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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.

NOTE

• This paper will be followed by Paper B: Comprehension.
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Section A (36 marks)

1 Express
3x + 2

x(x2 + 1) in partial fractions. [6]

2 Show that (1 + 2x)1

3 = 1 + 2

3
x − 4

9
x2 + . . . , and find the next term in the expansion.

State the set of values of x for which the expansion is valid. [6]

3 Vectors a and b are given by a = 2i + j − k and b = 4i − 2j + k.

Find constants λ and µ such that λ a + µb = 4j − 3k. [5]

4 Prove that cot β − cot α = sin(α − β)
sin α sin β

. [3]

5 (i) Write down normal vectors to the planes 2x − y + ß = 2 and x − ß = 1.

Hence find the acute angle between the planes. [4]

(ii) Write down a vector equation of the line through (2, 0, 1) perpendicular to the plane 2x− y+ ß = 2.

Find the point of intersection of this line with the plane. [4]

6 (i) Express cos θ + √
3 sin θ in the form R cos(θ − α), where R > 0 and α is acute, expressing α in

terms of π. [4]

(ii) Write down the derivative of tan θ .

Hence show that ä
1

3
π

0

1

(cos θ + √
3 sin θ)2

dθ =
√

3

4
. [4]
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Section B (36 marks)

7 Scientists can estimate the time elapsed since an animal died by measuring its body temperature.

(i) Assuming the temperature goes down at a constant rate of 1.5 degrees Fahrenheit per hour,

estimate how long it will take for the temperature to drop

(A) from 98 ◦F to 89 ◦F,

(B) from 98 ◦F to 80 ◦F. [2]

In practice, rate of temperature loss is not likely to be constant. A better model is provided by Newton’s

law of cooling, which states that the temperature θ in degrees Fahrenheit t hours after death is given

by the differential equation

dθ

dt
= −k(θ − θ

0
),

where θ
0

◦F is the air temperature and k is a constant.

(ii) Show by integration that the solution of this equation is θ = θ
0
+ Ae−kt, where A is a constant.

[5]

The value of θ
0

is 50, and the initial value of θ is 98. The initial rate of temperature loss is 1.5 ◦F
per hour.

(iii) Find A, and show that k = 0.031 25. [4]

(iv) Use this model to calculate how long it will take for the temperature to drop

(A) from 98 ◦F to 89 ◦F,

(B) from 98 ◦F to 80 ◦F. [5]

(v) Comment on the results obtained in parts (i) and (iv). [1]

[Question 8 is printed overleaf.]
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8 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution

about the x-axis of the curve with parametric equations

x = 2 + 2 sin θ , y = 2 cos θ + sin 2θ , (0 ≤ θ ≤ 2π).
The curve crosses the x-axis at the point A (4, 0). B and C are maximum and minimum points on the

curve. Units on the axes are metres.

O

y

x

C

B

A (4, 0)

Fig. 8

(i) Find
dy

dx
in terms of θ . [4]

(ii) Verify that
dy

dx
= 0 when θ = 1

6
π, and find the exact coordinates of B.

Hence find the maximum width BC of the balloon. [5]

(iii) (A) Show that y = x cos θ .

(B) Find sin θ in terms of x and show that cos2 θ = x − 1

4
x2.

(C) Hence show that the cartesian equation of the curve is y2 = x3 − 1

4
x4. [7]

(iv) Find the volume of the balloon. [3]
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