error)

B1 interpretation

(ii)

2-phase

A	P	x	y	s ₁	s ₂	s ₃	a	RHS
1	0	1	0	0	0	-1	0	200
0	1	1	0	1	0	0	0	1250
0	0	2	1	1	0	0	0	1250
0	0	4	0	1	1	0	0	1250
0	0	1	0	0	0	-1	1	200
1	0	0	0	0	0	0	-1	0
0	1	0	0	1	0	1	-1	1050
0	0	0	1	1	0	2	-2	850
0	0	0	0	1	1	4	-4	450
0	0	1	0	0	0	-1	1	200

Big-M alternative

P	x	y	s ₁	s ₂	s ₃	a	RHS
1	1-M	0	1	0	M	0	1250-2M
0	2	1	1	0	0	0	1250
0	4	0	1	1	0	0	1250
0	1	0	0	0	-1	1	200
1	0	0	1	0	1	M-1	1050
0	0	1	1	0	2	-2	850
0	0	0	1	1	4	-4	450
0	1	0	0	0	-1	1	200

850 m² of paving and 200 m² of decking.

M1 A1 new objective

B1 surplus

B1 artificial

B1 new constraint

M1

A2

M1 A1 new objective

B1 surplus

B1 artificial

B1 new constraint

M1

A2

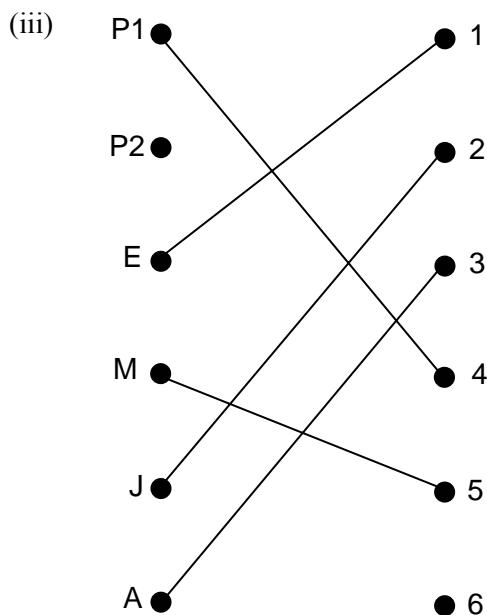
A1 interpretation

(iii)	<table border="1"> <thead> <tr> <th>C</th><th>x</th><th>y</th><th>s₁</th><th>s₂</th><th>s₃</th><th>s₄</th><th>RHS</th></tr> </thead> <tbody> <tr><td>1</td><td>0</td><td>0</td><td>1.25</td><td>0</td><td>1.75</td><td>0</td><td>1212.5</td></tr> <tr><td>0</td><td>0</td><td>1</td><td>1</td><td>0</td><td>2</td><td>0</td><td>850</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>1</td><td>4</td><td>0</td><td>450</td></tr> <tr><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>-1</td><td>0</td><td>200</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>50</td></tr> <tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr> <tr><td>1</td><td>0</td><td>0</td><td>-0.5</td><td>0</td><td>0</td><td>-1.75</td><td>1125</td></tr> <tr><td>0</td><td>0</td><td>1</td><td>-1</td><td>0</td><td>0</td><td>-2</td><td>750</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>-3</td><td>1</td><td>0</td><td>-4</td><td>250</td></tr> <tr><td>0</td><td>1</td><td>0</td><td>1</td><td>0</td><td>0</td><td>1</td><td>250</td></tr> <tr><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>1</td><td>1</td><td>50</td></tr> </tbody> </table>	C	x	y	s ₁	s ₂	s ₃	s ₄	RHS	1	0	0	1.25	0	1.75	0	1212.5	0	0	1	1	0	2	0	850	0	0	0	1	1	4	0	450	0	1	0	0	0	-1	0	200	0	0	0	1	0	1	1	50									1	0	0	-0.5	0	0	-1.75	1125	0	0	1	-1	0	0	-2	750	0	0	0	-3	1	0	-4	250	0	1	0	1	0	0	1	250	0	0	0	1	0	1	1	50	B1	new objective
C	x	y	s ₁	s ₂	s ₃	s ₄	RHS																																																																																												
1	0	0	1.25	0	1.75	0	1212.5																																																																																												
0	0	1	1	0	2	0	850																																																																																												
0	0	0	1	1	4	0	450																																																																																												
0	1	0	0	0	-1	0	200																																																																																												
0	0	0	1	0	1	1	50																																																																																												
1	0	0	-0.5	0	0	-1.75	1125																																																																																												
0	0	1	-1	0	0	-2	750																																																																																												
0	0	0	-3	1	0	-4	250																																																																																												
0	1	0	1	0	0	1	250																																																																																												
0	0	0	1	0	1	1	50																																																																																												
								B1	new constraint																																																																																										
								M1																																																																																											
								A1																																																																																											
								A1	interpretation																																																																																										
	750 m ² of paving and 250 m ² of decking at an annual cost of £1125																																																																																																		

