

RECOGNISING ACHIEVEMENT

ADVANCED GCE

MATHEMATICS (MEI)

Applications of Advanced Mathematics (C4) Paper A

4754A

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- Graph paper
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:

None

Tuesday 13 January 2009

Morning

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- This document consists of **4** pages. Any blank pages are indicated.

NOTE

- This paper will be followed by **Paper B: Comprehension**.

Section A (36 marks)

1 Express $\frac{3x+2}{x(x^2+1)}$ in partial fractions. [6]

2 Show that $(1+2x)^{\frac{1}{3}} = 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots$, and find the next term in the expansion. State the set of values of x for which the expansion is valid. [6]

3 Vectors \mathbf{a} and \mathbf{b} are given by $\mathbf{a} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$ and $\mathbf{b} = 4\mathbf{i} - 2\mathbf{j} + \mathbf{k}$. Find constants λ and μ such that $\lambda\mathbf{a} + \mu\mathbf{b} = 4\mathbf{j} - 3\mathbf{k}$. [5]

4 Prove that $\cot \beta - \cot \alpha = \frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta}$. [3]

5 (i) Write down normal vectors to the planes $2x - y + z = 2$ and $x - z = 1$. Hence find the acute angle between the planes. [4]

(ii) Write down a vector equation of the line through $(2, 0, 1)$ perpendicular to the plane $2x - y + z = 2$. Find the point of intersection of this line with the plane. [4]

6 (i) Express $\cos \theta + \sqrt{3} \sin \theta$ in the form $R \cos(\theta - \alpha)$, where $R > 0$ and α is acute, expressing α in terms of π . [4]

(ii) Write down the derivative of $\tan \theta$.

Hence show that $\int_0^{\frac{1}{3}\pi} \frac{1}{(\cos \theta + \sqrt{3} \sin \theta)^2} d\theta = \frac{\sqrt{3}}{4}$. [4]

Section B (36 marks)

7 Scientists can estimate the time elapsed since an animal died by measuring its body temperature.

(i) Assuming the temperature goes down at a constant rate of 1.5 degrees Fahrenheit per hour, estimate how long it will take for the temperature to drop

- (A) from 98 °F to 89 °F,
- (B) from 98 °F to 80 °F.

[2]

In practice, rate of temperature loss is not likely to be constant. A better model is provided by Newton's law of cooling, which states that the temperature θ in degrees Fahrenheit t hours after death is given by the differential equation

$$\frac{d\theta}{dt} = -k(\theta - \theta_0),$$

where θ_0 °F is the air temperature and k is a constant.

(ii) Show by integration that the solution of this equation is $\theta = \theta_0 + Ae^{-kt}$, where A is a constant. [5]

The value of θ_0 is 50, and the initial value of θ is 98. The initial rate of temperature loss is 1.5 °F per hour.

(iii) Find A , and show that $k = 0.03125$. [4]

(iv) Use this model to calculate how long it will take for the temperature to drop

- (A) from 98 °F to 89 °F,
- (B) from 98 °F to 80 °F.

[5]

(v) Comment on the results obtained in parts (i) and (iv). [1]

[Question 8 is printed overleaf.]

8 Fig. 8 illustrates a hot air balloon on its side. The balloon is modelled by the volume of revolution about the x -axis of the curve with parametric equations

$$x = 2 + 2 \sin \theta, \quad y = 2 \cos \theta + \sin 2\theta, \quad (0 \leq \theta \leq 2\pi).$$

The curve crosses the x -axis at the point A (4, 0). B and C are maximum and minimum points on the curve. Units on the axes are metres.

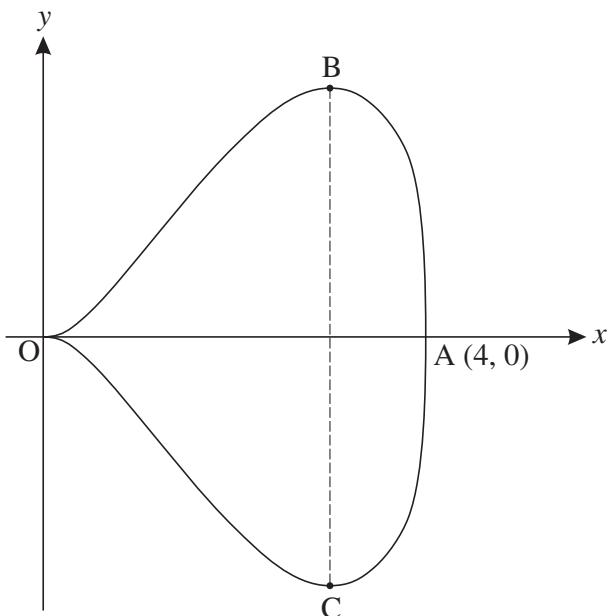


Fig. 8

(i) Find $\frac{dy}{dx}$ in terms of θ . [4]

(ii) Verify that $\frac{dy}{dx} = 0$ when $\theta = \frac{1}{6}\pi$, and find the exact coordinates of B.

Hence find the maximum width BC of the balloon. [5]

(iii) (A) Show that $y = x \cos \theta$.

(B) Find $\sin \theta$ in terms of x and show that $\cos^2 \theta = x - \frac{1}{4}x^2$.

(C) Hence show that the cartesian equation of the curve is $y^2 = x^3 - \frac{1}{4}x^4$. [7]

(iv) Find the volume of the balloon. [3]