

GCE

Mathematics (MEI)

Advanced GCE A2 7895-8

Advanced Subsidiary GCE AS 3895-8

Mark Schemes for the Units

January 2009

3895-8/7895-8/MS/R/09J

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2009

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

CONTENTS

- Advanced GCE Mathematics (MEI) (7895)**
- Advanced GCE Further Mathematics (MEI) (7896)**
- Advanced GCE Further Mathematics (Additional) (MEI) (7897)**
- Advanced GCE Pure Mathematics (MEI) (7898)**

- Advanced Subsidiary GCE Mathematics (MEI) (3895)**
- Advanced Subsidiary GCE Further Mathematics (MEI) (3896)**
- Advanced Subsidiary GCE Further Mathematics (Additional) (MEI) (3897)**
- Advanced Subsidiary GCE Pure Mathematics (MEI) (3898)**

MARK SCHEME FOR THE UNITS

Unit/Content	Page
4751 (C1) Introduction to Advanced Mathematics	1
4752 (C2) Concepts for Advanced Mathematics	6
4753 (C3) Methods for Advanced Mathematics	9
4754 (C4) Applications of Advanced Mathematics	13
4755 (FP1) Further Concepts for Advanced Mathematics	18
4756 (FP2) Further Methods for Advanced Mathematics	24
4758 Differential Equations	29
4761 Mechanics 1	33
4762 Mechanics 2	38
4763 Mechanics 3	43
4766 Statistics 1	47
4767 Statistics 2	53
4768 Statistics 3	57
4771 Decision Mathematics 1	61
4776 Numerical Methods	65
Grade Thresholds	67

4751 (C1) Introduction to Advanced Mathematics

Section A

1	(i) 0.125 or 1/8 (ii) 1	1 1	as final answer	2
2	$y = 5x - 4$ www	3	M2 for $\frac{y-11}{-9-11} = \frac{x-3}{-1-3}$ o.e. or M1 for grad = $\frac{11-(-9)}{3-(-1)}$ or 5 eg in $y = 5x + k$ and M1 for $y - 11 = \text{their } m(x - 3)$ o.e. or subst (3, 11) or (-1, -9) in $y = \text{their } mx + c$ or M1 for $y = kx - 4$ (eg may be found by drawing)	3
3	$x > 9/6$ o.e. or $9/6 < x$ o.e. www isw	3	M2 for $9 < 6x$ or M1 for $-6x < -9$ or $k < 6x$ or $9 < kx$ or $7 + 2 < 5x + x$ [condone \leq for Ms]; if 0, allow SC1 for $9/6$ o.e found	3
4	$a = -5$ www	3	M1 for $f(2) = 0$ used and M1 for $10 + 2a = 0$ or better long division used: M1 for reaching $(8 + a)x - 6$ in working and M1 for $8 + a = 3$ equating coeffs method: M2 for obtaining $x^3 + 2x^2 + 4x + 3$ as other factor	3
5	(i) $4[x^3]$ (ii) $84[x^2]$ www	2 3	ignore any other terms in expansion M1 for $-3[x^3]$ and $7[x^3]$ soi; M1 for $\frac{7 \times 6}{2}$ or 21 or for Pascal's triangle seen with 1 7 21 ... row and M1 for 2^2 or 4 or $\{2x\}^2$	5

6	1/5 or 0.2 o.e. www	3	M1 for $3x + 1 = 2x \times 4$ and M1 for $5x = 1$ o.e. <u>or</u> M1 for $1.5 + \frac{1}{2x} = 4$ and M1 for $\frac{1}{2x} = 2.5$ o.e.	3
7	(i) $5^{3.5}$ or $k = 3.5$ or $7/2$ o.e. (ii) $16a^6b^{10}$	2 2	M1 for $125 = 5^3$ or $\sqrt{5} = 5^{\frac{1}{2}}$ SC1 for $5^{\frac{3}{2}}$ o.e. as answer without working M1 for two 'terms' correct and multiplied; mark final answer only	4
8	$b^2 - 4ac$ soi $k^2 - 4 \times 2 \times 18 < 0$ o.e. $-12 < k < 12$	M1 M1 A2	allow in quadratic formula or clearly looking for perfect square condone \leq ; or M1 for 12 identified as boundary may be two separate inequalities; A1 for \leq used or for one 'end' correct if two separate correct inequalities seen, isw for then wrongly combining them into one statement; condone b instead of k ; if no working, SC2 for $k < 12$ and SC2 for $k > -12$ (ie SC2 for each 'end' correct)	4
9	$y + 5 = xy + 2x$ $y - xy = 2x - 5$ oe or ft $y(1 - x) = 2x - 5$ oe or ft $[y =] \frac{2x - 5}{1 - x}$ oe or ft as final answer	M1 M1 M1 M1	for expansion for collecting terms for taking out y factor; dep on xy term for division and no wrong work after ft earlier errors for equivalent steps if error does not simplify problem	4
10	(i) $9\sqrt{3}$ (ii) $6 + 2\sqrt{2}$ www	2 3	M1 for $5\sqrt{3}$ or $4\sqrt{3}$ seen M1 for attempt to multiply num. and denom. by $3 + \sqrt{2}$ and M1 for denom. 7 or $9 - 2$ soi from denom. mult by $3 + \sqrt{2}$	5

Section B

11	i	$C, \text{ mid pt of } AB = \left(\frac{11+(-1)}{2}, \frac{4}{2} \right) = (5, 2)$ $[AB^2 =] 12^2 + 4^2 [= 160] \text{ oe or}$ $[CB^2 =] 6^2 + 2^2 [=40] \text{ oe with AC}$ quote of $(x - a)^2 + (y - b)^2 = r^2$ o.e with different letters completion (ans given)	B1	evidence of method required – may be on diagram, showing equal steps, or start at A or B and go half the difference towards the other	4
		[$y =] 2 \pm \sqrt{15}$ cao	B1	or square root of these; accept unsimplified	
			B1	or $(5, 2)$ clearly identified as centre and $\sqrt{40}$ as r (or 40 as r^2) www or quote of gfc formula and finding $c = -11$	
ii		correct subst of $x = 0$ in circle eqn soi $(y - 2)^2 = 15$ or $y^2 - 4y - 11 [= 0]$ $y - 2 = \pm\sqrt{15}$ or ft	M1		4
			M1	condone one error	
			M1	or use of quad formula (condone one error in formula); ft only for 3 term quadratic in y	
iii			A1	if $y = 0$ subst, allow SC1 for $(11, 0)$ found alt method: M1 for y values are $2 \pm a$ M1 for $a^2 + 5^2 = 40$ soi M1 for $a^2 = 40 - 5^2$ soi $[y =] 2 \pm \sqrt{15}$ cao	
			M1	or grad AC (or BC)	
		grad $AB = \frac{4}{11-(-1)}$ or $1/3$ o.e. so grad tgt = -3 eqn of tgt is $y - 4 = -3(x - 11)$ $y = -3x + 37$ or $3x + y = 37$ $(0, 37)$ and $(37/3, 0)$ o.e. ft isw	M1 M1 A1 B2	or ft -1/their gradient of AB or subst $(11, 4)$ in $y = -3x + c$ or ft (no ft for their grad AB used) accept other simplified versions B1 each, ft their tgt for grad $\neq 1$ or $1/3$; accept $x = 0, y = 37$ etc NB alt method: intercepts may be found first by proportion then used to find eqn	

12	i	$3x^2 + 6x + 10 = 2 - 4x$ $3x^2 + 10x + 8 [=0]$ $(3x + 4)(x + 2) [=0]$ $x = -2 \text{ or } -4/3 \text{ o.e.}$ $y = 10 \text{ or } 22/3 \text{ o.e.}$	M1	for subst for x or y or subtraction attempted or $3y^2 - 52y + 220 [=0]$; for rearranging to zero (condone one error)	5
	ii	$3(x + 1)^2 + 7$	4	1 for $a = 3$, 1 for $b = 1$, 2 for $c = 7$ or M1 for $10 - 3 \times$ their b^2 soi or for $7/3$ or for $10/3 -$ their b^2 soi	
	iii	min at $y = 7$ or ft from (ii) for positive c (ft for (ii) only if in correct form)	B2	may be obtained from (ii) or from good symmetrical graph or identified from table of values showing symmetry condone error in x value in stated min ft from (iii) [getting confused with 3 factor] B1 if say turning pt at $y = 7$ or ft without identifying min or M1 for min at $x = -1$ [e.g. may start again and use calculus to obtain $x = -1$] or min when $(x + 1)^2 = 0$; and A1 for showing y positive at min or M1 for showing discriminant neg. so no real roots and A1 for showing above axis not below eg positive x^2 term or goes through $(0, 10)$ or M1 for stating bracket squared must be positive [or zero] and A1 for saying other term is positive	2

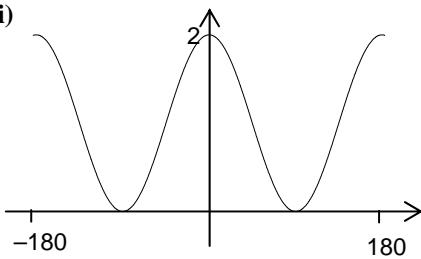
13	i	any correct y value calculated from quadratic seen or implied by plots $(0, 5)(1, 1)(2, -1)(3, -1)(4, 1)$ and $(5, 5)$ plotted good quality smooth parabola within 1mm of their points	B1	for $x \neq 0$ or 1; may be for neg x or eg min. at $(2.5, -1.25)$	4
	ii	$x^2 - 5x + 5 = \frac{1}{x}$ $x^3 - 5x^2 + 5x = 1$ and completion to given answer	M1 M1	tol 1 mm; P1 for 4 correct [including $(2.5, -1.25)$ if plotted]; plots may be implied by curve within 1 mm of correct position allow for correct points only [accept graph on graph paper, not insert]	
	iii	divn of $x^3 - 5x^2 + 5x - 1$ by $x - 1$ as far as $x^3 - x^2$ used in working $x^2 - 4x + 1$ obtained use of $b^2 - 4ac$ or formula with quadratic factor $\sqrt{12}$ obtained and comment re shows other roots (real and irrational or for $2 \pm \sqrt{3}$ or $\frac{4 \pm \sqrt{12}}{2}$ obtained isw	M1 A1 M1 A2	or inspection eg $(x - 1)(x^2 \dots + 1)$ or equating coeffts with two correct coeffts found or $(x - 2)^2 = 3$; may be implied by correct roots or $\sqrt{12}$ obtained [A1 for $\sqrt{12}$ and A1 for comment] NB A2 is available only for correct quadratic factor used; if wrong factor used, allow A1 ft for obtaining two irrational roots or for their discriminant and comment re irrational [no ft if their discriminant is negative]	
					5

4752 (C2) Concepts for Advanced Mathematics

Section A

1	$4x^5$ $-12x^{\frac{1}{2}}$ $+ c$	1 2 1	M1 for other $kx^{\frac{1}{2}}$	
2	95.25, 95.3 or 95	4	M3 $\frac{1}{2} \times 5 \times (4.3 + 0 + 2[4.9 + 4.6 + 3.9 + 2.3 + 1.2])$ M2 with 1 error, M1 with 2 errors. Or M3 for 6 correct trapezia.	4
3	1.45 o.e.	2	M1 for $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6}$ oe	2
4	105 and 165	3	B1 for one of these or M1 for $2x = 210$ or 330	3
5	(i) graph along $y = 2$ with V at (3,2) (4,1) & (5,2) (ii) graph along $y = 6$ with V at (1,6) (2,3) & (3,6)	2 2	M1 for correct V, or for $f(x+2)$ B1 for (2,k) with all other elements correct	4
6	(i) 54.5 (ii) Correct use of sum of AP formula with $n = 50, 20, 19$ or 21 with their d and $a = 7$ eg $S_{50} = 3412.5, S_{20} = 615$ Their $S_{50} - S_{20}$ dep on use of ap formula 2797.5 c.a.o.	2 M1 M1 A1	B1 for $d = 2.5$ <u>or</u> M2 for correct formula for S_{30} with their d M1 if one slip	5
7	$8x - x^{-2}$ o.e. their $\frac{dy}{dx} = 0$ correct step $x = \frac{1}{2}$ c.a.o.	2 M1 DM1 A1	B1 each term s.o.i. s.o.i.	5
8	(i) 48 geometric, or GP (ii) mention of $ r < 1$ condition o.e. $S = 128$	1 1 1 2		
			M1 for $\frac{192}{1 - -\frac{1}{2}}$	5
9	(i) 1 (ii) (A) $3.5 \log_a x$ (ii) (B) $-\log_a x$	1 2 1	M1 for correct use of 1 st or 3 rd law	4

Section B


10	i	$7 - 2x$ $x = 2$, gradient = 3 $x = 2, y = 4$ $y - \text{their } 4 = \text{their grad } (x - 2)$ subst $y = 0$ in their linear eqn completion to $x = \frac{2}{3}$ (ans given)	M1 A1 B1 M1 M1 A1	differentiation must be used or use of $y = \text{their } mx + c$ and subst $(2, \text{their } 4)$, dependent on diffn seen	6
	ii	$f(1) = 0$ or factorising to $(x - 1)(6 - x)$ or $(x - 1)(x - 6)$ 6 www	1 1	or using quadratic formula correctly to obtain $x = 1$	
	iii	$\frac{7}{2}x^2 - \frac{1}{3}x^3 - 6x$ value at 2 – value at 1 $2\frac{1}{6}$ or 2.16 to 2.17 $\frac{1}{2} \times \frac{4}{3} \times 4$ – their integral 0.5 o.e.	M1 M1 A1 M1 A1	for two terms correct; ignore $+c$ ft attempt at integration only	
11	i(A)	150 (cm) or 1.5 m	2	M1 for 2.5×60 or 2.5×0.6 or for 1.5 with no units	2
	i(B)	$\frac{1}{2} \times 60^2 \times 2.5$ or 4500 $\frac{1}{2} \times 140^2 \times 2.5$ or 24 500 subtraction of these 20 000 (cm^2) isw	M1 M1 DM1 A1	or equivalents in m^2	
	ii(A)	attempt at use of cosine rule $\cos \text{EFP} = \frac{3.5^2 + 2.8^2 - 1.6^2}{2 \times 2.8 \times 3.5}$ o.e. 26.5 to 26.65 or 27	M1 M1 A1	condone 1 error in substitution	4
	ii(B)	2.8 sin (their EFP) o.e. 1.2 to 1.3 [m]	M1 A1		
					3
					2

12	i	$\log a + \log(b^t)$ www clear use of $\log(b^t) = t \log b$ dep	B1 B1	condone omission of base throughout question	2
	ii	(2.398), 2.477, 2.556, 2.643, 2.724 points plotted correctly f.t. ruled line of best fit f.t.	T1 P1 1	On correct square	3
	iii	$\log a = 2.31$ to 2.33 $a = 204$ to 214 $\log b = 0.08$ approx $b = 1.195$ to 1.215	M1 A1 M1 A1	ft their intercept ft their gradient	4
	iv	eg £210 million dep	1	their £ a million	1
	v	$\frac{\log 1000 - \text{their intercept}}{\text{their gradient}} \approx \frac{3 - 2.32}{0.08}$ $= 8.15$ to 8.85	M1 A1	or B2 from trials	2