Mark Scheme 4773
June 2007

1.

(i) $u_{n+2} = u_{n+1} + pu_n$	M1 A1		
(ii) Auxiliary equation is $\lambda^2 - \lambda - 0.11 = 0$	M1 A1 M1 gen homogeneous A1 with 1.1 & -0.1 B1 case 1($u_0 = 20$) +case 2($u_1 = 25$) M1 simultaneous A1 22.5 and -2.5 B1 final answer		
Solution is $u_n = 22.5(1.1)^n - 2.5(-0.1)^n$			
(iii)			
Rec rel	Formula	Int RR	
20.0000	0 20.0000	20	
25.0000	1 25.0000	25	
27.2000	2 27.2000	27	B1 recurrence relation
29.9500	3 29.9500	30	
32.9420	4 32.9420	33	B1 checking formula
36.2365	5 36.2365	36	
39.8601	6 39.8601	40	B1 discretising
43.8461	7 43.8461	44	
48.2307	8 48.2307	48	
53.0538	9 53.0538	53	
58.3592	10 58.3592	58	
64.1951	11 64.1951	64	
70.6146	12 70.6146	70	
77.6761	13 77.6761	77	
85.4437	14 85.4437	85	
93.9881	15 93.9881	93	
103.3869	16 103.3869	102	
113.7256	17 113.7256	112	
125.0981	18 125.0981	123	
137.6080	19 137.6080	135	
151.3687	20 151.3687	149	
Formula: =INT(H3+B\$2*H2+0.5)	B1		
(iv) $v_{n+2} = (1-r)v_{n+1} + pv_n$	M1 A1		


1. (cont)

(v)	Pruning	
	$r = 0.026$	20
		25
		27
		29
		31
		33
		36
		39
		42
		45
		48
		52
		56
		60
		65
		70
		75
		81
		87
		94
		101
	$r = 0.025$ to 0.027	B1
		B1

2.

M1
A1

(ii) e.g. locations 3, 6 and 7 for only two trees, so one must be rejected. Therefore other 6 locations needed.

B1
B1

B1

(iv) e.g. P2 – 5 – M – 6

M1
A1

P1	P2	E	M	J	A
4	5	1	6	2	3

A1

2 (cont).

