

**ADVANCED SUBSIDIARY GCE
MATHEMATICS (MEI)**

Numerical Methods

4776

Candidates answer on the Answer Booklet

OCR Supplied Materials:

- 8 page Answer Booklet
- Graph paper
- MEI Examination Formulae and Tables (MF2)

Other Materials Required:

None

**Tuesday 13 January 2009
Morning**

Duration: 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided on the Answer Booklet.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- You are permitted to use a graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- The total number of marks for this paper is **72**.
- This document consists of 4 pages. Any blank pages are indicated.

Section A (36 marks)

1 (i) Show by means of a difference table that a quadratic function fits the following data points.

x	-3	-1	1	3
y	-16	-2	4	2

[3]

(ii) Obtain the equation of the quadratic function, expressing your answer in its simplest form. [5]

2 (i) Use the formula for the difference of two squares to show that

$$(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x}) = 1. \quad (*) \quad [2]$$

(ii) A spreadsheet shows $\sqrt{50001}$ as 223.6090 and $\sqrt{50000}$ as 223.6068.

Use the spreadsheet figures to obtain values of $\sqrt{50001} - \sqrt{50000}$

(A) by subtraction,
 (B) by using (*)

Comment on your results.

[5]

3 (i) For the integral

$$I = \int_0^{0.8} \sqrt{1-x^5} \, dx$$

find the trapezium rule and mid-point rule estimates with $h = 0.8$ in each case. Use these estimates to obtain a Simpson's rule estimate. [4]

(ii) Given that the mid-point rule estimate with $h = 0.4$ is 0.784069 to 6 significant figures, obtain a second Simpson's rule estimate. Without doing any further calculations, give a value for I to the accuracy that is justified. [4]

4 (i) An approximation to $\cos x$, where x is small and in radians, is given by

$$\cos x \approx 1 - 0.5x^2.$$

Find the absolute and relative errors in this approximation when $x = 0.3$. [4]

(ii) The formula

$$\cos x \approx 1 - 0.5x^2 + kx^4$$

gives a better approximation if k is suitably chosen. By considering $x = 0.3$ again, estimate k . [2]

5 A student is investigating the iteration

$$x_{r+1} = x_r^2 - 3x_r + 3$$

for different starting values x_0 .

Determine the values of x_1 and x_2 in each of the cases $x_0 = 3, x_0 = 2.99, x_0 = 3.01$.

Evaluate the derivative of $x^2 - 3x + 3$ at $x = 3$.

Comment on your results.

[7]

Section B (36 marks)

6 (i) Show that the equation

$$\sqrt{\sin x} + \sqrt{\cos x} = 1.5, \quad (*)$$

where x is in radians, has a root in the interval $(0.2, 0.3)$.

Perform two iterations of the bisection method and give the interval within which the root lies, the best estimate of the root, and the maximum possible error in that estimate. [6]

(ii) Now perform two iterations of the secant method, starting with $x_0 = 0.2$ and $x_1 = 0.3$. Give an estimate of the root to an appropriate number of significant figures.

Comment on the relative rate of convergence of the bisection method and the secant method. [6]

(iii) You are given that equation $(*)$ also has a root α which is 1.298 504 to 6 decimal places. An iteration to find this root produces the following sequence of values.

r	0	1	2	3	4
x_r	1.4	1.314 351	1.298 887	1.298 504	1.298 504

By considering the values of $x_r - \alpha$, show that this iteration displays second order convergence making it clear what that means. [6]

[Question 7 is printed overleaf.]

7 A function $f(x)$ has values, correct to 6 significant figures, as given in the table.

x	-0.4	-0.2	-0.1	0	0.1	0.2	0.4
$f(x)$	0.601 201	0.711 982	0.765 298	0.816 603	0.865 314	0.911 308	0.994 506

(i) Obtain three estimates of $f'(0)$ using the forward difference method with h equal to 0.4, 0.2, 0.1. Show that the differences between these estimates are approximately halved as h is halved. [4]

(ii) Obtain three estimates of $f'(0)$ using the central difference method. Show, by considering the differences between these estimates, that the central difference method converges more rapidly than the forward difference method. [4]

(iii) D_1 and D_2 are two estimates of a quantity d .

(A) Suppose that the error in D_2 is approximately half of the error in D_1 . Write down expressions for the errors in D_1 and D_2 and hence show that $d \approx 2D_2 - D_1$.

(B) Now suppose that the error in D_2 is approximately a quarter of the error in D_1 . Show that $d \approx \frac{4D_2 - D_1}{3}$. [5]

(iv) Use the results in part (iii)(A) and part (iii)(B) to obtain two further estimates of $f'(0)$. Give an estimate of $f'(0)$ to the accuracy that you consider justified. [5]