4753 (C3) Methods for Advanced Mathematics

Section A

1 $ x-1 < 3 \Rightarrow -3 < x-1 < 3$ $\Rightarrow -2 < x < 4$	M1 A1 B1 [3]	or $x-1 = \pm 3$, or squaring \Rightarrow correct quadratic \Rightarrow $(x+2)(x-4)$ (condone factorising errors) or correct sketch showing $y = 3$ to scale $-2 < x < 4$ (penalise \leq once only)
2(i) $y = x \cos 2x$ $\Rightarrow \frac{dy}{dx} = -2x \sin 2x + \cos 2x$	M1 B1 A1 [3]	product rule $d/dx (\cos 2x) = -2 \sin 2x$ oe cao
(ii) $\int x \cos 2x dx = \int x \frac{d}{dx} \left(\frac{1}{2} \sin 2x \right) dx$ $= \frac{1}{2} x \sin 2x - \int \frac{1}{2} \sin 2x dx$ $= \frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + c$	M1 A1 A1ft A1 [4]	parts with $u = x$, $v = \frac{1}{2} \sin 2x$ $+ \frac{1}{4} \cos 2x$ cao – must have $+ c$
3 Either $y = \frac{1}{2} \ln(x-1)$ $x \leftrightarrow y$ $\Rightarrow x = \frac{1}{2} \ln(y-1)$ $\Rightarrow 2x = \ln(y-1)$ $\Rightarrow e^{2x} = y-1$ $\Rightarrow 1 + e^{2x} = y$ $\Rightarrow g(x) = 1 + e^{2x}$	M1 M1 E1	or $y = e^{(x-1)/2}$ attempt to invert and interchanging x with y o.e. (at any stage) $e^{\ln(y-1)} = y-1$ or $\ln(e^y) = y$ used www
or $gf(x) = g(\frac{1}{2} \ln(x-1))$ $= 1 + e^{\ln(x-1)}$ $= 1 + x-1$ $= x$	M1 M1 E1 [3]	or $fg(x) = \dots$ (correct way round) $e^{\ln(x-1)} = x-1$ or $\ln(e^{2x}) = 2x$ www
4 $\int_0^2 \sqrt{1+4x} dx$ let $u = 1+4x$, $du = 4dx$ $= \int_1^9 u^{1/2} \cdot \frac{1}{4} du$ $= \left[\frac{1}{6} u^{3/2} \right]_1^9$ $= \frac{27}{6} - \frac{1}{6} = \frac{26}{6} = \frac{13}{3}$ or $4\frac{1}{3}$	M1 A1 B1 M1 A1cao	$u = 1+4x$ and $du/dx = 4$ or $du = 4dx$ $\int u^{1/2} \cdot \frac{1}{4} du$ $\int u^{1/2} du = \frac{u^{3/2}}{3/2}$ soi substituting correct limits (u or x) dep attempt to integrate
or $\frac{d}{dx} (1+4x)^{3/2} = 4 \cdot \frac{3}{2} (1+4x)^{1/2} = 6(1+4x)^{1/2}$ $\Rightarrow \int_0^2 (1+4x)^{1/2} dx = \left[\frac{1}{6} (1+4x)^{3/2} \right]_0^2$ $= \frac{27}{6} - \frac{1}{6} = \frac{26}{6} = \frac{13}{3}$ or $4\frac{1}{3}$	M1 A1 A1 M1 A1cao [5]	$k(1+4x)^{3/2}$ $\int (1+4x)^{1/2} dx = \frac{2}{3} (1+4x)^{3/2} \dots$ $\times \frac{1}{4}$ substituting limits (dep attempt to integrate)

5(i) period 180°	B1 [1]	condone $0 \leq x \leq 180^\circ$ or π
(ii) one-way stretch in x -direction scale factor $\frac{1}{2}$ translation in y -direction through $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$	M1 A1 M1 A1 [4]	[either way round...] condone 'squeeze', 'contract' for M1 stretch used and s.f $\frac{1}{2}$ condone 'move', 'shift', etc for M1 'translation' used, +1 unit $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ only is M1 A0
(iii)	M1 B1 A1 [3]	correct shape, touching x -axis at $-90^\circ, 90^\circ$ correct domain (0, 2) marked or indicated (i.e. amplitude is 2)
6(i) e.g. $p = 1$ and $q = -2$ $p > q$ but $1/p = 1 > 1/q = -\frac{1}{2}$	M1 E1 [2]	stating values of p, q with $p \geq 0$ and $q \leq 0$ (but not $p = q = 0$) showing that $1/p > 1/q$ - if 0 used, must state that $1/0$ is undefined or infinite
(ii) Both p and q positive (or negative)	B1 [1]	or $q > 0$, 'positive integers'
7(i) $\frac{2}{3}x^{-1/3} + \frac{2}{3}y^{-1/3} \frac{dy}{dx} = 0$ $\Rightarrow \frac{dy}{dx} = -\frac{\frac{2}{3}x^{-1/3}}{\frac{2}{3}y^{-1/3}}$ $= -\frac{y^{1/3}}{x^{1/3}} = -\left(\frac{y}{x}\right)^{\frac{1}{3}} *$	M1 A1 M1 E1 [4]	Implicit differentiation (must show = 0) solving for dy/dx www. Must show, or explain, one more step.
(ii) $\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}$ $= -\left(\frac{8}{1}\right)^{\frac{1}{3}} \cdot 6$ $= -12$	M1 A1 A1cao [3]	any correct form of chain rule

<p>8(i) When $x = 1$ $y = 1^2 - (\ln 1)/8 = 1$ Gradient of PR = $(1 + 7/8)/1 = 1\frac{7}{8}$</p>	B1 M1 A1 [3]	1.9 or better
<p>(ii) $\frac{dy}{dx} = 2x - \frac{1}{8x}$ When $x = 1$, $dy/dx = 2 - 1/8 = 1\frac{7}{8}$ Same as gradient of PR, so PR touches curve</p>	B1 B1dep E1 [3]	cao 1.9 or better dep 1 st B1 dep gradients exact
<p>(iii) Turning points when $dy/dx = 0$ $\Rightarrow 2x - \frac{1}{8x} = 0$ $\Rightarrow 2x = \frac{1}{8x}$ $\Rightarrow x^2 = 1/16$ $\Rightarrow x = 1/4 (x > 0)$ When $x = 1/4$, $y = \frac{1}{16} - \frac{1}{8} \ln \frac{1}{4} = \frac{1}{16} + \frac{1}{8} \ln 4$ So TP is $(\frac{1}{4}, \frac{1}{16} + \frac{1}{8} \ln 4)$</p>	M1 M1 A1 M1 A1cao [5]	setting their derivative to zero multiplying through by x allow verification substituting for x in y o.e. but must be exact, not $1/4^2$. Mark final answer.
<p>(iv) $\frac{d}{dx}(x \ln x - x) = x \cdot \frac{1}{x} + 1 \cdot \ln x - 1 = \ln x$</p>	M1 A1	product rule $\ln x$
$\begin{aligned} \text{Area} &= \int_1^2 (x^2 - \frac{1}{8} \ln x) dx \\ &= \left[\frac{1}{3} x^3 - \frac{1}{8} (x \ln x - x) \right]_1^2 \\ &= \left(\frac{8}{3} - \frac{1}{4} \ln 2 + \frac{1}{4} \right) - \left(\frac{1}{3} - \frac{1}{8} \ln 1 + \frac{1}{8} \right) \\ &= \frac{7}{3} + \frac{1}{8} - \frac{1}{4} \ln 2 \\ &= \frac{59}{24} - \frac{1}{4} \ln 2 \quad * \end{aligned}$	M1 M1 A1 M1 E1 [7]	correct integral and limits (soi) – condone no dx $\int \ln x dx = x \ln x - x$ used (or derived using integration by parts) $\frac{1}{3} x^3 - \frac{1}{8} (x \ln x - x)$ – bracket required substituting correct limits must show at least one step

<p>9(i) Asymptotes when $(\sqrt{ }) (2x - x^2) = 0$ $\Rightarrow x(2 - x) = 0$ $\Rightarrow x = 0$ or 2 so $a = 2$ Domain is $0 < x < 2$</p>	M1 A1 B1ft [3]	or by verification $x > 0$ and $x < 2$, not \leq
<p>(ii) $y = (2x - x^2)^{-1/2}$ let $u = 2x - x^2$, $y = u^{-1/2}$ $\Rightarrow \frac{dy}{dx} = -\frac{1}{2}u^{-3/2}, \frac{du}{dx} = 2 - 2x$ \Rightarrow $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = -\frac{1}{2}(2x - x^2)^{-3/2} \cdot (2 - 2x)$ $= \frac{x-1}{(2x - x^2)^{3/2}} *$</p>	M1 B1 A1 E1	chain rule (or within correct quotient rule) $-\frac{1}{2}u^{-3/2}$ or $-\frac{1}{2}(2x - x^2)^{-3/2}$ or $\frac{1}{2}(2x - x^2)^{-1/2}$ in quotient rule $\times (2 - 2x)$ www – penalise missing brackets here
$\frac{dy}{dx} = 0$ when $x - 1 = 0$ $\Rightarrow x = 1$, $y = 1/\sqrt{2-1} = 1$ Range is $y \geq 1$	M1 A1 B1 B1ft [8]	extraneous solutions M0
<p>(iii) (A) $g(-x) = \frac{1}{\sqrt{1-(-x)^2}} = \frac{1}{\sqrt{1-x^2}} = g(x)$</p>	M1 E1	Expression for $g(-x)$ – must have $g(-x) = g(x)$ seen
<p>(B) $g(x-1) = \frac{1}{\sqrt{1-(x-1)^2}}$ $= \frac{1}{\sqrt{1-x^2+2x-1}} = \frac{1}{\sqrt{2x-x^2}} = f(x)$</p>	M1 E1	must expand bracket
<p>(C) $f(x)$ is $g(x)$ translated 1 unit to the right. But $g(x)$ is symmetrical about Oy So $f(x)$ is symmetrical about $x = 1$.</p>	M1 M1 A1	dep both M1s
$or f(1-x) = g(-x), f(1+x) = g(x)$ $\Rightarrow f(1+x) = f(1-x)$ $\Rightarrow f(x)$ is symmetrical about $x = 1$.	M1 E1 A1 [7]	$or f(1-x) = \frac{1}{\sqrt{2-2x-(1-x)^2}} = \frac{1}{\sqrt{2-2x-1+2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$ $f(1+x) = \frac{1}{\sqrt{2+2x-(1+x)^2}} = \frac{1}{\sqrt{2+2x-1-2x-x^2}} = \frac{1}{\sqrt{1-x^2}}$

4754 (C4) Applications of Advanced Mathematics

Section A

<p>1</p> $\frac{3x+2}{x(x^2+1)} = \frac{A}{x} + \frac{Bx+C}{(x^2+1)}$ $\Rightarrow 3x+2 = A(x^2+1) + (Bx+C)x$ $x=0 \Rightarrow 2 = A$ <p>coefft of x^2: $0 = A + B \Rightarrow B = -2$</p> <p>coefft of x: $3 = C$</p> $\Rightarrow \frac{3x+2}{x(x^2+1)} = \frac{2}{x} + \frac{3-2x}{(x^2+1)}$	M1 M1 B1 M1 A1 A1 [6]	correct partial fractions equating coefficients at least one of B, C correct
<p>2(i)</p> $(1+2x)^{1/3} = 1 + \frac{1}{3} \cdot 2x + \frac{\frac{1}{3} \cdot (-\frac{2}{3})}{2!} (2x)^2 + \dots$ $= 1 + \frac{2}{3}x - \frac{2}{18}4x^2 + \dots$ $= 1 + \frac{2}{3}x - \frac{4}{9}x^2 + \dots *$ <p>Next term $= \frac{\frac{1}{3} \cdot (-\frac{2}{3}) \cdot (-\frac{5}{3})}{3!} (2x)^3$</p> $= \frac{40}{81}x^3$ <p>Valid for $-1 < 2x < 1$ $\Rightarrow -\frac{1}{2} < x < \frac{1}{2}$</p>	M1 A1 E1 M1 A1 B1 [6]	binomial expansion correct unsimplified expression simplification www www
<p>3</p> $4\mathbf{j} - 3\mathbf{k} = \lambda \mathbf{a} + \mu \mathbf{b}$ $= \lambda(2\mathbf{i} + \mathbf{j} - \mathbf{k}) + \mu(4\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ $\Rightarrow 0 = 2\lambda + 4\mu$ $4 = \lambda - 2\mu$ $-3 = -\lambda + \mu$ $\Rightarrow \lambda = -2\mu, 2\lambda = 4 \Rightarrow \lambda = 2, \mu = -1$	M1 M1 A1 A1, A1 [5]	equating components at least two correct equations
<p>4</p> $\text{LHS} = \cot \beta - \cot \alpha$ $= \frac{\cos \beta}{\sin \beta} - \frac{\cos \alpha}{\sin \alpha}$ $= \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\sin \alpha \sin \beta}$ $= \frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta}$ <p>OR</p> $\text{RHS} = \frac{\sin(\alpha - \beta)}{\sin \alpha \sin \beta} = \frac{\sin \alpha \cos \beta}{\sin \alpha \sin \beta} - \frac{\cos \alpha \sin \beta}{\sin \alpha \sin \beta}$ $= \cot \beta - \cot \alpha$	M1 M1 E1 M1 M1 E1 [3]	cot = cos / sin combining fractions www using compound angle formula splitting fractions using cot=cos/sin

<p>5(i) Normal vectors $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$</p> <p>Angle between planes is θ, where</p> $\cos \theta = \frac{2 \times 1 + (-1) \times 0 + 1 \times (-1)}{\sqrt{2^2 + (-1)^2 + 1^2} \sqrt{1^2 + 0^2 + (-1)^2}}$ $= 1/\sqrt{12}$ $\Rightarrow \theta = 73.2^\circ \text{ or } 1.28 \text{ rads}$	B1 M1 M1 A1 [4]	scalar product finding invcos of scalar product divided by two modulæ
<p>(ii) $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$</p> $= \begin{pmatrix} 2+2\lambda \\ -\lambda \\ 1+\lambda \end{pmatrix}$ $\Rightarrow 2(2+2\lambda) - (-\lambda) + (1+\lambda) = 2$ $\Rightarrow 5 + 6\lambda = 2$ $\Rightarrow \lambda = -\frac{1}{2}$ <p>So point of intersection is $(1, \frac{1}{2}, \frac{1}{2})$</p>	B1 M1 A1 A1 [4]	
<p>6(i) $\cos \theta + \sqrt{3} \sin \theta = r \cos(\theta - \alpha)$</p> $= R \cos \theta \cos \alpha + R \sin \theta \sin \alpha$ $\Rightarrow R \cos \alpha = 1, R \sin \alpha = \sqrt{3}$ $\Rightarrow R^2 = 1^2 + (\sqrt{3})^2 = 4, R = 2$ $\tan \alpha = \sqrt{3}$ $\Rightarrow \alpha = \pi/3$	B1 M1 M1 A1 [4]	$R = 2$ equating correct pairs $\tan \alpha = \sqrt{3}$ o.e.
<p>(ii) derivative of $\tan \theta$ is $\sec^2 \theta$</p> $\int_0^{\frac{\pi}{3}} \frac{1}{(\cos \theta + \sqrt{3} \sin \theta)^2} d\theta = \int_0^{\frac{\pi}{3}} \frac{1}{4} \sec^2(\theta - \frac{\pi}{3}) d\theta$ $= \left[\frac{1}{4} \tan(\theta - \frac{\pi}{3}) \right]_0^{\frac{\pi}{3}}$ $= \frac{1}{4} (0 - (-\sqrt{3}))$ $= \sqrt{3}/4 *$	B1 M1 A1 E1 [4]	ft their α $\frac{1}{R^2} [\tan(\theta - \pi/3)]$ ft their R, α (in radians) www

Section B

<p>7(i) (A) $9 / 1.5 = 6$ hours (B) $18/1.5 = 12$ hours</p>	B1 B1 [2]	
<p>(ii) $\frac{d\theta}{dt} = -k(\theta - \theta_0)$ $\Rightarrow \int \frac{d\theta}{\theta - \theta_0} = \int -k dt$ $\Rightarrow \ln(\theta - \theta_0) = -kt + c$</p> $\theta - \theta_0 = e^{-kt+c}$ $\theta = \theta_0 + Ae^{-kt} *$	M1 A1 A1 M1 E1 [5]	separating variables $\ln(\theta - \theta_0)$ $-kt + c$ anti-logging correctly (with c) $A = e^c$
<p>(iii) $98 = 50 + Ae^0$ $\Rightarrow A = 48$ Initially $\frac{d\theta}{dt} = -k(98 - 50) = -48k = -1.5$ $\Rightarrow k = 0.03125 *$</p>	M1 A1 M1 E1 [4]	
<p>(iv) (A) $89 = 50 + 48e^{-0.03125t}$ $\Rightarrow 39/48 = e^{-0.03125t}$ $\Rightarrow t = \ln(39/48)/(-0.03125) = 6.64$ hours</p> <p>(B) $80 = 50 + 48e^{-0.03125t}$ $\Rightarrow 30/48 = e^{-0.03125t}$ $\Rightarrow t = \ln(30/48)/(-0.03125) = 15$ hours</p>	M1 M1 A1 M1 A1 [5]	equating taking lns correctly for either
(v) Models disagree more for greater temperature loss	B1 [1]	

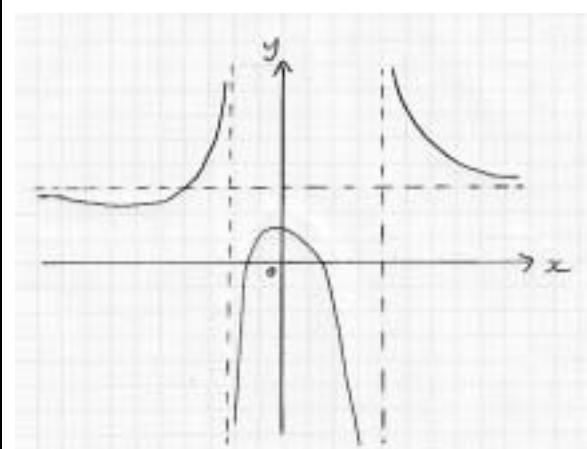
8(i) $\frac{dy}{d\theta} = 2\cos 2\theta - 2\sin \theta, \frac{dx}{d\theta} = 2\cos \theta$ $\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta}$ $\frac{dy}{dx} = \frac{2\cos 2\theta - 2\sin \theta}{2\cos \theta} = \frac{\cos 2\theta - \sin \theta}{\cos \theta}$	B1, B1 M1 A1 [4]	substituting for theirs oe
(ii) When $\theta = \pi/6$, $\frac{dy}{dx} = \frac{\cos \pi/3 - \sin \pi/6}{\cos \pi/6}$ $= \frac{1/2 - 1/2}{\sqrt{3}/2} = 0$ Coords of B: $x = 2 + 2\sin(\pi/6) = 3$ $y = 2\cos(\pi/6) + \sin(\pi/3) = 3\sqrt{3}/2$ $BC = 2 \times 3\sqrt{3}/2 = 3\sqrt{3}$	E1 M1 A1,A1 B1ft [5]	for either exact
(iii) (A) $y = 2\cos \theta + \sin 2\theta$ $= 2\cos \theta + 2\sin \theta \cos \theta$ $= 2\cos \theta(1 + \sin \theta)$ $= x\cos \theta *$ (B) $\sin \theta = \frac{1}{2}(x - 2)$ $\cos^2 \theta = 1 - \sin^2 \theta$ $= 1 - \frac{1}{4}(x - 2)^2$ $= 1 - \frac{1}{4}x^2 + x - 1$ $= (x - \frac{1}{4}x^2) *$ (C) Cartesian equation is $y^2 = x^2 \cos^2 \theta$ $= x^2(x - \frac{1}{4}x^2)$ $= x^3 - \frac{1}{4}x^4 *$	M1 E1 B1 M1 E1 M1 E1 [7]	$\sin 2\theta = 2\sin \theta \cos \theta$ squaring and substituting for x
(iv) $V = \int_0^4 \pi y^2 dx$ $= \pi \int_0^4 (x^3 - \frac{1}{4}x^4) dx$ $= \pi \left[\frac{1}{4}x^4 - \frac{1}{20}x^5 \right]_0^4$ $= \pi(64 - 51.2)$ $= 12.8\pi = 40.2 \text{ (m}^3\text{)}$	M1 B1 A1 [3]	need limits $\left[\frac{1}{4}x^4 - \frac{1}{20}x^5 \right]$ 12.8 π or 40 or better.