(v)	Max		
	$P11+P14+P15+P21+P24+P25+E1+E2+M3+M5+M6$ $+J2+J4+A3+A6+A7$	M1	objective
st	$P11+P14+P15 \leq 1$ $P21+P24+P25 \leq 1$ $E1+E2 \leq 1$ $M3+M5+M6 \leq 1$ $J2+J4 \leq 1$ $A3+A6+A7 \leq 1$ $P11+P21+E1 \leq 1$ $E2+J2 \leq 1$ $M3+A3 \leq 1$ $P14+P24+J4 \leq 1$ $P15+P25+M5 \leq 1$ $M6+A6 \leq 1$ $A7 \leq 1$	A1	
	End	M1	tree constraints (-1 each error)
	LP OPTIMUM FOUND AT STEP 13 OBJECTIVE FUNCTION VALUE 1) 6.000000	A2	location constraints (-1 each error)
	VARIABLE VALUE REDUCED COST	B1	running
	P11 0.000000 0.000000		
	P14 0.000000 0.000000		
	P15 1.000000 0.000000		
	P21 0.000000 0.000000		
	P24 1.000000 0.000000		
	P25 0.000000 0.000000		
	E1 1.000000 0.000000		
	E2 0.000000 0.000000		
	M3 0.000000 0.000000		
	M5 0.000000 1.000000		
	M6 1.000000 0.000000		
	J2 1.000000 0.000000		
	J4 0.000000 0.000000		
	A3 0.000000 0.000000		
	A6 0.000000 0.000000		
	A7 1.000000 0.000000		
	P1 P2 E M J A	B1	interpretation
	5 4 1 6 2 7		

3.

(i)	e.g. C2 C3 C5 C7 C9 C11	M1 A1
(ii)		
Min	$C1+C2+C3+C4+C5+C6+C7+C8+C9+C10+C11+C12$	M1 objective
st	$C1+C2+C3+C4 \geq 1$	A1
	$C4+C5+C6 \geq 1$	
	$C6+C7+C8+C9+C10 \geq 1$	M1
	$C1+C10+C11 \geq 1$	A5
	$C2 \geq 1$	
	$C3+C8+C12 \geq 1$	
	$C5+C12 \geq 1$	
	$C11 \geq 1$	
	$C9 \geq 1$	
	$C7 \geq 1$	
end		
(iii)		
LP OPTIMUM FOUND AT STEP	7	B1 running
OBJECTIVE FUNCTION VALUE		
1)	6.000000	
VARIABLE	VALUE	REDUCED COST
C1	0.000000	0.000000
C2	1.000000	0.000000
C3	0.000000	1.000000
C4	1.000000	0.000000
C5	0.000000	0.000000
C6	0.000000	0.000000
C7	1.000000	0.000000
C8	0.000000	1.000000
C9	1.000000	0.000000
C10	0.000000	0.000000
C11	1.000000	0.000000
C12	1.000000	0.000000
Use locations 2, 4, 7, 9, 11 and 12.		B1
6 cameras needed		B1
(iv)	New objective: $5C1+2C2+3C3+5C4+4C5+1.5C6+2C7+2C8+5C9$ $+3C10+4C11+7C12$	M1 A1
(v)	Running Use locations 2, 5, 7, 8, 9 and 11. Cost = £19000	B1 B1 B1

4.

(i) e.g.			
1 0	=LOOKUP(RAND(),B1:B3,A1:A3)	B1	rand
2 0.1		B1	probs
3 0.4		B1	outcomes
(ii) =LOOKUP(RAND(),\$B\$3:\$B\$5,\$A\$3:\$A\$5)		M1	formula
+ accumulation		A1	repeats
e.g.		B1	accumulation
2 2			
3 5			
2 7			
3 10			
2 12			
3 15			
3 18			
3 21			
3 24			
3 27			
2 29			
2 31			
3 34			
2 36			
2 38			
3 41			
(iii) e.g.			
day 14	day 15	day16	no. of replacements
0 0	1	5	M1 first run
1 0	0	6	A1
0 0	1	5	
0 0	1	5	B1 repetitions
1 0	0	6	
0 1	0	5	
0 1	0	6	
1 0	1	5	
0 1	0	5	
1 0	1	6	
0.4 0.3	0.5	5.4	B1 probabilities
			expected no. of
			replacements

Q4 (cont)

