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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer any three questions.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

• The acceleration due to gravity is denoted by g m s
−2

. Unless otherwise instructed, when a numerical value is
needed, use g = 9.8.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.
• The total number of marks for this paper is 72.

• This document consists of 4 pages. Any blank pages are indicated.
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1 The differential equation

d3y

dx3
+ 2

d2y

dx2
− dy

dx
− 2y = 2

is to be solved.

(i) Write down the auxiliary equation. Show that −2 is a root of this equation and find the other two

roots. Hence write down the complementary function. [6]

(ii) Find the general solution. [3]

When x = 0, y = 0 and when x = ln 2, y = 0. As x → ∞, y tends to a finite limit.

(iii) Show that y = −2e−2x + 3e−x − 1. [6]

(iv) Show that y = 0 only when x = 0 or ln 2. Show also that the graph of y against x has only one

stationary point, and determine its coordinates. [5]

(v) Sketch the graph of the solution for x ≥ 0. [4]

2 The differential equation

dy

dx
cos x + y sin x = x cos

2
x

is to be solved for |x| < 1

2
π subject to the condition that y = 1 when x = 0.

(i) Find the solution. [10]

(ii) Sketch the solution curve. [2]

Now consider the differential equation

dy

dx
cos x + y sin x = x cos x sin x

for |x| < 1

2
π, subject to the condition that y = 1 when x = 0.

(iii) Use Euler’s method with a step length of 0.1 to estimate y when x = 0.2. The algorithm is given

by x
r+1

= x
r
+ h, y

r+1
= y

r
+ hy′

r
. [6]

(iv) Use the integrating factor method and the numerical approximation

ã 0.2

0

x tan x dx ≈ 0.002 688

to estimate y when x = 0.2. [6]
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3 An oil drum of mass 60 kg is dropped from rest from a point A which is at a height of 10 m above a

lake. The oil drum is modelled as a particle that moves vertically. When it is x m below A, its speed

is v m s−1. Before it enters the water, the forces acting on it are its weight and a resistance force of

magnitude 1

4
v2 N.

(i) Show that

v

240g − v2

dv

dx
= 1

240

and hence find v2 in terms of x. [9]

(ii) Show that the speed of the oil drum as it reaches the water is 13.71 m s−1, correct to two decimal

places. [1]

After it enters the water, the forces acting on the oil drum are its weight, a resistance force of magnitude

60v N and a buoyancy force of 90g N vertically upwards.

Assume that the initial speed in the water is 13.71 m s−1 and that the oil drum moves vertically.

(iii) Show that t seconds after entering the water its speed is given by v = 18.61e−t − 4.9. [8]

(iv) Calculate the greatest depth below the surface of the water that the oil drum reaches. [6]

4 The simultaneous differential equations

dx

dt
= −3x − y + 7

dy

dt
= 2x − y + 2

are to be solved for t ≥ 0.

(i) Find the values of x and y for which
dx

dt
= dy

dt
= 0. [2]

(ii) Show that

d2x

dt2
+ 4

dx

dt
+ 5x = 5. [5]

(iii) Find the general solution for x. [6]

(iv) Find the corresponding general solution for y. [3]

When t = 0, x = 4 and y = 0.

(v) Find the solutions for x and y. [3]

(vi) Sketch the graphs of x against t and y against t, for t ≥ 0. Explain how your solution to part (i)

relates to your graphs. [5]
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