Comprehension

1	$\frac{400\pi d}{1000} = 10$ $d = \frac{25}{\pi} = 7.96$	M1 E1	
2	$V = \pi 20^2 h + \frac{1}{2}(\pi 20^2 H - \pi 20^2 h)$ $= \frac{1}{2}(\pi 20^2 H + \pi 20^2 h) \text{ cm}^3 = 200\pi(H + h) \text{ cm}^3$ $= \frac{1}{5}\pi(H + h) \text{ litres}$	M1 M1 E1	divide by 1000
3	$H = 5 + 40 \tan 30^\circ \text{ or } H = h + 40 \tan \theta$ $V = \frac{1}{5}\pi(H + h) = \frac{1}{5}\pi(10 + 40 \tan 30^\circ)$ $= 20.8 \text{ litres}$	B1 M1 A1	or evaluated including substitution of values
4	$V = \frac{1}{2} \times 80 \times (40 + 5)$ $\times 30 \text{ cm}^3 = 54 000 \text{ cm}^3$ $= 54 \text{ litres}$	M1 M1 A1	$\times 30$
5	(i) Accurate algebraic simplification to give $y^2 - 160y + 400 = 0$ (ii) Use of quadratic formula (or other method) to find other root: $d = 157.5 \text{ cm}$. This is greater than the height of the tank so not possible	B1 M1 A1 E1	
6	$y = 10$ Substitute for y in (4): $V = \frac{1}{1000} \int_0^{100} 375 dx$ $V = \frac{1}{1000} \times 37500 = 37.5 *$	B1 M1 E1 [18]	

4755 (FP1) Further Concepts for Advanced Mathematics

Section A


1(i)	$z = \frac{6 \pm \sqrt{36 - 40}}{2}$ $\Rightarrow z = 3 + j \text{ or } z = 3 - j$	M1 A1 [2]	Use of quadratic formula/completing the square For both roots
1(ii)	$ 3 + j = \sqrt{10} = 3.16 \text{ (3s.f.)}$ $\arg(3 + j) = \arctan\left(\frac{1}{3}\right) = 0.322 \text{ (3s.f.)}$ $\Rightarrow \text{roots are } \sqrt{10}(\cos 0.322 + j\sin 0.322)$ $\text{and } \sqrt{10}(\cos 0.322 - j\sin 0.322)$ $\text{or } \sqrt{10}(\cos(-0.322) + j\sin(-0.322))$	M1 M1 A1 [3]	Method for modulus Method for argument (both methods must be seen following A0) One mark for both roots in modulus-argument form – accept surd and decimal equivalents and (r, θ) form. Allow $\pm 18.4^\circ$ for θ .
2	$2x^2 - 13x + 25 = A(x-3)^2 - B(x-2) + C$ $\Rightarrow 2x^2 - 13x + 25$ $= Ax^2 - (6A+B)x + (2B+C) + 9A$ $A = 2$ $B = 1$ $C = 5$	B1 M1 A1 A1 [4]	For A=2 Attempt to compare coefficients of x^1 or x^0 , or other valid method. For B and C, cao.
3(i)	$\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$	B1 [1]	
3(ii)	$\begin{pmatrix} 2 & -1 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 3 & 1 \\ 0 & 0 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 0 & 4 & 4 & 0 \\ 0 & 0 & 6 & 6 \end{pmatrix}$ $\Rightarrow A'' = (4, 0), B'' = (4, 6), C'' = (0, 6)$	M1 A1 [2]	Applying matrix to column vectors, with a result. All correct
3(iii)	Stretch factor 4 in x -direction. Stretch factor 6 in y -direction	B1 B1 [2]	Both factor and direction for each mark. SC1 for “enlargement”, not stretch.

4	$\arg(z - (2 - 2j)) = \frac{\pi}{4}$	B1 B1 B1 [3]	Equation involving $\arg(\text{complex variable})$. Argument (complex expression) = $\frac{\pi}{4}$ All correct
5	Sum of roots = $\alpha + (-3\alpha) + \alpha + 3 = 3 - \alpha = 5$ $\Rightarrow \alpha = -2$ Product of roots $= -2 \times 6 \times 1 = -12$ Product of roots in pairs $= -2 \times 6 + (-2) \times 1 + 6 \times 1 = -8$ $\Rightarrow p = -8$ and $q = 12$ Alternative solution $(x-\alpha)(x+3\alpha)(x-\alpha-3)$ $= x^3 + (\alpha-3)x^2 + (-5\alpha^2-6\alpha)x + 3\alpha^3 + 9\alpha^2$ $\Rightarrow \alpha = -2,$ $p = -8$ and $q = 12$	M1 A1 M1 M1 A1 A1 [6]	Use of sum of roots Attempt to use product of roots Attempt to use sum of products of roots in pairs One mark for each, ft if α incorrect
6	$\begin{aligned} \sum_{r=1}^n [r(r^2 - 3)] &= \sum_{r=1}^n r^3 - 3 \sum_{r=1}^n r \\ &= \frac{1}{4} n^2 (n+1)^2 - \frac{3}{2} n(n+1) \\ &= \frac{1}{4} n(n+1)(n(n+1)-6) \\ &= \frac{1}{4} n(n+1)(n^2 + n - 6) = \frac{1}{4} n(n+1)(n+3)(n-2) \end{aligned}$	M1 M1 A2 M1 A1 [6]	Attempt to multiply factors Matching coefficient of x^2 , cao. Matching other coefficients One mark for each, ft incorrect α . Separate into separate sums. (may be implied) Substitution of standard result in terms of n . For two correct terms (indivisible) Attempt to factorise with $n(n+1)$. Correctly factorised to give fully factorised form

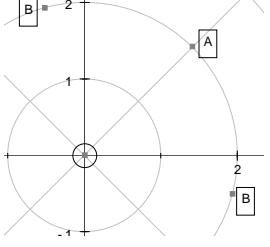
7	When $n = 1$, $6(3^n - 1) = 12$, so true for $n = 1$	B1	
	Assume true for $n = k$	E1	Assume true for k
	$12 + 36 + 108 + \dots + (4 \times 3^k) = 6(3^k - 1)$		
	$\Rightarrow 12 + 36 + 108 + \dots + (4 \times 3^{k+1})$	M1	Add correct next term to both sides
	$= 6(3^k - 1) + (4 \times 3^{k+1})$	M1	Attempt to factorise with a factor 6
	$= 6 \left[(3^k - 1) + \frac{2}{3} \times 3^{k+1} \right]$	A1	c.a.o. with correct simplification
	$= 6 \left[3^k - 1 + 2 \times 3^k \right]$	E1	Dependent on A1 and first E1
	$= 6(3^{k+1} - 1)$	E1	Dependent on B1 and second E1
But this is the given result with $k + 1$ replacing k . Therefore if it is true for $n = k$, it is true for $n = k + 1$.			
Since it is true for $n = 1$, it is true for $n = 1, 2, 3, \dots$ and so true for all positive integers.		[7]	

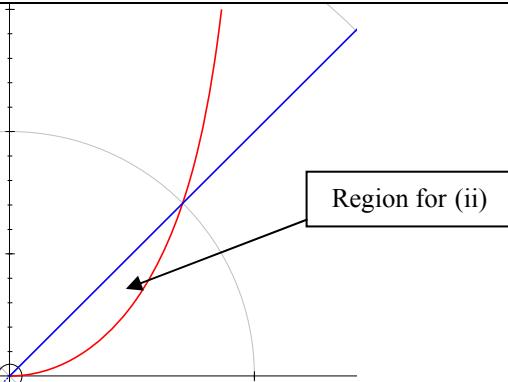
Section A Total: 36

Section B

8(i)	$(\sqrt{3}, 0), (-\sqrt{3}, 0) \left(0, \frac{3}{8}\right)$	B1 B1 [2]	Intercepts with x axis (both) Intercept with y axis SC1 if seen on graph or if $x = \pm\sqrt{3}$, $y = 3/8$ seen without $y = 0, x = 0$ specified.
8(ii)	$x = 4, x = -2, y = 1$	B3 [3]	Minus 1 for each error. Accept equations written on the graph.
8(iii)		B1 B1B1 B1 [4]	Correct approaches to vertical asymptotes, LH and RH branches LH and RH branches approaching horizontal asymptote On LH branch $0 < y < 1$ as $x \rightarrow -\infty$.
8(iv)	$-2 < x \leq -\sqrt{3}$ and $4 > x \geq \sqrt{3}$	B1 B2 [3]	LH interval and RH interval correct (Award this mark even if errors in inclusive/exclusive inequality signs) All inequality signs correct, minus 1 each error

9(i)	$\alpha + \beta = 3$	B1	
	$\alpha\alpha^* = (1+j)(1-j) = 2$	M1	Attempt to multiply $(1+j)(1-j)$
	$\frac{\alpha + \beta}{\alpha} = \frac{3}{1+j} = \frac{3(1-j)}{(1+j)(1-j)} = \frac{3}{2} - \frac{3}{2}j$	A1 M1 A1	Multiply top and bottom by $1-j$
9(ii)		[5]	
	$(z - (1+j))(z - (1-j))$ $= z^2 - 2z + 2$	M1 A1 [2]	Or alternative valid methods (Condone no “=0” here)
9(iii)	$1-j$ and $2+j$	B1	For both
	Either $(z - (2-j))(z - (2+j))$ $= z^2 - 4z + 5$	M1	For attempt to obtain an equation using the product of linear factors involving complex conjugates
	$(z^2 - 2z + 2)(z^2 - 4z + 5)$ $= z^4 - 6z^3 + 15z^2 - 18z + 10$	M1	Using the correct four factors
	So equation is $z^4 - 6z^3 + 15z^2 - 18z + 10 = 0$	A2 [5]	All correct, -1 each error (including omission of “=0”) to min of 0
	Or alternative solution Use of $\sum \alpha = 6$, $\sum \alpha\beta = 15$, $\sum \alpha\beta\gamma = 18$ and $\alpha\beta\gamma\delta = 10$	M1	Use of relationships between roots and coefficients.
	to obtain the above equation.	A3 [5]	All correct, -1 each error, to min of 0

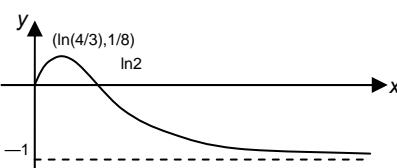

10	(i)	$\alpha = 3 \times -5 + 4 \times 11 + -1 \times 29 = 0$ $\beta = -2 \times -7 + 7 \times (5 + k) + -3 \times 7 = 28 + 7k$	B1 M1 A1	Attempt at row 3 x column 3
	(ii)	$\mathbf{AB} = \begin{pmatrix} 42 & 0 & 0 \\ 0 & 42 & 0 \\ 0 & 0 & 42 \end{pmatrix}$	[3] B2 [2]	Minus 1 each error to min of 0
	(iii)	$\mathbf{A}^{-1} = \frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix}$	M1 B1 A1 [3]	Use of \mathbf{B} $\frac{1}{42}$ Correct inverse, allow decimals to 3 sf
	(iv)	$\begin{aligned} \frac{1}{42} \begin{pmatrix} 11 & -5 & -7 \\ 1 & 11 & 7 \\ -5 & 29 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ -9 \\ 26 \end{pmatrix} &= \begin{pmatrix} x \\ y \\ z \end{pmatrix} \\ \frac{1}{42} \begin{pmatrix} -126 \\ 84 \\ -84 \end{pmatrix} &= \begin{pmatrix} -3 \\ 2 \\ -2 \end{pmatrix} \\ x = -3, y = 2, z = -2 \end{aligned}$	M1 A3 [4]	Attempt to pre-multiply by \mathbf{A}^{-1} SC B2 for Gaussian elimination with 3 correct solutions, -1 each error to min of 0 Minus 1 each error

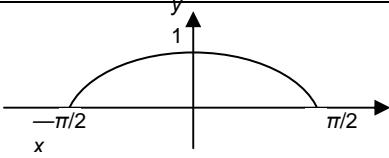

Section B Total: 36

Total: 72

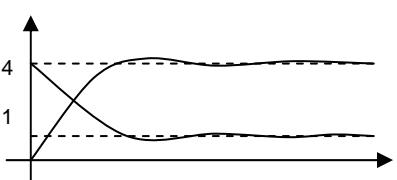
4756 (FP2) Further Methods for Advanced Mathematics

1 (a)(i)	$f(x) = \cos x$ $f(0) = 1$ $f'(x) = -\sin x$ $f'(0) = 0$ $f''(x) = -\cos x$ $f''(0) = -1$ $f'''(x) = \sin x$ $f'''(0) = 0$ $f''''(x) = \cos x$ $f''''(0) = 1$ $\Rightarrow \cos x = 1 - \frac{1}{2}x^2 + \frac{1}{24}x^4 \dots$	M1 A1 A1 A1 (ag) 4	Derivatives cos, sin, cos, sin, cos Correct signs Correct values. Dep on previous A1 www
	$\cos x \times \sec x = 1$ $\Rightarrow \left(1 - \frac{1}{2}x^2 + \frac{1}{24}x^4\right)(1 + ax^2 + bx^4) = 1$ $\Rightarrow 1 + \left(a - \frac{1}{2}\right)x^2 + \left(b - \frac{1}{2}a + \frac{1}{24}\right)x^4 = 1$ $\Rightarrow a - \frac{1}{2} = 0, b - \frac{1}{2}a + \frac{1}{24} = 0$ $\Rightarrow a = \frac{1}{2}$ $b = \frac{5}{24}$	E1 M1 A1 B1 B1 5	o.e. Multiply to obtain terms in x^2 and x^4 Terms correct in any form (may not be collected) Correctly obtained by any method: must not just be stated Correctly obtained by any method
	$y = \arctan \frac{x}{a}$ $\Rightarrow x = a \tan y$ $\Rightarrow \frac{dx}{dy} = a \sec^2 y$ $\Rightarrow \frac{dx}{dy} = a(1 + \tan^2 y)$ $\Rightarrow \frac{dy}{dx} = \frac{a}{a^2 + x^2}$	M1 A1 A1 A1 (ag) 4	(a) $\tan y =$ and attempt to differentiate both sides Or $\sec^2 y \frac{dy}{dx} = \frac{1}{a}$ Use $\sec^2 y = 1 + \tan^2 y$ o.e. www SC1: Use derivative of $\arctan x$ and Chain Rule (properly shown)
	$\int_{-2}^2 \frac{1}{4+x^2} dx = \left[\frac{1}{2} \arctan \frac{x}{2} \right]_{-2}^2$ $= \frac{\pi}{4}$	M1 A1 A1 3	arctan alone, or any tan substitution $\frac{1}{2}$ and $\frac{x}{2}$, or $\int \frac{1}{2} d\theta$ without limits Evaluated in terms of π
	$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{4}{1+4x^2} dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\frac{1}{4}+x^2} dx$ $= \left[2 \arctan(2x) \right]_{-\frac{1}{2}}^{\frac{1}{2}}$ $= \pi$	M1 A1 A1 3	arctan alone, or any tan substitution 2 and $2x$, or $\int 2d\theta$ without limits Evaluated in terms of π
			19