(iv) e.g.			
		Replacements	
		day 1	day 2
1 0	1 1	2	6
2 0.1	1 2	0	7
	2 4	0	7
	2 6	1	6
	2 8	1	6
	2 10	0	7
	2 12	1	6
	2 14	0	7
	1 15	0	7
	2 17	1	6
	2 19		
	2 21	0.6	6.5
5.4*(50+25) = 405 versus			B1
0.6*(50+25) + 6.5*(30+25) = 402.5			B1
(v) More repetitions.			B1

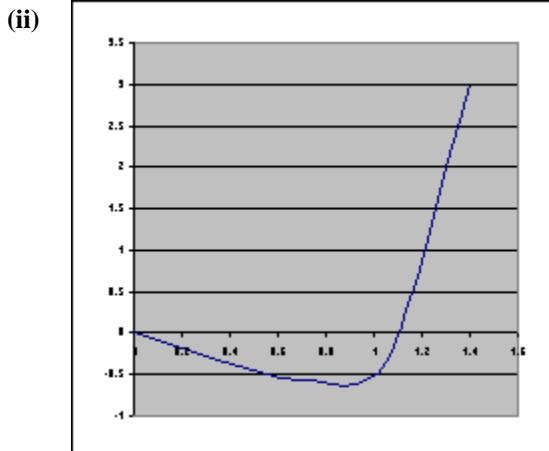
Mark Scheme 4776
June 2007

1	x	f(x)				
	1	2.414214	< 3			
	1.4	3.509193	> 3	change of sign hence root in (1, 1.4)		[M1A1]
	1.2	2.92324	< 3	root in (1.2, 1.4)	est 1.3	mpe 0.1
	1.3	3.206575	> 3	root in (1.2, 1.3)	est 1.25	mpe 0.05
	1.25	3.0625	> 3	root in (1.2, 1.25)	est 1.225	mpe 0.025
						[M1A1A1]
						mpe [A1]
	mpe reduces by a factor of 2, 4, 8, ...					
	Better than a factor of 5 after 3 more iterations					
						[M1A1]
						[TOTAL 8]
2	x	1/(1+x^4)		values:		[A1]
	0	1	M =	0.498054		[A1]
	0.25	0.996109	T =	0.485294		[A1]
	0.5	0.941176	S = (2M + T) / 3 =	0.493801		[M1]
	h	S	ΔS			
	0.5	0.493801				
	0.25	0.493952	0.000151	/ one term enough		[M1]
	Extrapolating: $0.493952 + 0.000151 (1/16 + 1/16^2 + \dots) = 0.493962$					
	0.49396 appears reliable. (Accept 0.493962)					
						[A1]
						[TOTAL 8]

3	Cosine rule:	5.204972	[M1A1]
	Approx formula:	5.205228	[A1]
	Absolute error:	0.000255	[B1]
	Relative error:	0.000049	[B1]
			[TOTAL 5]
4(i)	r represents the relative error in X		[E1]
(ii)	$X^n = x^n(1 + r)^n \approx x^n(1 + nr)$ for small r hence relative error is nr		[A1E1]
(iii)	pi = 3.141593 22/7 = 3.142857	(abs error: 0.001264) rel error: 0.000402	[M1] [A1]
	approx relative error in π^2 (multiply by 2):	0.000805	(0.0008)
	approx relative error in $\sqrt{\pi}$ (multiply by 0.5):	0.000201	(0.0002)
			[M1M1A1]
			[TOTAL 8]

5	x	f(x)		
	-1	3	$f(x) = 3 x (x-4) / (-1)(-5) +$	[M1A1]
	0	2	$2 (x+1)(x-4) / (1)(-4) +$	[A1]
	4	9	$9 (x+1) x / (5)(4)$	[A1]
			$f(x) = 0.55 x^2 - 0.45 x + 2$	[A1]
			$f'(x) = 1.1 x - 0.45$	[B1]
			Hence minimum at $x = 0.45 / 1.1 = 0.41$	[A1]
				[TOTAL 7]

4776


Mark Scheme

June 2007

6(i) Sketch showing curve, root, initial estimate, tangent, intersection of tangent with x-axis as improved estimate

[E1E1E1]

[subtotal 3]

Sketch showing root, α

[G2]

E.g. starting values just to the left of the root can produce an x_1 that is the wrong side of the asymptote

[M1]

E.g. starting values further left can converge to zero.

[M1]

[E1]

[subtotal 6]

(iii) Convincing algebra to obtain the N-R formula

[M1A1]

r	0	1	2	3	4
xr	1.2	1.169346	1.165609	1.165561	1.165561
root is 1.1656 to 4 dp					

[M1A1A1]

[A1]

differences from root -0.03065 -0.00374 -4.8E-05 Accept diffs of successive terms

ratio of differences 0.1219 0.012877 [M1A1]

ratio of differences is decreasing (by a large factor), so faster than first order [E1]

[subtotal 9]

[TOTAL 18]

7

(i)

x	g(x)	Δg	$\Delta^2 g$
1	2.87		
2	4.73	1.86	
3	6.23	1.50	-0.36
4	7.36	1.13	-0.37
5	8.05	0.69	-0.44

[M1A1A1]

Not quadratic [E1]

Because second differences not constant [E1]

[subtotal 5]

x	g(x)	Δg	$\Delta^2 g$
1	2.87		
3	6.23	3.36	
5	8.05	1.82	-1.54

[B1]

 $Q(x) = 2.87 + 3.36(x - 1)/2 - 1.54(x - 1)(x - 3)/8$ [M1A1A1A1] $= 0.6125 + 2.45x - 0.1925x^2$ [A1A1A1]

[subtotal 8]

(iii)

x	Q(x)	g(x)	error	rel error
2	4.7425	4.73	0.0125	0.002643
4	7.3325	7.36	-0.0275	-0.00374

Q: [A1A1]

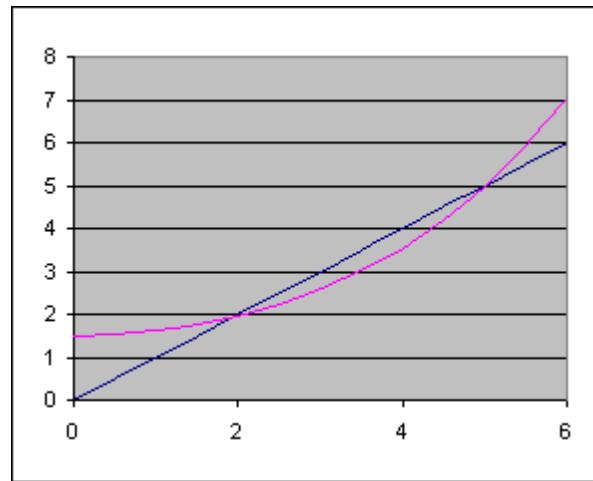
errors: [A1]

rel errors: [M1A1]

[subtotal 5]

[TOTAL 18]

4776


Mark Scheme

June 2007

Mark Scheme 4777
June 2007

1(i) Convincing algebra to $k = (x_2 - x_1)/(x_1 - x_0)$ [M1A1]
 Convincing algebra to $\alpha = (x_2 - k x_1)/(1 - k)$ or equivalent [M1A1A1]
 [subtotal 5]

(ii)	x	y=x	y=f(x)
	0	0	1.5
	0.5	0.5	1.527842
	1	1	1.612144
	1.5	1.5	1.755252
	2	2	1.961151
	2.5	2.5	2.235574
	3	3	2.586161
	3.5	3.5	3.022674
	4	4	3.557265
	4.5	4.5	4.204819
	5	5	4.983366
	5.5	5.5	5.914581
	6	6	7.024391