2 (i)	Modulus = 1 Argument = $\frac{\pi}{3}$	B1 B1 2	Must be separate Accept 60° , 1.05°
(ii)	<p> $a = 2 e^{\frac{j\pi}{4}}$ $\arg b = \frac{\pi}{4} \pm \frac{\pi}{3}$ $b = 2 e^{\frac{-j\pi}{12}}, 2 e^{\frac{7j\pi}{12}}$ </p>	G2,1,0 B1 M1 A1ft 5	G2: A in first quadrant, argument $\approx \frac{\pi}{4}$ B in second quadrant, same mod B' in fourth quadrant, same mod Symmetry G1: 3 points and at least 2 of above, or B, B' on axes, or BOB' straight line, or BOB' reflex Must be in required form (accept $r = 2$, $\theta = \pi/4$) Rotate by adding (or subtracting) $\pi/3$ to (or from) argument. Must be $\pi/3$ Both. Ft value of r for a . Must be in required form, but don't penalise twice
(iii)	$z_1^6 = \left(\sqrt{2}e^{\frac{j\pi}{3}}\right)^6 = (\sqrt{2})^6 e^{2j\pi}$ $= 8$ <p>Others are $re^{j\theta}$ where $r = \sqrt{2}$ and $\theta = -\frac{2\pi}{3}, -\frac{\pi}{3}, 0, \frac{2\pi}{3}, \pi$</p>	M1 A1 (ag) M1 A1 6	$(\sqrt{2})^6 = 8$ or $\frac{\pi}{3} \times 6 = 2\pi$ seen www "Add" $\frac{\pi}{3}$ to argument more than once Correct constant r and five values of θ . Accept θ in $[0, 2\pi]$ or in degrees 6 points on vertices of regular hexagon Correctly positioned (2 roots on real axis). Ignore scales SC1 if G0 and 5 points correctly plotted
(iv)	$w = z_1 e^{-\frac{j\pi}{12}} = \sqrt{2}e^{\frac{j\pi}{3}} e^{-\frac{j\pi}{12}} = \sqrt{2}e^{\frac{j\pi}{4}}$ $= \sqrt{2} \left(\cos \frac{\pi}{4} + j \sin \frac{\pi}{4} \right)$ $= 1 + j$	M1 A1 G1 3	$\arg w = \frac{\pi}{3} - \frac{\pi}{12}$ Or B2 Same modulus as z_1
(v)	$w^6 = \left(\sqrt{2}e^{\frac{j\pi}{4}}\right)^6 = 8e^{\frac{3j\pi}{2}}$ $= -8j$	M1 A1 2	Or $z_1^6 e^{-\frac{j\pi}{2}} = 8 e^{-\frac{j\pi}{2}}$ cao. Evaluated


3(a)(i)		G1 G1 G1	r increasing with θ Correct for $0 \leq \theta \leq \pi/3$ (ignore extra) Gradient less than 1 at O
(ii)	$\text{Area} = \int_0^{\frac{\pi}{4}} \frac{1}{2} r^2 d\theta = \frac{1}{2} a^2 \int_0^{\frac{\pi}{4}} \tan^2 \theta d\theta$ $= \frac{1}{2} a^2 \int_0^{\frac{\pi}{4}} \sec^2 \theta - 1 d\theta$ $= \frac{1}{2} a^2 [\tan \theta - \theta]_0^{\frac{\pi}{4}}$ $= \frac{1}{2} a^2 \left(1 - \frac{\pi}{4}\right)$	M1 M1 A1 A1 G1	Integral expression involving $\tan^2 \theta$ Attempt to express $\tan^2 \theta$ in terms of $\sec^2 \theta$ $\tan \theta - \theta$ and limits 0, $\frac{\pi}{4}$ A0 if e.g. triangle – this answer Mark region on graph
(b)(i)	Characteristic equation is $(0.2 - \lambda)(0.7 - \lambda) - 0.24 = 0$ $\Rightarrow \lambda^2 - 0.9\lambda - 0.1 = 0$ $\Rightarrow \lambda = 1, -0.1$ When $\lambda = 1$, $\begin{pmatrix} -0.8 & 0.8 \\ 0.3 & -0.3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\Rightarrow -0.8x + 0.8y = 0, 0.3x - 0.3y = 0$ $\Rightarrow x - y = 0$, eigenvector is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ o.e. When $\lambda = -0.1$, $\begin{pmatrix} 0.3 & 0.8 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\Rightarrow 0.3x + 0.8y = 0$ \Rightarrow eigenvector is $\begin{pmatrix} 8 \\ -3 \end{pmatrix}$ o.e.	M1 A1 M1 A1 M1 A1 M1 A1	$(\mathbf{M} - \lambda \mathbf{I})\mathbf{x} = \mathbf{x}$ M0 below At least one equation relating x and y At least one equation relating x and y
(ii)	$\mathbf{Q} = \begin{pmatrix} 1 & 8 \\ 1 & -3 \end{pmatrix}$ $\mathbf{D} = \begin{pmatrix} 1 & 0 \\ 0 & -0.1 \end{pmatrix}$	B1ft B1ft B1	B0 if \mathbf{Q} is singular. Must label correctly If order consistent. Dep on B1B1 earned

4 (a)(i)	$\cosh^2 x = \left[\frac{1}{2}(e^x + e^{-x}) \right]^2 = \frac{1}{4}(e^{2x} + 2 + e^{-2x})$ $\sinh^2 x = \left[\frac{1}{2}(e^x - e^{-x}) \right]^2 = \frac{1}{4}(e^{2x} - 2 + e^{-2x})$ $\cosh^2 x - \sinh^2 x = \frac{1}{4}(2 + 2) = 1$	M1 A1 (ag)	Both expressions (M0 if no “middle” term) and subtraction www
	OR $\cosh x + \sinh x = e^x$ $\cosh x - \sinh x = e^{-x}$ $\cosh^2 x - \sinh^2 x = e^x \times e^{-x} = 1$	A1	Both, and multiplication Completion
(ii)(A)	$\cosh x = \sqrt{1 + \sinh^2 x} = \sqrt{1 + \tan^2 y}$ $= \sec y$ $\Rightarrow \tanh x = \frac{\sinh x}{\cosh x} = \frac{\tan y}{\sec y} = \sin y$	M1 A1 A1 (ag)	Use of $\cosh^2 x = 1 + \sinh^2 x$ and $\sinh x = \tan y$ www
(ii)(B)	$\text{arsinh } x = \ln(x + \sqrt{1+x^2})$ $\Rightarrow \text{arsinh}(\tan y) = \ln(\tan y + \sqrt{1+\tan^2 y})$ $\Rightarrow x = \ln(\tan y + \sec y)$	M1 A1 A1 (ag)	Attempt to use ln form of arsinh www
	OR $\sinh x = \tan y \Rightarrow \frac{e^x - e^{-x}}{2} = \tan y$ $\Rightarrow e^{2x} - 2e^x \tan y - 1 = 0$ $\Rightarrow e^x = \tan y \pm \sqrt{\tan^2 y + 1}$ $\Rightarrow x = \ln(\tan y + \sec y)$	M1 A1 A1	Arrange as quadratic and solve for e^x o.e. www
(b)(i)	$y = \text{artanh } x \Rightarrow x = \tanh y$ $\Rightarrow \frac{dx}{dy} = \text{sech}^2 y$ $\Rightarrow \frac{dy}{dx} = \frac{1}{\text{sech}^2 y} = \frac{1}{1 - \tanh^2 y} = \frac{1}{1 - x^2}$ Integral = $\left[\text{artanh } x \right]_{-\frac{1}{2}}^{\frac{1}{2}}$ $= 2 \text{ artanh } \frac{1}{2}$	M1 A1 M1 A1 (ag)	tanh y = and attempt to differentiate Or $\text{sech}^2 y \frac{dy}{dx} = 1$ Or B2 for $\frac{1}{1-x^2}$ www artanh or any tanh substitution www
(ii)	$\frac{1}{1-x^2} = \frac{1}{(1-x)(1+x)} = \frac{A}{1-x} + \frac{B}{1+x}$ $\Rightarrow 1 = A(1+x) + B(1-x)$ $\Rightarrow A = \frac{1}{2}, B = \frac{1}{2}$ $\Rightarrow \int \frac{1}{1-x^2} dx = \int \frac{\frac{1}{2}}{1-x} + \frac{\frac{1}{2}}{1+x} dx$ $= -\frac{1}{2} \ln 1-x + \frac{1}{2} \ln 1+x + c \text{ or } \frac{1}{2} \ln \left \frac{1+x}{1-x} \right + c \text{ o.e.}$	M1 A1 M1 A1	Correct form of partial fractions and attempt to evaluate constants Log integrals www. Condone omitted modulus signs and constant After 0 scored, SC1 for correct answer
(iii)	$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1-x^2} dx = \left[-\frac{1}{2} \ln 1-x + \frac{1}{2} \ln 1+x \right]_{-\frac{1}{2}}^{\frac{1}{2}} = \ln 3$ $\Rightarrow 2 \text{ artanh } \frac{1}{2} = \ln 3 \Rightarrow \text{artanh } \frac{1}{2} = \frac{1}{2} \ln 3$	M1 A1 (ag)	Substitution of $\frac{1}{2}$ and $-\frac{1}{2}$ seen anywhere (or correct use of 0, $\frac{1}{2}$) www


5 (i)		G1 G1 G1	Symmetry in horizontal axis (3, 0) to (0, 0) (0, 0) to (0, 1)
		3	
(ii)(A)	$a > 0.5$	B1	
	$a < -0.5$	B1	
(ii)(B)	Circle: r is constant	B1	Shape and reason
(ii)(C)	The two loops get closer together	B1	
	The shape becomes more nearly circular	B1	
(ii)(D)	Cusp	B1	
	$a = -0.5$	B1	
		7	
(iii)	$1 + 2a \cos \theta = 0 \Rightarrow \cos \theta = -\frac{1}{2a}$ If $a > 0.5$, $-1 < -\frac{1}{2a} < 0$ and there are two values of θ in $[0, 2\pi]$, $\pi - \arccos\left(\frac{1}{2a}\right)$ and $\pi + \arccos\left(\frac{1}{2a}\right)$ These differ by $2 \arccos\left(\frac{1}{2a}\right)$ $\arccos\left(\frac{1}{2a}\right) = \arctan \sqrt{4a^2 - 1}$ Tangents are $y = x \sqrt{4a^2 - 1}$ and $y = -x \sqrt{4a^2 - 1}$ $\sqrt{4a^2 - 1}$ is real for $a > 0.5$ if $a > 0$	B1 M1 A1 (ag) M1 A1 A1 A1ft E1	Equation Relating \arccos to \arctan by triangle or $\tan^2 \theta = \sec^2 \theta - 1$ Negative of above
		8	18

4758 Differential Equations

1(i)	$\alpha^3 + 2\alpha^2 - \alpha - 2 = 0$ $(-2)^3 + 2(-2)^2 - (-2) - 2 = 0$ $(\alpha + 2)(\alpha^2 - 1) = 0$ $\alpha = -2, \pm 1$ $y = Ae^{-2x} + Be^{-x} + Ce^x$	B1 E1 Or factorise M1 Solve A1 M1 Attempt CF F1 CF for their three roots	6
(ii)	PI $y = \frac{2}{-2} = -1$ GS $y = -1 + Ae^{-2x} + Be^{-x} + Ce^x$	M1 Constant PI A1 Correct PI F1 GS = PI + CF	3
(iii)	$e^x \rightarrow \infty$ as $x \rightarrow \infty$ so finite limit $\Rightarrow C = 0$ $x = 0, y = 0 \Rightarrow 0 = -1 + A + B$ $x = \ln 2, y = 0 \Rightarrow 0 = -1 + \frac{1}{4}A + \frac{1}{2}B$ Solving gives $A = -2, B = 3$ $y = -2e^{-2x} + 3e^{-x} - 1$	M1 Consider as $x \rightarrow \infty$ F1 Must be shown, not just stated M1 Use condition M1 Use condition M1 E1 Convincingly shown	6
(iv)	$y = -(2e^{-x} - 1)(e^{-x} - 1)$ $y = 0 \Leftrightarrow e^{-x} = \frac{1}{2}$ or 1 $\Leftrightarrow x = \ln 2$ or 0 $\frac{dy}{dx} = 4e^{-2x} - 3e^{-x} = e^{-x}(4e^{-x} - 3)$ $\frac{dy}{dx} = 0 \Leftrightarrow e^{-x} = \frac{3}{4}$ as $e^{-x} \neq 0$ $\Leftrightarrow x = \ln \frac{4}{3}$ Stationary point at $(\ln \frac{4}{3}, \frac{1}{8})$	M1 Solve E1 Convincingly show no other roots M1 Solve E1 Show only one root A1	5
(v)		B1 Through $(0, 0)$ B1 Through $(\ln 2, 0)$ B1 Stationary point at their answer to (iv) B1 $y \rightarrow -1$ as $x \rightarrow \infty$	4

2(i)	$\frac{dy}{dx} + y \tan x = x \cos x$ $I = \exp \int \tan x dx$ $= \exp \ln \sec x$ $= \sec x$ $\frac{d}{dx}(y \sec x) = x$ $y \sec x = \frac{1}{2} x^2 + A$ $y = (\frac{1}{2} x^2 + A) \cos x$ $x = 0, y = 1 \Rightarrow A = 1$ $y = (\frac{1}{2} x^2 + 1) \cos x$	M1 Rearrange M1 Attempt IF A1 Correct IF A1 Simplified M1 Multiply and recognise derivative M1 Integrate A1 RHS F1 Divide by their IF (must divide constant) M1 Use condition F1 Follow their non-trivial GS	10
(ii)		B1 Shape correct for $-\frac{1}{2}\pi < x < \frac{1}{2}\pi$ B1 Through (0,1)	2
(iii)	$y' = \frac{x \cos x \sin x - y \sin x}{\cos x}$ $y'(0) = 0$ $y(0.1) = 1$ $y'(0.1) = -0.090351$ $y(0.2) = 1 + 0.1 \times -0.090351 = 0.990965$	M1 Rearrange B1 B1 B1 M1 Use of algorithm for second step A1 3sf or better	6
(iv)	$I = \sec x$ $\frac{d}{dx}(y \sec x) = x \tan x$ $[y \sec x]_{x=0}^{x=0.2} = \int_0^{0.2} x \tan x dx$ $y(0.2) \sec(0.2) - 1 \times \sec 0 \approx 0.002688$ $\Rightarrow y(0.2) \approx 0.982701$	M1 Same IF as in (i) or attempt from scratch A1 M1 Integrate A1 Accept no limits M1 Substitute limits (both sides) A1 Awrt 0.983	6

3(i)	$60v \frac{dv}{dx} = 60g - \frac{1}{4}v^2$ $\frac{v}{240g - v^2} \frac{dv}{dx} = \frac{1}{240}$ $\int \frac{v}{240g - v^2} dv = \int \frac{1}{240} dx$ $-\frac{1}{2} \ln 240g - v^2 = \frac{1}{240}x + c$ $240g - v^2 = Ae^{\frac{x}{120}}$ $x = 0, v = 0 \Rightarrow A = 240g$ $v^2 = 240g(1 - e^{-\frac{x}{120}})$	M1 N2L A1 Correct N2L equation E1 Convincingly shown M1 Integrate A1 $\ln 240g - v^2 $ seen A1 RHS M1 Rearrange, dealing properly with constant M1 Use condition A1 Cao	9
(ii)	$x = 10 \Rightarrow v = \sqrt{240g(1 - e^{-\frac{10}{120}})} \approx 13.71$	E1 Convincingly shown	1
(iii)	$60 \frac{dv}{dt} = 60g - 60v - 90g$ $\frac{dv}{dt} = -\frac{1}{2}g - v \text{ or } \frac{dv}{dt} + v = -\frac{1}{2}g$	M1 N2L A1 Correct DE	
Solving DE (three alternative methods):			
	$\int \frac{dv}{v + \frac{1}{2}g} = \int -dt$ $\ln v + \frac{1}{2}g = -t + k$ $v + \frac{1}{2}g = Ae^{-t}$	M1 Separate M1 Integrate M1 LHS M1 Rearrange, dealing properly with constant	
	or		
	$\alpha + 1 = 0 \Rightarrow \alpha = -1$ $CF \ Ae^{-t}$ $PI \ -\frac{1}{2}g$ $v = Ae^{-t} - \frac{1}{2}g$	M1 Solve auxiliary equation M1 CF for their root M1 Attempt to find constant PI A1 All correct	
	or		
	$I = e^t$ $\frac{d}{dt}(e^t v) = -\frac{1}{2}g e^t$ $e^t v = -\frac{1}{2}g e^t + A$ $v = Ae^{-t} - \frac{1}{2}g$	M1 Attempt integrating factor M1 Multiply M1 Integrate A1 All correct	
	$v = 13.71, t = 0 \Rightarrow 13.71 = A - \frac{1}{2}g \Rightarrow A = 18.61$ $v = 18.61e^{-t} - 4.9$	M1 Use condition E1 Complete argument	8