[G2]

converges	2	diverges	4.5	5	5.5	set up	
slowly	1.961151	from	4.204819	4.983366	5.914581	iteration	[M1A1]
to	1.942783	root	3.807921	4.95514	6.820878		
root	1.934241	near	3.339412	4.90763	9.3175	near 2	[A1]
near	1.9303	5	2.872419	4.828739	21.8726		
2	1.928489		2.488967	4.70068	1466.344	near 5	[A1A1]
	1.927657		2.228729	4.500432	1.9E+212	(theoretical arguments involving f'acceptable)	
	1.927276		2.07777	4.205432	#NUM!	involving f'acceptable)	
							[subtotal 7]

(iii)	x0	x1	x2	k	new x0	k	[M1A1]
	2	1.961151	1.942783	0.472807	1.92631	est of root	[M1A1]
	1.92631	1.926659	1.926818	0.458143	1.926953	use as x0	[M1]
	1.926953	1.926953	1.926953	0.45827	1.926953 =alpha	iterate	[M1A1]

	x0	x1	x2	k	new x0	alpha	[A1]
	5	4.983366	4.95514	1.696813	5.023872		
	5.023872	5.024167	5.024673	1.71656	5.023461		
	5.023461	5.023461	5.023461	1.716217	5.023461 = beta	beta	[A1]

	x0	x1	x2	k	new x0	range	
	4.6	4.349412	3.996895	1.406756	5.216066		
	5.216066	5.365628	5.647933	1.887551	5.047555	4.6 to 5.7	[M1A1A1]
	5.047555	5.064991	5.095267	1.73646	5.02388		
	5.02388	5.024181	5.024697	1.716567	5.023461		
	5.023461	5.023461	5.023461	1.716217	5.023461		

[subtotal 12]

[TOTAL 24]

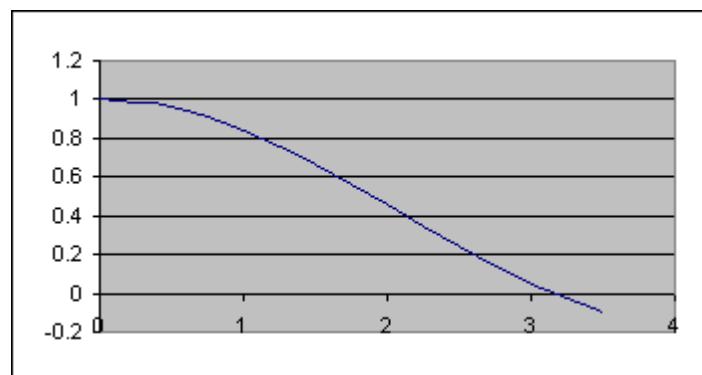
2 (i) Substitute $f(x) = 1, x^2, x^4, x^6$ into the integration formula [M1M1M1M1]

Obtain $a + b = h$ [A1]

$$a\alpha^2 + b\beta^2 = h^3/3$$
 [A1]

$$a\alpha^4 + b\beta^4 = h^5/5$$
 [A1]

$$(a\alpha^6 + b\beta^6 = h^7/7)$$


[subtotal 7]

(ii) E.g.

x	0.1	0.01	0.001
$\sin(x) / x$	0.998334	0.999983	1

 [B1]

(ii)	x	$\sin(x) / x$
0		1
0.5	0.958851	
1	0.841471	
1.5	0.664997	
2	0.454649	
2.5	0.239389	
3	0.04704	
3.5	-0.10022	

[G2]

Single application of Gaussian 4-pt rule

m=	1.570796	h=	1.570796	
α, β	x	f(x)	a, b	
-0.86114	0.218127	0.992089	0.347855	0.345103
-0.33998	1.036755	0.830241	0.652145	0.541438
0.339981	2.104837	0.408942	0.652145	0.26669
0.861136	2.923466	0.074022	0.347855	0.025749
		sum:	1.17898	
		integral:	1.851937	[A1]

set up [M4]