(iv) At greatest depth, $v = 0$	M1	Set velocity to zero and attempt to solve	
$\Rightarrow e^{-t} = \frac{4.9}{18.61} \Rightarrow t = 1.3345$	A1		
Depth = $\int_0^{1.3345} (18.61e^{-t} - 4.9) dt$	M1	Integrate	
$= [-18.61e^{-t} - 4.9t]_0^{1.3345}$	A1	Ignore limits	
$= 7.17 \text{ m}$	M1	Use limits (or evaluate constant and substitute for t)	
	A1	All correct	6
4(i) $\begin{cases} -3x - y + 7 = 0 \\ 2x - y + 2 = 0 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 4 \end{cases}$	B1		
	B1		2
(ii) $\ddot{x} = -3\dot{x} - \dot{y}$	M1	Differentiate	
$= -3\dot{x} - (2x - y + 2)$	M1	Substitute for \dot{y}	
$y = -3x + 7 - \dot{x}$	M1	y in terms of x, \dot{x}	
$\ddot{x} = -3\dot{x} - 2x - 3x + 7 - \dot{x} - 2$	M1	Substitute for y	
$\Rightarrow \ddot{x} + 4\dot{x} + 5x = 5$	E1	Complete argument	5
(iii) $\alpha^2 + 4\alpha + 5 = 0$	M1	Auxiliary equation	
$\Rightarrow \alpha = -2 \pm i$	A1		
CF $e^{-2t}(A \cos t + B \sin t)$	M1	CF for complex roots	
PI $x = \frac{5}{5} = 1$	F1	CF for their roots	
GS $x = 1 + e^{-2t}(A \cos t + B \sin t)$	B1		
	F1	GS = PI + CF with two arbitrary constants	
			6
(iv) $y = -3x + 7 - \dot{x}$	M1	y in terms of x, \dot{x}	
$\dot{x} = -2e^{-2t}(A \cos t + B \sin t) + e^{-2t}(-A \sin t + B \cos t)$	M1	Differentiate their x (product rule)	
$y = 4 + e^{-2t}((A - B) \sin t - (A + B) \cos t)$	A1	Constants must correspond	3
(v) $1 + A = 4$	M1	Use condition on x	
$4 - A - B = 0$	M1	Use condition on y	
$A = 3, B = 1$			
$x = 1 + e^{-2t}(3 \cos t + \sin t)$			
$y = 4 + e^{-2t}(2 \sin t - 4 \cos t)$	A1	Both solutions	3
(vi)	B1	$(0, 4)$	
	B1	$\rightarrow 1$	
	B1	$(0, 0)$	
	B1	$\rightarrow 4$	
As the solutions approach the asymptotes, the gradients approach zero.	B1	Must refer to gradients	
			5

4761 Mechanics 1

Q 1		Mark	Comment	Sub
(i)	6 m s^{-1} 4 m s^{-2}	B1 B1	Neglect units. Neglect units.	2
(ii)	$v(5) = 6 + 4 \times 5 = 26$ $s(5) = 6 \times 5 + 0.5 \times 4 \times 25 = 80$ so 80 m	B1 M1 A1	Or equiv. FT (i) and their $v(5)$ where necessary. cao	3
(iii)	distance is $80 + 26 \times (15 - 5) + 0.5 \times 3 \times (15 - 5)^2 = 490 \text{ m}$	M1 M1 A1	Their 80 + attempt at distance with $a = 3$ Appropriate <i>uvast</i> . Allow $t = 15$. FT their $v(5)$. cao	3
		8		

Q 2		Mark	Comment	Sub
(i)		M1	Recognising that areas under graph represent changes in velocity in (i) or (ii) or equivalent <i>uvast</i> .	
	When $t = 2$, velocity is $6 + 4 \times 2 = 14$	A1		2
(ii)	Require velocity of -6 so must inc by -20 $-8 \times (t - 2) = -20$ so $t = 4.5$	M1 F1	FT $\pm(6 + \text{their } 14)$ used in any attempt at area/ <i>uvast</i> FT their 14 [Award SC2 for 4.5 WW and SC1 for 2.5 WW]	2
		4		

Q 3		Mark	Comment	Sub
(i)	$\mathbf{F} + \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$ $\mathbf{F} = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$	M1 B1 B1 A1	N2L. $F = ma$. All forces present Addition to get resultant. May be implied. For $\mathbf{F} \pm \begin{pmatrix} -4 \\ 8 \end{pmatrix} = 6 \begin{pmatrix} 2 \\ 3 \end{pmatrix}$. SC4 for $\mathbf{F} = \begin{pmatrix} 16 \\ 10 \end{pmatrix}$ WW. If magnitude is given, final mark is lost unless vector answer is clearly intended.	4
(ii)	$\arctan\left(\frac{16}{10}\right)$ 57.994... so 58.0° (3 s. f.)	M1 A1	Accept equivalent and FT their \mathbf{F} only. Do not accept wrong angle. Accept $360 - \arctan\left(\frac{16}{10}\right)$ cao. Accept 302° (3 s.f.)	2
		6		

Q4		Mark	Comment	Sub
	either We need $3.675 = 9.8t - 4.9t^2$	*M1	Equating given expression or their attempt at y to ± 3.675 . If they attempt y , allow sign errors, $g = 9.81$ etc. and $u = 35$.	
	Solving $4t^2 - 8t + 3 = 0$	M1*	Dependent. Any method of solution of a 3 term quadratic.	
	gives $t = 0.5$ or $t = 1.5$	A1 F1	cao. Accept only the larger root given Both roots shown and larger chosen provided both +ve. Dependent on 1 st M1. [Award M1 M1 A1 for 1.5 seen WW]	
	or	M1	Complete method for total time from motion in separate parts. Allow sign errors, $g = 9.81$ etc. Allow $u = 35$ initially only.	
	Time to greatest height $0 = 35 \times 0.28 - 9.8t$ so $t = 1$	A1	Time for 1 st part	
	Time to drop is 0.5 total is 1.5 s	A1 A1	Time for 2 nd part cao	
	then Horiz distance is $35 \times 0.96t$ So distance is $35 \times 0.96 \times 1.5 = 50.4$ m	B1 F1	Use of $x = u \cos \alpha t$. May be implied. FT their quoted t provided it is positive.	6
		6		

Q5		Mark	Comment	Sub
(i)	For the parcel	M1	Applying N2L to the parcel. Correct mass. Allow $F = mga$. Condone missing force but do not allow spurious forces.	
	\uparrow N2L $55 - 5g = 5a$ $a = 1.2$ so 1.2 m s^{-2}	A1 A1	Allow only sign error(s). Allow -1.2 only if sign convention is clear.	3
(ii)	$R - 80g = 80 \times 1.2$ or $R - 75g - 55 = 75 \times 1.2$	M1	N2L. Must have correct mass. Allow only sign errors.	
	$R = 880$ so 880 N	A1	FT their a cao [NB beware spurious methods giving 880 N]	2
		5		

Q6		Mark	Comment	Sub
	<p>Method 1</p> $\uparrow v_A = 29.4 - 9.8T \quad \downarrow v_B = 9.8T$ <p>For same speed $29.4 - 9.8T = 9.8T$</p> <p>so $T = 1.5$ and $V = 14.7$</p> $H = 29.4 \times 1.5 - 0.5 \times 9.8 \times 1.5^2$ $+ 0.5 \times 9.8 \times 1.5^2$ $= 44.1$ <p>Method 2</p> $V^2 = 29.4^2 - 2 \times 9.8 \times x = 2 \times 9.8 \times (H - x)$ <p>$29.4^2 = 19.6H$ so $H = 44.1$</p> <p>Relative velocity is 29.4 so</p> $T = \frac{44.1}{29.4}$ <p>Using $v = u + at$ $V = 0 + 9.8 \times 1.5 = 14.7$</p>	M1 A1 M1 E1 F1 M1 A1 M1 B1 A1 M1 E1 M1 F1	Either attempted. Allow sign errors and $g = 9.81$ etc Both correct Attempt to equate. Accept sign errors and $T = 1.5$ substituted in both. If 2 subs there must be a statement about equality FT T or V , whichever is found second Sum of the distance travelled by each attempted cao Attempts at V^2 for each particle equated. Allow sign errors, 9.81 etc Allow h_1, h_2 without $h_1 = H - h_2$ Both correct. Require $h_1 = H - h_2$ but not an equation. cao Any method that leads to T or V Any method leading to the other variable Other approaches possible. If 'clever' ways seen, reward according to weighting above.	
		7		7

Q7		Mark	Comment	Sub
(i)	<p>Diagram</p> <p>Resolve $\rightarrow 121\cos 34 - F = 0$ $F = 100.313\dots$ so 100 N (3 s. f.)</p> <p>Resolve $\uparrow R + 121\sin 34 - 980 = 0$ $R = 912.337\dots$ so 912 N (3 s. f.)</p>	<p>B1 B1</p> <p>M1 E1</p> <p>M1 B1 A1</p>	<p>Weight, friction and 121 N present with arrows. All forces present with suitable labels. Accept W, mg, 100g and 980. No extra forces.</p> <p>Resolving horiz. Accept $s \leftrightarrow c$. Some evidence required for the <i>show</i>, e.g. at least 4 figures. Accept \pm.</p> <p>Resolve vert. Accept $s \leftrightarrow c$ and sign errors. All correct</p>	
				7
(ii)	It will continue to move at a constant speed of 0.5 m s^{-1} .	E1 E1	<p>Accept no reference to direction</p> <p>Accept no reference to direction</p> <p>[Do not isw: conflicting statements get zero]</p>	2
(iii)	<p>Using N2L horizontally $155\cos 34 - 95 = 100a$</p> <p>$a = 0.335008\dots$ so 0.335 m s^{-2} (3 s. f.)</p>	<p>M1</p> <p>A1</p> <p>A1</p>	<p>Use of N2L. Allow $F = mga$, F omitted and 155 not resolved.</p> <p>Use of $F = ma$ with resistance and T resolved. Allow $s \leftrightarrow c$ and signs as the only errors.</p>	3
(iv)	<p>$a = 5 \div 2 = 2.5$</p> <p>N2L down the slope $100g \sin 26 - F = 100 \times 2.5$</p> <p>$F = 179.603\dots$ so 180 N (3 s. f.)</p>	<p>M1 A1</p> <p>M1</p> <p>B1</p> <p>A1</p>	<p>Attempt to find a from information</p> <p>$F = ma$ using their “new” a. All forces present. No extras. Require attempt at wt cpt. Allow $s \leftrightarrow c$ and sign errors.</p> <p>Weight term resolved correctly, seen in an equn or on a diagram.</p> <p>cao. Accept – 180 N if consistent with direction of F on their diagram</p>	5
		17		

Q8		Mark	Comment	Sub
(i)	$v_x = 8 - 4t$ $v_x = 0 \Leftrightarrow t = 2$ so at $t = 2$	M1 A1 F1	either Differentiating or Finding ' u ' and ' a ' from x and use of $v = u + at$ FT their $v_x = 0$	3
(ii)	$y = \int (3t^2 - 8t + 4) dt$ $= t^3 - 4t^2 + 4t + c$ $y = 3$ when $t = 1$ so $3 = 1 - 4 + 4 + c$ so $c = 3 - 1 = 2$ and $y = t^3 - 4t^2 + 4t + 2$	M1 A1 M1 E1	Integrating v_y with at least one correct integrated term. All correct. Accept no arbitrary constant. Clear evidence Clearly shown and stated	4
(iii)	We need $x = 0$ so $8t - 2t^2 = 0$ so $t = 0$ or $t = 4$ $t = 0$ gives $y = 2$ so 2 m $t = 4$ gives $y = 4^3 - 4^3 + 16 + 2 = 18$ so 18 m	M1 A1 A1 A1	May be implied. Must have both Condone 2j Condone 18j	4
(iv)	We need $v_x = v_y = 0$ From above, $v_x = 0$ only when $t = 2$ so evaluate $v_y(2)$ $v_y(2) = 0$ [$(t-2)$ is a factor] so yes only at $t = 2$ At $t = 2$, the position is (8, 2) Distance is $\sqrt{8^2 + 2^2} = \sqrt{68}$ m (8.25 3 s.f.)	M1 M1 A1 B1 B1	either Recognises $v_x = 0$ when $t = 2$ or Finds time(s) when $v_y = 0$ or States or implies $v_x = v_y = 0$ Considers $v_x = 0$ and $v_y = 0$ with their time(s) $t = 2$ recognised as only value (accept as evidence only $t = 2$ used below). For the last 2 marks, no credit lost for reference to $t = \frac{2}{3}$. May be implied FT from their position. Accept one position followed through correctly.	5
(v)	$t = 0, 1$ give (0, 2) and (6, 3)	B1 B1 B1	At least one value $0 \leq t < 2$ correctly calc. This need not be plotted Must be x - y curve. Accept sketch. Ignore curve outside interval for t . Accept unlabelled axes. Condone use of line segments. At least three correct points used in x - y graph or sketch. General shape correct. Do not condone use of line segments.	3
		19		

4762 Mechanics 2

Q 1		Mark		Sub
(i)	<p>either</p> $m \times 2u = 5F$ <p>so $F = 0.4mu$ in direction of the velocity</p> <p>or</p> $a = \frac{2u}{5}$ <p>so $F = 0.4mu$ in direction of the velocity</p>	M1 A1 A1 M1 A1 A1	Use of $I = Ft$ Must have reference to direction. Accept diagram. Use of suvat and N2L May be implied Must have reference to direction. Accept diagram.	3
(ii)	$\text{PCLM} \rightarrow 2um + 3um = mv_p + 3mv_Q$ $\text{NEL} \rightarrow v_Q - v_p = 2u - u = u$ $\text{Energy } \frac{1}{2}m \times (2u)^2 + \frac{1}{2}(3m) \times u^2 = \frac{1}{2}m \times v_p^2 + \frac{1}{2}(3m) \times v_Q^2$ <p>Solving to get both velocities</p> $v_Q = \frac{3u}{2}$ $v_p = \frac{u}{2}$	M1 A1 A1 M1 E1 A1	For 2 eqns considering PCLM, NEL or Energy One correct equation Second correct equation Dep on 1 st M1. Solving pair of equations. If Energy equation used, allow 2 nd root discarded without comment. [If AG subst in one equation to find other velocity, and no more, max SC3]	6
(iii)	<p>either</p> <p>After collision with barrier $v_Q = \frac{3eu}{2} \leftarrow$</p> $\text{so } \rightarrow m \frac{u}{2} - 3m \frac{3eu}{2} = -4m \frac{u}{4}$ $\text{so } e = \frac{1}{3}$ <p>At the barrier the impulse on Q is given by</p> $\rightarrow 3m \left(-\frac{3u}{2} \times \frac{1}{3} - \frac{3u}{2} \right)$ <p>so impulse on Q is $-6mu \rightarrow$ so impulse on the barrier is $6mu \rightarrow$</p>	B1 M1 A1 A1 A1 M1 F1 F1 A1	Accept no direction indicated PCLM LHS Allow sign errors. Allow use of $3mv_Q$. RHS Allow sign errors Impulse is $m(v - u)$ $\pm \frac{3u}{2} \times \frac{1}{3}$ Allow \pm and direction not clear. FT only e . cao. Direction must be clear. Units not required.	9
		18		

Q 1	continued	mark		sub
(iii)	or After collision with barrier $v_Q = \frac{3eu}{2} \leftarrow$ Impulse – momentum overall for Q $\rightarrow 2mu + 3mu + I = -4m \times \frac{u}{4}$ $I = -6mu$ so impulse of $6mu$ on the barrier \rightarrow Consider impact of Q with the barrier to give speed v_Q after impact $\rightarrow \frac{3u}{2} \times 3m - 6mu = 3mv_Q$ so $v_Q = -\frac{u}{2}$ $e = \frac{u}{2} \div \frac{3u}{2} = \frac{1}{3}$	B1 M1 A1 A1 A1 M1 F1 F1 A1	All terms present All correct except for sign errors Direction must be clear. Units not required. Attempt to use I - M cao	
				9

Q 2		Mark		Sub
(i)	$R = 80g \cos \theta$ or $784 \cos \theta$ $F_{\max} = \mu R$ so $32g \cos \theta$ or $313.6 \cos \theta$ N	B1 M1 A1	Seen	3
(ii)	Distance is $\frac{1.25}{\sin \theta}$ WD is $F_{\max} d$ so $32g \cos \theta \times \frac{1.25}{\sin \theta}$ $= \frac{392}{\tan \theta}$	B1 M1 E1	Award for this or equivalent seen	3
(iii)	ΔGPE is mgh so $80 \times 9.8 \times 1.25 = 980 \text{ J}$	M1 A1	Accept 100g J	2
(iv)	either $P = Fv$ so $(80g \sin 35 + 32g \cos 35) \times 1.5$ $= 1059.85\dots$ so 1060 W (3 s. f.) or $P = \frac{\text{WD}}{\Delta t}$ so $\frac{980 + \frac{392}{\tan 35}}{\left(\frac{1.25}{\sin 35}\right) \div 1.5}$ $= 1059.85\dots$ so 1060 W (3 s. f.)	M1 B1 A1 A1 M1 B1 B1 A1	Weight term All correct cao Numerator FT their GPE Denominator cao	4
(v)	either Using the W-E equation $0.5 \times 80 \times v^2 - 0.5 \times 80 \times \left(\frac{1}{2}\right)^2 = 980 - \frac{392}{\tan 35}$ $v = 3.2793\dots$ so yes or N2L down slope $a = 2.409973\dots$ distance slid, using $uvast$ is $1.815372\dots$ vertical distance is $1.815372\dots \times \sin 35$ $= 1.0412\dots < 1.25$ so yes	M1 B1 B1 A1 A1 M1 A1 A1 M1 A1	Attempt speed at ground or dist to reach required speed. Allow only init KE omitted KE terms. Allow sign errors. FT from (iv). Both WD against friction and GPE terms. Allow sign errors. FT from parts above. All correct CWO All forces present valid comparison CWO	5
		17		

Q 3	Mark		Sub
(i)			
$\bar{y} : 250 \times 4 + 125 \left(8 + \frac{30}{2} \cos \alpha \right) = 375 \bar{y}$ $\bar{y} = \frac{28}{3} = 9\frac{1}{3}$ $\bar{z} : (250 \times 0+) 125 \times \frac{30}{2} \sin \alpha = 375 \bar{z}$ $\bar{z} = 3$	M1 B1 M1 B1 B1 E1 B1 E1	Correct method for \bar{y} or \bar{z} Total mass correct $15 \cos \alpha$ or $15 \sin \alpha$ attempted either part $\left(8 + \frac{30}{2} \cos \alpha \right)$ 250×4 Accept any form LHS	
			8
(ii)			
Yes. Take moments about CD. c.w moment from weight; no a.c moment from table	E1 E1	[Award E1 for $9\frac{1}{3} > 8$ seen or 'the line of action of the weight is outside the base']	2
(iii)			
c.m. new part is at (0, 8 + 20, 15) $375 \times \frac{28}{3} + 125 \times 28 = 500 \bar{y}$ so $\bar{y} = 14$ $375 \times 3 + 125 \times 15 = 500 \bar{z}$ so $\bar{z} = 6$	M1 M1 E1 E1	Either y or z coordinate correct Attempt to 'add' to (i) or start again. Allow mass error.	4
(iv)			
Diagram Angle is $\arctan \frac{6}{14}$ $= 23.1985\dots$ so 23.2° (3 s. f.)	B1 B1 M1 A1	Roughly correct diagram Angle identified (may be implied) Use of tan. Allow use of 14/6 or equivalent. cao	4
	18		

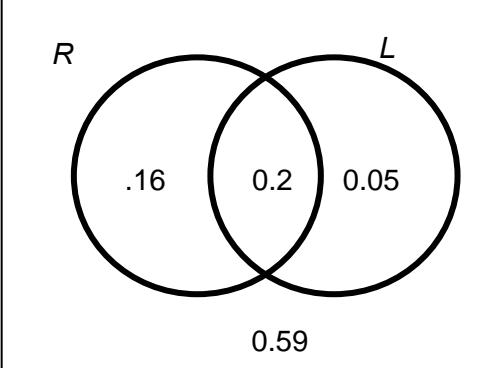
Q 4		mark		sub
(a)				
(i)	<p>Let the \uparrow forces at P and Q be R_p and R_Q</p> <p>c.w. moments about P $2 \times 600 - 3R_Q = 0$ so force of 400 N \uparrow at Q</p> <p>a.c. moments about Q or resolve $R_p = 200$ so force of 200 N \uparrow at P</p>	M1 A1 M1 A1	<p>Moments taken about a named point.</p>	4
(ii)	$R_p = 0$ c.w. moments about Q $2L - 1 \times 600 = 0$ so $L = 300$	B1 M1 A1	<p>Clearly recognised or used.</p> <p>Moments attempted with all forces. Dep on $R_p = 0$ or R_p not evaluated.</p>	3
(b)				
(i)	$\cos \alpha = \frac{15}{17}$ or $\sin \alpha = \frac{8}{17}$ or $\tan \alpha = \frac{8}{15}$ c.w moments about A $16 \times 340 \cos \alpha - 8R = 0$ so $R = 600$	B1 M1 A1 E1	<p>Seen here or below or implied by use.</p> <p>Moments. All forces must be present and appropriate resolution attempted.</p> <p>Evidence of evaluation.</p>	4
(ii)	Diagram (Solution below assumes all internal forces set as tensions)	B1 B1	<p>Must have 600 (or R) and 340 N and reactions at A.</p> <p>All internal forces clearly marked as tension or thrust.</p> <p>Allow mixture.</p> <p>[Max of B1 if extra forces present]</p>	2
(iii)	$B \downarrow 340 \cos \alpha + T_{BC} \cos \alpha = 0$ so $T_{BC} = -340$ (Thrust of) 340 N in BC $C \rightarrow T_{BC} \sin \alpha - T_{AC} \sin \alpha = 0$ so $T_{AC} = -340$ (Thrust of) 340 N in AC $B \leftarrow T_{AB} + T_{BC} \sin \alpha - 340 \sin \alpha = 0$ so $T_{AB} = 320$ (Tension of) 320 N in AB Tension/ Thrust all consistent with working	M1 A1 F1 M1 A1 F1	<p>Equilibrium at a pin-joint</p> <p>Method for T_{AB}</p> <p>[Award a max of 4/6 if working inconsistent with diagram]</p>	6
		19		

4763 Mechanics 3

1 (i)	[Force] = $M L T^{-2}$ [Density] = $M L^{-3}$	B1 B1 2	
(ii)	$[\eta] = \frac{[F][d]}{[A][v_2 - v_1]} = \frac{(M L T^{-2})(L)}{(L^2)(L T^{-1})}$ = $M L^{-1} T^{-1}$	B1 M1 A1 3	for $[A] = L^2$ and $[v] = L T^{-1}$ Obtaining the dimensions of η
(iii)	$\left[\frac{2a^2 \rho g}{9\eta} \right] = \frac{L^2 (M L^{-3})(L T^{-2})}{M L^{-1} T^{-1}} = L T^{-1}$ which is same as the dimensions of v	B1 M1 E1 3	For $[g] = L T^{-2}$ Simplifying dimensions of RHS Correctly shown
(iv)	$(M L^{-3}) L^\alpha (L T^{-1})^\beta (M L^{-1} T^{-1})^\gamma$ is dimensionless $\gamma = -1$ $-\beta - \gamma = 0$ $-3 + \alpha + \beta - \gamma = 0$ $\alpha = 1, \beta = 1$	B1 cao M1 M1A1 A1 cao 5	
(v)	$R = \frac{\rho w v}{\eta} = \frac{0.4 \times 25 \times 150}{1.6 \times 10^{-5}} \quad (= 9.375 \times 10^7)$ $= \frac{1.3 \times 5 v}{1.8 \times 10^{-5}}$ Required velocity is 260 ms^{-1}	M1 A1 A1 cao 3	Evaluating R Equation for v

2 (a)(i)	$T \cos \alpha = T \cos \beta + 0.27 \times 9.8$ $\sin \alpha = \frac{1.2}{2.0} = \frac{3}{5}, \cos \alpha = \frac{4}{5} \quad (\alpha = 36.87^\circ)$ $\sin \beta = \frac{1.2}{1.3} = \frac{12}{13}, \cos \beta = \frac{5}{13} \quad (\beta = 67.38^\circ)$ $\frac{27}{65}T = 2.646$ Tension is 6.37 N	M1 A1 B1 M1 E1	Resolving vertically (weight and at least one resolved tension) Allow T_1 and T_2 For $\cos \alpha$ and $\cos \beta$ [or α and β] Obtaining numerical equation for T e.g. $T(\cos 36.9 - \cos 67.4) = 0.27 \times 9.8$ (Condone 6.36 to 6.38)
(ii)	$T \sin \alpha + T \sin \beta = 0.27 \times \frac{v^2}{1.2}$ $6.37 \times \frac{3}{5} + 6.37 \times \frac{12}{13} = 0.27 \times \frac{v^2}{1.2}$ $v^2 = 43.12$ Speed is 6.57 ms^{-1}	M1 A1 M1 A1	Using $v^2 / 1.2$ Allow T_1 and T_2 Obtaining numerical equation for v^2
(b)(i)	$0.2 \times 9.8 = 0.2 \times \frac{u^2}{1.25}$ $u^2 = 9.8 \times 1.25 = 12.25$ Speed is 3.5 ms^{-1}	M1 E1	Using acceleration $u^2 / 1.25$
(ii)	$\frac{1}{2}m(v^2 - 3.5^2) = mg(1.25 - 1.25 \cos 60)$ $v^2 = 24.5$ Radial component is $\frac{24.5}{1.25} = 19.6 \text{ ms}^{-2}$ Tangential component is $g \sin 60 = 8.49 \text{ ms}^{-2}$	M1 A1 M1 A1 M1 A1	Using conservation of energy With numerical value obtained by using energy (M0 if mass, or another term, included) For sight of $(m)g \sin 60^\circ$ with no other terms
(iii)	$T + 0.2 \times 9.8 \cos 60 = 0.2 \times 19.6$ Tension is 2.94 N	M1 A1 cao	Radial equation (3 terms) <i>This M1 can be awarded in (ii)</i>

3 (i)	$\frac{980}{25}y = 5 \times 9.8$ Extension is 1.25 m	M1 A1 2	Using $\frac{\lambda y}{l_0}$ (Allow M1 for $980y = mg$)
(ii)	$T = \frac{980}{25}(1.25 + x)$ $5 \times 9.8 - 39.2(1.25 + x) = 5 \frac{d^2x}{dt^2}$ $-39.2x = 5 \frac{d^2x}{dt^2}$ $\frac{d^2x}{dt^2} = -7.84x$	B1 (ft) M1 F1 E1 4	(ft) indicates ft from previous parts as for A marks Equation of motion with three terms Must have \ddot{x} In terms of x only
(iii)	$8.4^2 = 7.84(A^2 - 1.25^2)$ Amplitude is 3.25 m	M2 A1 A1 4	Using $v^2 = \omega^2(A^2 - x^2)$
OR	$\frac{980}{2 \times 25}y^2 = 5 \times 9.8y + \frac{1}{2} \times 5 \times 8.4^2$ $y = 4.5$ Amplitude is $4.5 - 1.25 = 3.25$ m	M2 A1 A1	Equation involving EE, PE and KE
	OR $x = A \sin 2.8t + B \cos 2.8t$ $x = -1.25$, $v = 8.4$ when $t = 0$ $\Rightarrow A = 3$, $B = -1.25$ Amplitude is $\sqrt{A^2 + B^2} = 3.25$	M2 A1 A1	Obtaining A and B Both correct
(iv)	Maximum speed is $A\omega = 3.25 \times 2.8$ $= 9.1 \text{ ms}^{-1}$	M1 A1 2	or equation involving EE, PE and KE ft only if answer is greater than 8.4
(v)	$x = 3.25 \cos 2.8t$ $-1.25 = 3.25 \cos 2.8t$ Time is 0.702 s	B1 (ft) M1 M1 A1 cao 4	or $x = 3.25 \sin 2.8t$ or $v = 9.1 \cos 2.8t$ or $v = 9.1 \sin 2.8t$ or $x = 3.25 \sin(2.8t + \varepsilon)$ etc or $x = \pm 3 \sin 2.8t \pm 1.25 \cos 2.8t$ Obtaining equation for t or ε by setting $x = (\pm)1.25$ or $v = (\pm)8.4$ or solving $\pm 3 \sin 2.8t \pm 1.25 \cos 2.8t = 3.25$ Strategy for finding the required time e.g. $\frac{1}{2.8} \sin^{-1} \frac{1.25}{3.25} + \frac{1}{4} \times \frac{2\pi}{2.8}$ $2.8t - 0.3948 = \frac{1}{2}\pi$ or $2.8t - 1.966 = 0$


(vi)	e.g. Rope is light Rock is a particle No air resistance / friction / external forces Rope obeys Hooke's law / Perfectly elastic / Within elastic limit / No energy loss in rope	B1B1B1 3	Three modelling assumptions
4 (a)	$\int \frac{1}{2}y^2 dx = \int_{-a}^a \frac{1}{2}(a^2 - x^2) dx$ $= \left[\frac{1}{2}(a^2 x - \frac{1}{3}x^3) \right]_{-a}^a$ $= \frac{2}{3}a^3$ $\bar{y} = \frac{\frac{2}{3}a^3}{\frac{1}{2}\pi a^2}$ $= \frac{4a}{3\pi}$	M1 A1 M1 E1 4	For integral of $(a^2 - x^2)$ <i>Dependent on previous M1</i>
(b)(i)	$V = \int \pi y^2 dx = \int_0^h \pi(mx)^2 dx$ $= \left[\frac{1}{3}\pi m^2 x^3 \right]_0^h = \frac{1}{3}\pi m^2 h^3$ $\int \pi xy^2 dx = \int_0^h \pi x(mx)^2 dx$ $= \left[\frac{1}{4}\pi m^2 x^4 \right]_0^h = \frac{1}{4}\pi m^2 h^4$ $\bar{x} = \frac{\frac{1}{4}\pi m^2 h^4}{\frac{1}{3}\pi m^2 h^3}$ $= \frac{3}{4}h$	M1 A1 M1 A1 M1 E1 6	<i>π may be omitted throughout</i> For integral of x^2 or use of $V = \frac{1}{3}\pi r^2 h$ and $r = mh$ For integral of x^3 <i>Dependent on M1 for integral of x^3</i>
(ii)	$m_1 = \frac{1}{3}\pi \times 0.7^2 \times 2.4\rho = \frac{1}{3}\pi\rho \times 1.176$ $VG_1 = 1.8$ $m_2 = \frac{1}{3}\pi \times 0.4^2 \times 1.1\rho = \frac{1}{3}\pi\rho \times 0.176$ $VG_2 = 1.3 + \frac{3}{4} \times 1.1 = 2.125$ $(m_1 - m_2)(VG) + m_2(VG_2) = m_1(VG_1)$ $(VG) + 0.176 \times 2.125 = 1.176 \times 1.8$ $\text{Distance (VG) is } 1.74 \text{ m}$	B1 B1 M1 F1 A1 5	For m_1 and m_2 (or volumes) or $\frac{1}{4} \times 1.1$ from base Attempt formula for composite body
(iii)	VQG is a right-angle $VQ = VG \cos \theta \text{ where } \tan \theta = \frac{0.7}{2.4} \quad (\theta = 16.26^\circ)$ $VQ = 1.7428 \times \frac{24}{25}$ $= 1.67 \text{ m}$	M1 M1 A1 3	ft is $VG \times 0.96$

4766 Statistics 1

Section A

Q1 (i)	<p>(With $\sum f_x = 7500$ and $\sum f = 10000$ then arriving at the mean)</p> <p>(i) £0.75 scores (B1, B1) (ii) 75p scores (B1, B1) (iii) 0.75p scores (B1, B0) (incorrect units) (iv) £75 scores (B1, B0) (incorrect units)</p> <p>After B0, B0 then sight of $\frac{7500}{10000}$ scores SC1. SC1 or an answer in the range £0.74 - £0.76 or 74p – 76p (both inclusive) scores SC1 (units essential to gain this mark)</p> <p><u>Standard Deviation: (CARE NEEDED here with close proximity of answers)</u></p> <ul style="list-style-type: none"> • 50.2(0) using divisor 9999 scores B2 (50.20148921) • 50.198 (= 50.2) using divisor 10000 scores B1(rmsd) • If divisor is <u>not</u> shown (or calc used) and only an answer of 50.2 (i.e. <u>not</u> coming from 50.198) is seen then award B2 on b.o.d. (default) <p>After B0 scored then an attempt at S_{xx} as evident by either</p> $S_{xx} = (5000 + 200000 + 25000000) - \frac{7500^2}{10000} (= 25199375)$ <p>or</p> $S_{xx} = (5000 + 200000 + 25000000) - 10000(0.75)^2$ <p>scores (M1) or M1ft 'their 7500²' or 'their 0.75²,</p> <p>NB The <u>structure</u> must be correct in both above cases with a max of 1 slip only after applying the f.t.</p>	<p>B1 for numerical mean (0.75 or 75 seen) B1dep for correct units attached</p> <p>B2 correct s.d. (B1) correct rmsd (B2) default</p> <p>$\sum f x^2 = 25,205,000$ Beware $\sum x^2 = 25,010,100$</p> <p>After B0 scored then (M1) or M1ft. for attempt at S_{xx}</p> <p><i>NB full marks for correct results from recommended method which is use of calculator functions</i></p>	4
-------------------------	--	---	----------