Subdividing the interval

m=	0.785398	h=	0.785398	
		gives	1.370762	[M1A1]
m=	2.356194	h=	0.785398	
		gives	0.481175	[M1A1]
		sum	1.851937 (= 6dp)	[A1]

[subtotal 13]

(iii)

By trial and error

m=	0.53242	h=	0.53242	
α, β	x	f(x)	a, b	
-0.86114	0.073934	0.999089	0.347855	0.347538
-0.33998	0.351407	0.979546	0.652145	0.638806
0.339981	0.713433	0.917302	0.652145	0.598214
0.861136	0.990906	0.8442	0.347855	0.293659

trial and error [M1A1]

Hence $t = 2m = 1.065$

(1.06484)

[M1A1]

[subtotal 4]

[TOTAL 24]

3 (i) Euler	h	x	y	y'	new y				
	0.2	0	0	0.1	0.02				
	0.2	0.2	0.02	0.30202	0.080404	setup [M2]			
	0.2	0.4	0.080404	0.508372	0.182079				
	0.2	0.6	0.182079	0.719971	0.326073				
	0.2	0.8	0.326073	0.938552	0.513783	estimates [A1A1]			
	0.2	1	0.513783						
(ii) Modified Euler	h	y(1)	diffs	ratio of					
	0.2	0.513783		diffs		differences [M1A1]			
	0.1	0.569802	0.056019						
	0.05	0.598337	0.028535	0.509387					
	0.025	0.612748	0.014411	0.505038	approx 0.5, so first order	[E1]			
						[subtotal 7]			
(iii) predictor-corrector	h	x	y	k1	k2	new y			
	0.2	0	0	0.02	0.060404	0.040202			
	0.2	0.2	0.040202	0.06082	0.102126	0.121675			
	0.2	0.4	0.121675	0.102588	0.145028	0.245483			
	0.2	0.6	0.245483	0.145565	0.189571	0.413051			
	0.2	0.8	0.413051	0.190228	0.236562	0.626446			
	0.2	1	0.626446			estimates [A1A1]			
(iv) mod Euler	h	y(1)	diffs	ratio of					
	0.2	0.626446		diffs		differences [A1]			
	0.1	0.627065	0.000619						
	0.05	0.627213	0.000147	0.238113					
	0.025	0.627249	3.58E-05	0.242993	approx 0.25, so second order	[E1]			
						[subtotal 6]			
(v) Predictor-Corrector	h	x	y	y'	pred	corr1	corr2	corr3	
	0.2	0	0	0.1	0.02	0.040202	0.04041	0.040412	
	0.2	0.2	0.040412	0.304124	0.101237	0.12189	0.122121	0.122124	setup [M3]
	0.2	0.4	0.122124	0.512989	0.224722	0.245942	0.246211	0.246214	
	0.2	0.6	0.246214	0.727917	0.391798	0.413802	0.414132	0.414137	
	0.2	0.8	0.414137	0.951306	0.604398	0.627569	0.627998	0.628006	estimates [A1A1]
	0.2	1	0.628006						
(vi) Predictor-Corrector	h	y(1)							
	0.2	0.628006							differences [A1]
	0.1	0.627447	-0.00056						
	0.05	0.627307	-0.00014	0.250462	Still second order. Differences very				
	0.025	0.627272	-3.5E-05	0.250113	similar in magnitude to modified Euler.				[E1E1]
									[subtotal 8]
(vii) Predictor-Corrector	h	pre-corr	average	diffs	ratio of				
	0.626446	0.628006	0.627226		diffs				values [A1]
	0.627065	0.627447	0.627256	3.04E-05					differences [A1]
	0.627213	0.627307	0.62726	3.78E-06	0.124555	approx 0.125			
	0.627249	0.627272	0.627261	4.21E-07	0.111332	so third order			[E1]
									[subtotal 3]