(ii)	$P(\text{Two £10 or two £100})$ $= \frac{50}{10000} \times \frac{49}{9999} + \frac{20}{10000} \times \frac{19}{9999}$ $= 0.0000245 + 0.0000038 = (0.00002450245 + 0.00000380038)$ $= 0.000028(3) \text{ o.e.} = (0.00002830283)$ <u>After M0, M0 then</u> $\frac{50}{10000} \times \frac{50}{10000} + \frac{20}{10000} \times \frac{20}{10000} \text{ o.e.}$ Scores SC1 (ignore final answer but SC1 may be implied by sight of 2.9×10^{-5} o.e.) Similarly, $\frac{50}{10000} \times \frac{49}{10000} + \frac{20}{10000} \times \frac{19}{10000}$ scores SC1	M1 for either correct product seen (ignore any multipliers) M1 sum of both correct (ignore any multipliers) A1 CAO (as opposite with no rounding) (SC1 case #1) (SC1 case #2) <u>CARE</u> answer is also 2.83×10^{-5}	3
		TOTAL	7
Q2 (i)	Either $P(\text{all correct}) = \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times \frac{1}{3} \times \frac{1}{2} \times \frac{1}{1} = \frac{1}{720}$ or $P(\text{all correct}) = \frac{1}{6!} = \frac{1}{720} = 0.00139$	M1 for 6! Or 720 (sioc) or product of fractions A1 CAO (accept 0.0014)	2
(ii)	Either $P(\text{picks T, O, M}) = \frac{3}{6} \times \frac{2}{5} \times \frac{1}{4} = \frac{1}{20}$ or $P(\text{picks T, O, M}) = \frac{1}{6} \times \frac{1}{5} \times \frac{1}{4} \times 3! = \frac{1}{20}$ or $P(\text{picks T, O, M}) = \frac{1}{\binom{6}{3}} = \frac{1}{20}$	M1 for denominators M1 for numerators or 3! A1 CAO Or M1 for $\binom{6}{3}$ or 20 <u>sioc</u> M1 for $1/\binom{6}{3}$ A1 CAO	3
		TOTAL	5
Q3 (i)	$p = 0.55$	B1 cao	1
(ii)	$E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$ $E(X^2) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ $= 0 + 0.1 + 0.2 + 0.45 + 4$ $= (4.75)$ $\text{Var}(X) = \text{'their'} 4.75 - 1.35^2 = 2.9275 \text{ awfw } (2.9275 - 2.93)$	M1 for $\sum rp$ (at least 3 non zero terms correct) A1 CAO (no 'n' or 'n-1' divisors) M1 for $\sum r^2 p$ (at least 3 non zero terms correct) M1dep for – their $E(X^2)$ provided $\text{Var}(X) > 0$ A1 cao (no 'n' or 'n-1' divisors)	5
(iii)	$P(\text{At least 2 both times}) = (0.05+0.05+0.25)^2 = 0.1225 \text{ o.e.}$	M1 for $(0.05+0.05+0.25)^2$ or 0.35^2 seen A1cao: awfw $(0.1225 - 0.123)$ or $49/400$	2
		TOTAL	8

Q4 (i)	$X \sim B(50, 0.03)$ $(A) P(X = 1) = \binom{50}{1} \times 0.03 \times 0.97^{49} = 0.3372$	M1 0.03×0.97^{49} or 0.0067(4).... M1 $\binom{50}{1} \times pq^{49}$ (p+q =1) A1 CAO (awfw 0.337 to 0.3372) or 0.34(2s.f.) or 0.34(2d.p.) but not just 0.34 B1 for 0.97^{50} or 0.2181 (awfw 0.218 to 0.2181) M1 for $1 - ($ 'their' p (X = 0) + 'their' p(X = 1)) must have both probabilities A1 CAO (awfw 0.4447 to 0.445)	3
	$(B) P(X = 0) = 0.97^{50} = 0.2181$ $P(X > 1) = 1 - 0.2181 - 0.3372 = 0.4447$		
(ii)	Expected number = $np = 240 \times 0.3372 = 80.88 - 80.93 = (81)$ <i>Condone</i> $240 \times 0.34 = 81.6 = (82)$ but for M1 A1ft.	M1 for $240 \times$ prob (A) A1FT	2
		TOTAL	8
Q5 (i)	$P(R) \times P(L) = 0.36 \times 0.25 = 0.09 \neq P(R \cap L)$ Not equal so not independent. (Allow $0.36 \times 0.25 \neq 0.2$ or 0.09 $\neq 0.2$ or $\neq p(R \cap L)$ so not independent)	M1 for 0.36×0.25 or 0.09 seen A1 (numerical justification needed)	2
(ii)		G1 for two overlapping circles labelled G1 for 0.2 and either 0.16 or 0.05 in the correct places G1 for all 4 correct probs in the correct places (including the 0.59) The last two G marks are independent of the labels	3
(iii)	$P(L R) = \frac{P(L \cap R)}{P(R)} = \frac{0.2}{0.36} = \frac{5}{9} = 0.556 \text{ (awrt 0.56)}$ This is the probability that Anna is late given that it is raining. (must be in context) Condone 'if' or 'when' or 'on a rainy day' for 'given that' but <u>not</u> the words 'and' or 'because' or 'due to'	M1 for 0.2/0.36 o.e. A1 cao E1 (indep of M1A1) Order/structure must be correct i.e. no reverse statement	3
		TOTAL	8

Section B

Q6 (i)	<p>Median = $4.06 - 4.075$ (inclusive)</p> <p>$Q_1 = 3.8$</p> <p>$Q_3 = 4.3$</p> <p>Inter-quartile range = $4.3 - 3.8 = 0.5$</p>	<p>B1cao</p> <p>B1 for Q_1 (cao)</p> <p>B1 for Q_3 (cao)</p> <p>B1 ft for IQR must be using t-values not locations to earn this mark</p>	4
(ii)	<p>Lower limit 'their 3.8' – $1.5 \times \text{their } 0.5 = (3.05)$</p> <p>Upper limit 'their 4.3' + $1.5 \times \text{their } 0.5 = (5.05)$</p> <p>Very few if any temperatures <u>below 3.05 (but not zero)</u></p> <p><u>None above 5.05</u></p> <p>'So few, if any outliers' scores SC1</p>	<p>B1ft: must have -1.5</p> <p>B1ft: must have +1.5</p> <p>E1ft dep on -1.5 and Q_1</p> <p>E1ft dep on +1.5 and Q_3</p> <p>Again, must be using t-values NOT locations to earn these 4 marks</p>	4
(iii)	<p>Valid argument such as 'Probably not, because there is nothing to suggest that they are not genuine data items; (they do not appear to form a separate pool of data.)'</p> <p>Accept: exclude outlier – 'measuring equipment was wrong' or 'there was a power cut' or ref to hot / cold day</p> <p>[Allow suitable valid alternative arguments]</p>	<p>E1</p>	1
(iv)	<p>Missing frequencies 25, 125, 50</p>	<p>B1, B1, B1 (all cao)</p>	3
(v)	$\text{Mean} = (3.2 \times 25 + 3.6 \times 125 + 4.0 \times 243 + 4.4 \times 157 + 4.8 \times 50) / 600$ $= 2432.8 / 600 = 4.05(47)$	<p>M1 for at least 4 midpoints correct and being used in attempt to find $\sum ft$</p> <p>A1cao: awfw (4.05 – 4.055) ISW or rounding</p>	2
(vi)	<p>New mean = $1.8 \times \text{their } 4.05(47) + 32 = 39.29(84)$ to 39.3</p> <p>New s = 1.8×0.379 = 0.682</p>	<p>B1 FT</p> <p>M1 for 1.8×0.379</p> <p>A1 CAO awfw (0.68 – 0.6822)</p>	3
		TOTAL	17

Q7 (i)	$X \sim B(10, 0.8)$ <p>(A) Either $P(X = 8) = \binom{10}{8} \times 0.8^8 \times 0.2^2 = 0.3020$ (awrt)</p> <p>or $P(X = 8) = P(X \leq 8) - P(X \leq 7)$ $= 0.6242 - 0.3222 = 0.3020$</p> <p>(B) Either $P(X \geq 8) = 1 - P(X \leq 7)$ $= 1 - 0.3222 = 0.6778$</p> <p>or $P(X \geq 8) = P(X = 8) + P(X = 9) + P(X = 10)$ $= 0.3020 + 0.2684 + 0.1074 = 0.6778$</p>	M1 $0.8^8 \times 0.2^2$ or 0.00671... M1 $\binom{10}{8} \times p^8 q^2$; (p+q=1) Or $45 \times p^8 q^2$; (p+q=1) A1 CAO (0.302) not 0.3 OR: M2 for 0.6242 – 0.3222 A1 CAO M1 for $1 - 0.3222$ (s.o.i.) A1 CAO awfw 0.677 – 0.678 or M1 for sum of 'their' p(X=8) plus correct expressions for p(x=9) and p(X=10) A1 CAO awfw 0.677 – 0.678	3 2
(ii)	<p>Let $X \sim B(18, p)$ Let p = probability of delivery (within 24 hours) (for population)</p> <p>$H_0: p = 0.8$ $H_1: p < 0.8$</p> <p>$P(X \leq 12) = 0.1329 > 5\%$ ref: [pp = 0.0816]</p> <p>So not enough evidence to reject H_0</p> <p>Conclude that there is not enough evidence to indicate that less than 80% of orders will be delivered within 24 hours</p> <p>Note: use of critical region method scores M1 for region {0,1,2,...,9, 10} M1dep for 12 does not lie in critical region then A1dep E1dep as per scheme</p>	B1 for definition of p B1 for H_0 B1 for H_1 M1 for probability 0.1329 M1dep strictly for comparison of 0.1329 with 5% (seen or clearly implied) A1dep on both M's E1dep on M1, M1, A1 for conclusion in context	7

(iii)	<p>Let $X \sim B(18, 0.8)$ $H_1: p \neq 0.8$ LOWER TAIL $P(X \leq 10) = 0.0163 < 2.5\%$ $P(X \leq 11) = 0.0513 > 2.5\%$</p> <p>UPPER TAIL $P(X \geq 17) = 1 - P(X \leq 16) = 1 - 0.9009 = 0.0991 > 2.5\%$ $P(X \geq 18) = 1 - P(X \leq 17) = 1 - 0.9820 = 0.0180 < 2.5\%$</p> <p>So critical region is $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 18\}$ o.e. Condone $X \leq 10$ and $X \geq 18$ or $X = 18$ but <u>not</u> $p(X \leq 10)$ and $p(X \geq 18)$ Correct CR without supportive working scores SC2 max after the 1st B1 (SC1 for each fully correct tail of CR)</p>	<p>B1 for H_1</p> <p>B1 for 0.0163 or 0.0513 seen</p> <p>M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied)</p> <p>A1dep for correct lower tail CR (must have zero)</p> <p>B1 for 0.0991 or 0.0180 seen</p> <p>M1dep for either correct comparison with 2.5% (not 5%) (seen or clearly implied)</p> <p>A1dep for correct upper tail CR</p>	7
		TOTAL	19

4767 Statistics 2

Question 1

(i)	<table border="1" data-bbox="257 413 981 660"> <tr><td>x</td><td>18</td><td>43</td><td>52</td><td>94</td><td>98</td><td>206</td><td>784</td><td>1530</td></tr> <tr><td>y</td><td>1.15</td><td>0.97</td><td>1.26</td><td>1.35</td><td>1.28</td><td>1.42</td><td>1.32</td><td>1.64</td></tr> <tr><td>Rank x</td><td>1</td><td>2</td><td>3</td><td>4</td><td>5</td><td>6</td><td>7</td><td>8</td></tr> <tr><td>Rank y</td><td>2</td><td>1</td><td>3</td><td>6</td><td>4</td><td>7</td><td>5</td><td>8</td></tr> <tr><td>d</td><td>-1</td><td>1</td><td>0</td><td>-2</td><td>1</td><td>-1</td><td>2</td><td>0</td></tr> <tr><td>d^2</td><td>1</td><td>1</td><td>0</td><td>4</td><td>1</td><td>1</td><td>4</td><td>0</td></tr> </table>	x	18	43	52	94	98	206	784	1530	y	1.15	0.97	1.26	1.35	1.28	1.42	1.32	1.64	Rank x	1	2	3	4	5	6	7	8	Rank y	2	1	3	6	4	7	5	8	d	-1	1	0	-2	1	-1	2	0	d^2	1	1	0	4	1	1	4	0	M1 for attempt at ranking (allow all ranks reversed) M1 for d^2 A1 for $\sum d^2 = 12$ M1 for method for r_s A1 f.t. for $ r_s < 1$ NB No ranking scores zero	5
x	18	43	52	94	98	206	784	1530																																																	
y	1.15	0.97	1.26	1.35	1.28	1.42	1.32	1.64																																																	
Rank x	1	2	3	4	5	6	7	8																																																	
Rank y	2	1	3	6	4	7	5	8																																																	
d	-1	1	0	-2	1	-1	2	0																																																	
d^2	1	1	0	4	1	1	4	0																																																	
(ii)	H_0 : no association between X and Y in the population H_1 : some association between X and Y in the population Two tail test critical value at 5% level is 0.7381 Since $0.857 > 0.7381$, there is sufficient evidence to reject H_0 , i.e. conclude that the evidence suggests that there is association between population size X and average walking speed Y .	B1 for H_0 B1 for H_1 B1 for population SOI NB H_0 H_1 <u>not</u> ito ρ B1 for ± 0.7381 M1 for sensible comparison with c.v., provided $ r_s < 1$ A1 for conclusion in words f.t. their r_s and sensible cv	6																																																						
(iii)	$\bar{t} = 45$, $\bar{w} = 2.2367$ $b = \frac{Stw}{Stt} = \frac{584.6 - 270 \times 13.42/6}{13900 - 270^2/6} = \frac{-19.3}{1750} = -0.011$ OR $b = \frac{584.6/6 - 45 \times 2.2367}{13900/6 - 45^2} = \frac{-3.218}{291.6667} = -0.011$ hence least squares regression line is: $w - \bar{w} = b(t - \bar{t})$ $\Rightarrow w - 2.2367 = -0.011(t - 45)$ $\Rightarrow w = -0.011t + 2.73$	B1 for \bar{t} and \bar{w} used (SOI) M1 for attempt at gradient (b) A1 CAO for -0.011 M1 for equation of line A1 FT for complete equation	5																																																						

(iv)	<p>(A) For $t = 80$, predicted speed $= -0.011 \times 80 + 2.73 = 1.85$</p> <p>(B) The relationship relates to adults, but a ten year old will not be fully grown so may walk more slowly. NB Allow E1 for comment about extrapolation not in context</p>	<p>M1 A1 FT provided $b < 0$</p> <p>E1 extrapolation o.e. E1 sensible contextual comment</p>	4
	TOTAL		20

Question 2

(i)	Binomial(5000,0.0001)	B1 for binomial B1 dep, for parameters	2
(ii)	n is large and p is small $\lambda = 5000 \times 0.0001 = 0.5$	B1, B1 (Allow appropriate numerical ranges) B1	3
(iii)	$P(X \geq 1) = 1 - e^{-0.5} \frac{0.5^0}{0!} = 1 - 0.6065 = 0.3935$ or from tables $= 1 - 0.6065 = 0.3935$	M1 for correct calculation or correct use of tables A1	2
(iv)	$P(9 \text{ of 20 contain at least one})$ $= \binom{20}{9} \times 0.3935^9 \times 0.6065^{11}$ $= 0.1552$	M1 for coefficient M1 for $p^9 \times (1-p)^{11}$, p from part (iii) A1	3
(v)	Expected number $= 20 \times 0.3935 = 7.87$	M1 A1 FT	2
(vi)	Mean $= \frac{\sum xf}{n} = \frac{7 + 4}{20} = \frac{11}{20} = 0.55$ Variance $= \frac{1}{n-1} \left(\sum f x^2 - n \bar{x}^2 \right)$ $= \frac{1}{19} \left(15 - 20 \times 0.55^2 \right) = 0.471$	B1 for mean M1 for calculation A1 CAO	3
(vii)	Yes, since the mean is close to the variance, and also as the expected frequency for 'at least one', i.e. 7.87, is close to the observed frequency of 9.	B1 E1 for sensible comparison B1 for observed frequency $= 7 + 2 = 9$	3
	TOTAL		18