[TOTAL 24]

4 (i)	0	1	2	3	1	x1 = 0.666667	elimin'n [M1M1M1] [A1A1]
	3	0	1	2	2		
	2	3	0	1	3		
	1	2	3	0	4		
	1	2	3		1		
	3	-0.66667	-0.33333	1.666667		x2 = 0.666667	back sub [M1]
	2	2.666667	-0.66667	3.333333			solutions [A1A1A1A1]
		2.222222	3.111111	0.444444		x3 = 0.666667	
		3.111111	-0.444444	2.222222		x4 = -0.33333	
			3.428571	-1.14286			

pivot (shaded) is element
of largest magnitude in column
Demonstrate check by substituting values back into equations.

[M1]
[E1]
[B1]

[subtotal 13]

(ii)	Apply to	1	0	0	0		at least one v [M1]
	$v =$	0	1	0	0		other three [M1]
		0	0	1	0		
		0	0	0	1		
	To get	-0.20833	0.29167	0.04167	0.04167		
	$M^{-1} =$	0.04167	-0.20833	0.29167	0.04167		
		0.04167	0.04167	-0.20833	0.29167		
		0.29167	0.04167	0.04167	-0.20833		

*NB: clear
evidence
required*

*that own
routine
is used*

columns
[A1A1A1A1]

[subtotal 6]

(iii) The product of the pivots is 96 [M1A1]

In each of the first three cases, the pivot is in the second row
of the reduced matrix. This is equivalent to three row
interchanges. Hence multiply by $(-1)^3$.
i.e. determinant is -96

[M1E1]
[A1]

[subtotal 5]

[TOTAL 24]

7895-8, 3895-8 AS and A2 MEI Mathematics
June 2007 Assessment Session

Unit Threshold Marks

<i>Unit</i>		Maximum Mark	A	B	C	D	E	U
All units	UMS	100	80	70	60	50	40	0
4751	Raw	72	54	46	38	31	24	0
4752	Raw	72	54	47	40	33	26	0
4753	Raw	72	60	52	45	38	30	0
4753/02	Raw	18	15	13	11	9	8	0
4754	Raw	90	65	57	49	41	34	0
4755	Raw	72	59	51	44	37	30	0
4756	Raw	72	52	45	38	32	26	0
4757	Raw	72	53	46	39	32	25	0
4758	Raw	72	55	47	40	33	25	0
4758/02	Raw	18	15	13	11	9	8	0
4761	Raw	72	59	51	43	36	29	0
4762	Raw	72	59	52	45	38	31	0
4763	Raw	72	61	53	45	37	30	0
4764	Raw	72	62	54	46	38	31	0
4766	Raw	72	55	48	41	35	29	0
4767	Raw	72	58	51	44	37	30	0
4768	Raw	72	62	53	45	37	29	0
4769	Raw	72	54	47	40	33	27	0
4771	Raw	72	59	53	47	41	35	0
4772	Raw	72	52	45	39	33	27	0
4773	Raw	72	59	51	43	36	29	0
4776	Raw	72	53	46	40	33	26	0
4776/02	Raw	18	13	11	9	8	7	0
4777	Raw	72	55	47	39	32	25	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
7895-7898	600	480	420	360	300	240	0
3895-3898	300	240	210	180	150	120	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
7895	43.5	64.3	80.2	90.9	97.5	100	9403
7896	57.9	78.6	90.1	96.2	98.6	100	1301
7897	88.2	97.1	100	100	100	100	34
7898	100	100	100	100	100	100	2
3895	27.4	42.6	57.3	70.9	82.9	100	12342
3896	55.4	73.4	85.1	92.1	97.1	100	1351
3897	75.2	87.2	97.3	99.1	100	100	109
3898	71.4	82.1	82.1	96.4	96.4	100	28

For a description of how UMS marks are calculated see;
http://www.ocr.org.uk/exam_system/understand_ums.html

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2007