Question 3

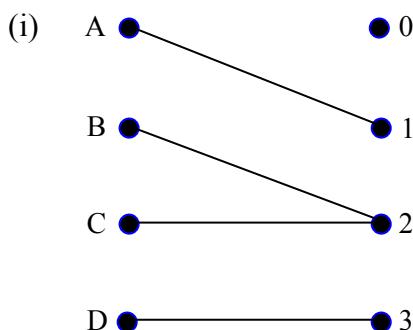
(i)	<p>(A) $P(X < 120) = P\left(Z < \frac{120 - 115.3}{21.9}\right)$ $= P(Z < 0.2146)$ $= \Phi(0.2146) = 0.5849$</p> <p>(B) $P(100 < X < 110) =$ $P\left(\frac{100 - 115.3}{21.9} < Z < \frac{110 - 115.3}{21.9}\right)$ $= P(-0.6986 < Z < -0.2420)$ $= \Phi(0.6986) - \Phi(0.2420)$ $= 0.7577 - 0.5956$ $= 0.1621$</p> <p>(C) From tables $\Phi^{-1}(0.1) = -1.282$ $\frac{k - 115.3}{21.9} = -1.282$ $k = 115.3 - 1.282 \times 21.9 = 87.22$</p>	<p>M1 for standardizing A1 for $z = 0.2146$</p> <p>A1 CAO (min 3 sf, to include use of difference column)</p> <p>M1 for standardizing both 100 & 110</p> <p>M1 for correct structure in calcⁿ A1 CAO</p> <p>B1 for ± 1.282 seen M1 for equation in k and negative z-value</p> <p>A1 CAO</p>	3 3 3
(ii)	<p>From tables, $\Phi^{-1}(0.70) = 0.5244, \Phi^{-1}(0.15) = -1.036$ $180 = \mu + 0.5244 \sigma$ $140 = \mu - 1.036 \sigma$ $40 = 1.5604 \sigma$ $\sigma = 25.63, \mu = 166.55$</p>	<p>B1 for 0.5244 or ± 1.036 seen M1 for at least one equation in μ and σ and Φ^{-1} value</p> <p>M1 dep for attempt to solve two equations A1 CAO for both</p>	4
(iii)	$\Phi^{-1}(0.975) = 1.96$ $a = 166.55 - 1.96 \times 25.63 = 116.3$ $b = 166.55 + 1.96 \times 25.63 = 216.8$	<p>B1 for ± 1.96 seen M1 for either equation A1 A1 [Allow other correct intervals]</p>	4
		TOTAL	17

Question 4

(i)	<p>H_0: no association between growth and type of plant; H_1: some association between growth and type of plant;</p> <table border="1" data-bbox="244 361 922 507"> <thead> <tr> <th>EXPECTED</th><th>Good</th><th>Average</th><th>Poor</th></tr> </thead> <tbody> <tr> <td>Coriander</td><td>12.10</td><td>24.93</td><td>17.97</td></tr> <tr> <td>Aster</td><td>10.56</td><td>21.76</td><td>15.68</td></tr> <tr> <td>Fennel</td><td>10.34</td><td>21.31</td><td>15.35</td></tr> </tbody> </table> <table border="1" data-bbox="244 579 922 725"> <thead> <tr> <th>CONTRIBUTION</th><th>Good</th><th>Average</th><th>Poor</th></tr> </thead> <tbody> <tr> <td>Coriander</td><td>0.0008</td><td>0.3772</td><td>0.4899</td></tr> <tr> <td>Aster</td><td>1.2002</td><td>0.6497</td><td>3.4172</td></tr> <tr> <td>Fennel</td><td>1.2955</td><td>0.0226</td><td>1.2344</td></tr> </tbody> </table> <p>$X^2 = 8.69$</p> <p>Refer to χ^2_4</p> <p>Critical value at 5% level = 9.488</p> <p>Result is not significant</p> <p>There is not enough evidence to suggest that there is some association between reported growth and type of plant; NB if H_0 H_1 reversed, or 'correlation' mentioned, do not award first B1 or final A1</p>	EXPECTED	Good	Average	Poor	Coriander	12.10	24.93	17.97	Aster	10.56	21.76	15.68	Fennel	10.34	21.31	15.35	CONTRIBUTION	Good	Average	Poor	Coriander	0.0008	0.3772	0.4899	Aster	1.2002	0.6497	3.4172	Fennel	1.2955	0.0226	1.2344	<p>B1 (in context)</p> <p>M1 A2 for expected values (to 2 dp)</p> <p>(allow A1 for at least one row or column correct)</p> <p>M1 for valid attempt at $(O-E)^2/E$</p> <p>A1 for all correct</p> <p>NB These M1A1 marks cannot be implied by a correct final value of X^2</p> <p>M1 for summation</p> <p>A1 for X^2 CAO</p> <p>B1 for 4 d.o.f.</p> <p>B1 CAO for cv</p> <p>M1</p> <p>A1</p>	12
EXPECTED	Good	Average	Poor																																
Coriander	12.10	24.93	17.97																																
Aster	10.56	21.76	15.68																																
Fennel	10.34	21.31	15.35																																
CONTRIBUTION	Good	Average	Poor																																
Coriander	0.0008	0.3772	0.4899																																
Aster	1.2002	0.6497	3.4172																																
Fennel	1.2955	0.0226	1.2344																																
(ii)	<p>Test statistic = $\frac{49.2 - 47}{8.5/\sqrt{50}} = \frac{2.2}{1.202} = 1.830$</p> <p>1% level 1 tailed critical value of $z = 2.326$</p> <p>$1.830 < 2.326$ so not significant.</p> <p>There is not sufficient evidence to reject H_0</p> <p>There is insufficient evidence to conclude that the flowers are larger.</p>	<p>M1 correct denominator</p> <p>A1</p> <p>B1 for 2.326</p> <p>M1 (dep on first M1) for sensible comparison leading to a conclusion</p> <p>A1 for fully correct conclusion in words in context</p>	5																																
		TOTAL	17																																

4768 Statistics 3

Q1 (a)	$f(x) = \lambda x^c, 0 \leq x \leq 1, \lambda > 1$																																										
(i)	$\int_0^1 \lambda x^c dx = 1$ $\therefore \left[\frac{\lambda x^{c+1}}{c+1} \right]_0^1 = 1$ $\therefore \frac{\lambda}{c+1} = 1 \quad \therefore c = \lambda - 1$	M1 M1 A1	Correct integral, with limits (possibly appearing later), set equal to 1. Integration correct and limits used. c.a.o.	3																																							
(ii)	$E(X) = \int_0^1 \lambda x^\lambda dx$ $= \left[\frac{\lambda x^{\lambda+1}}{\lambda+1} \right]_0^1 = \frac{\lambda}{\lambda+1}.$	M1 M1 A1	Correct form of integral for $E(X)$. Allow c's expression for c . Integration correct and limits used. ft c's c .	3																																							
(iii)	$E(X^2) = \int_0^1 \lambda x^{\lambda+1} dx$ $= \left[\frac{\lambda x^{\lambda+2}}{\lambda+2} \right]_0^1 = \frac{\lambda}{\lambda+2}.$ $\text{Var}(X) = \frac{\lambda}{\lambda+2} - \left(\frac{\lambda}{\lambda+1} \right)^2 = \frac{\lambda(\lambda+1)^2 - \lambda^2(\lambda+2)}{(\lambda+2)(\lambda+1)^2}$ $= \frac{\lambda^3 + 2\lambda^2 + \lambda - \lambda^3 - 2\lambda^2}{(\lambda+2)(\lambda+1)^2} = \frac{\lambda}{(\lambda+2)(\lambda+1)^2}.$	M1 A1 M1 A1	Correct form of integral for $E(X^2)$. Allow c's expression for c . Use of $\text{Var}(X) = E(X^2) - E(X)^2$. Allow c's $E(X^2)$ and $E(X)$. Algebra shown convincingly. Beware printed answer.	4																																							
(b)	<table border="1"> <thead> <tr> <th>Times</th> <th>-32</th> <th>Rank of diff </th> </tr> </thead> <tbody> <tr><td>40</td><td>8</td><td>4</td></tr> <tr><td>20</td><td>-12</td><td>7</td></tr> <tr><td>18</td><td>-14</td><td>8</td></tr> <tr><td>11</td><td>-21</td><td>12</td></tr> <tr><td>47</td><td>15</td><td>9</td></tr> <tr><td>36</td><td>4</td><td>2</td></tr> <tr><td>38</td><td>6</td><td>3</td></tr> <tr><td>35</td><td>3</td><td>1</td></tr> <tr><td>22</td><td>-10</td><td>5</td></tr> <tr><td>14</td><td>-18</td><td>10</td></tr> <tr><td>12</td><td>-20</td><td>11</td></tr> <tr><td>21</td><td>-11</td><td>6</td></tr> </tbody> </table> <p>$W_+ = 1 + 2 + 3 + 4 + 9 = 19$</p> <p>Refer to Wilcoxon single sample tables for $n = 12$. Lower (or upper if 59 used) 5% tail is 17 (or 61 if 59 used). Result is not significant. Seems that there is no evidence that Godfrey's times have decreased.</p>	Times	-32	Rank of diff	40	8	4	20	-12	7	18	-14	8	11	-21	12	47	15	9	36	4	2	38	6	3	35	3	1	22	-10	5	14	-18	10	12	-20	11	21	-11	6	M1 M1 A1 B1 M1 A1 A1 A1	$H_0: m = 32, H_1: m < 32$, where m is the population median time. for subtracting 32. for ranks. ft if ranks wrong. (or $W_- = 5 + 6 + 7 + 8 + 10 + 11 + 12 = 59$) No ft from here if wrong. i.e. a 1-tail test. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	8 18
Times	-32	Rank of diff																																									
40	8	4																																									
20	-12	7																																									
18	-14	8																																									
11	-21	12																																									
47	15	9																																									
36	4	2																																									
38	6	3																																									
35	3	1																																									
22	-10	5																																									
14	-18	10																																									
12	-20	11																																									
21	-11	6																																									


Q2	$V_G \sim N(56.5, 2.9^2)$ $V_W \sim N(38.4, 1.1^2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(V_G < 60) = P(Z < \frac{60 - 56.5}{2.9} = 1.2069)$ $= 0.8862$	M1 A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$V_T \sim N(56.5 + 38.4 = 94.9, 2.9^2 + 1.1^2 = 9.62)$ $P(\text{this} > 100) = P(Z > \frac{100 - 94.9}{3.1016} = 1.6443)$ $= 1 - 0.9499 = 0.0501$	B1 B1 A1	Mean. Variance. Accept sd (= 3.1016). c.a.o.	3
(iii)	$W_T \sim N(3.1 \times 56.5 + 0.8 \times 38.4 = 205.87, 3.1^2 \times 2.9^2 + 0.8^2 \times 1.1^2 = 81.5945)$ $P(200 < \text{this} < 220)$ $= P\left(\frac{200 - 205.87}{9.0330} < Z < \frac{220 - 205.87}{9.0330}\right)$ $= P(-0.6498 < Z < 1.5643)$ $= 0.9411 - (1 - 0.7422) = 0.6833$	M1 A1 M1 A1 M1 A1	Use of "mass = density \times volume" Mean. Variance. Accept sd (= 9.0330). Formulation of requirement. c.a.o.	6
(iv)	Given $\bar{x} = 205.6$ $s_{n-1} = 8.51$ $H_0: \mu = 200$, $H_1: \mu > 200$ Test statistic is $\frac{205.6 - 200}{\frac{8.51}{\sqrt{10}}}$ $= 2.081.$ Refer to t_9 . Single-tailed 5% point is 1.833. Significant. Seems that the required reduction of the mean weight has not been achieved.	M1 A1 M1 A1 A1 A1	Allow alternative: $200 + (c's 1.833) \times \frac{8.51}{\sqrt{10}} (= 204.933)$ for subsequent comparison with \bar{x} . (Or $\bar{x} - (c's 1.833) \times \frac{8.51}{\sqrt{10}} (= 200.667)$ for comparison with 200.) c.a.o. but ft from here in any case if wrong. Use of $200 - \bar{x}$ scores M1A0, but ft. No ft from here if wrong. $P(t > 2.081) = 0.0336$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	6
				18

Q3					
(i)	In this situation a paired test is appropriate because there are clearly differences between specimens which the pairing eliminates.	E1 E1		2	
(ii)	$H_0: \mu_D = 0$ $H_1: \mu_D > 0$ Where μ_D is the (population) mean reduction in hormone concentration. Must assume <ul style="list-style-type: none">• Sample is random• Normality of differences	B1 B1 B1 B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H_1 , or $\mu_A - \mu_B$ etc provided adequately defined. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X} = \dots$ " or similar unless \bar{X} is clearly and explicitly stated to be a <u>population</u> mean.	4	
(iii)	<u>MUST</u> be PAIRED COMPARISON t test. Differences (reductions) (before – after) are $-0.75 \ 2.71 \ 2.59 \ 6.07 \ 0.71 \ -1.85 \ -0.98 \ 3.56 \ 1.77 \ 2.95 \ 1.59 \ 4.17 \ 0.38 \ 0.88 \ 0.95$ $\bar{x} = 1.65 \ s_{n-1} = 2.100(3) \ (s_{n-1}^2 = 4.4112)$ Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}} = 3.043.$ Refer to t_{14} . Single-tailed 1% point is 2.624. Significant. Seems mean concentration of hormone has fallen.		Allow "after – before" if consistent with alternatives above. B1 M1 A1 M1 A1 A1 A1	Do not allow $s_n = 2.0291$ ($s_n^2 = 4.1171$) Allow c's \bar{x} and/or s_{n-1} . Allow alternative: $0 + (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ ($= 1.423$) for subsequent comparison with \bar{x} . (Or $\bar{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ $(= 0.227)$ for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \bar{x}$ scores M1A0, but ft. No ft from here if wrong. $P(t > 3.043) = 0.00438$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	7
(iv)	CI is $1.65 \pm k \times \frac{2.100}{\sqrt{15}}$ $= (0.4869, 2.8131)$ $\therefore k = 2.145$ By reference to t_{14} tables this is a 95% CI.	M1 M1 A1 A1 A1	ft c's $\bar{x} \pm$. ft c's s_{n-1} . A correct equation in k using either end of the interval or the width of the interval. Allow ft c's \bar{x} and s_{n-1} . c.a.o.	5	
				18	

Q4																				
(i)	Sampling which selects from those that are (easily) available. Circumstances may mean that it is the only economically viable method available. Likely to be neither random nor representative.	E1 E1 E1		3																
(ii)	$\begin{aligned} p + pq + pq^2 + pq^3 + pq^4 + pq^5 + q^6 \\ = \frac{p(1-q^6)}{1-q} + q^6 = \frac{p(1-q^6)}{p} + q^6 \\ = 1 - q^6 + q^6 = 1 \end{aligned}$	M1 A1	Use of GP formula to sum probabilities, or expand in terms of p or in terms of q . Algebra shown convincingly. Beware answer given.	2																
(iii)	With $p = 0.25$																			
	<table border="1"> <tr> <td>Probability</td> <td>0.25</td> <td>0.1875</td> <td>0.140625</td> <td>0.105469</td> <td>0.079102</td> <td>0.059326</td> <td>0.177979</td> </tr> <tr> <td>Expected fr</td> <td>25.00</td> <td>18.75</td> <td>14.0625</td> <td>10.5469</td> <td>7.9102</td> <td>5.9326</td> <td>17.7979</td> </tr> </table> $\begin{aligned} X^2 &= 0.04 + 0.0033 + 0.6136 + 0.5706 + 1.2069 \\ &\quad + 0.7204 + 7.8206 \\ &= 10.97(54) \end{aligned}$ (If e.g. only 2dp used for expected f's then $\begin{aligned} X^2 &= 0.04 + 0.0033 + 0.6148 + 0.5690 + 1.2071 \\ &\quad + 0.7226 + 7.8225 \\ &= 10.97(93)) \end{aligned}$ Refer to χ^2_6 .	Probability	0.25	0.1875	0.140625	0.105469	0.079102	0.059326	0.177979	Expected fr	25.00	18.75	14.0625	10.5469	7.9102	5.9326	17.7979	M1 M1 A1 M1 A1 M1	Probabilities correct to 3 dp or better. $\times 100$ for expected frequencies. All correct and sum to 100. c.a.o. Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 10.975) = 0.0891$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	9
Probability	0.25	0.1875	0.140625	0.105469	0.079102	0.059326	0.177979													
Expected fr	25.00	18.75	14.0625	10.5469	7.9102	5.9326	17.7979													
(iv)	Now with $X^2 = 9.124$ Refer to χ^2_5 . Upper 10% point is 9.236. Not significant. (Suggests new model does fit.) Improvement to the model is due to estimation of p from the data.	M1 A1 A1 E1	Allow correct df (= cells – 2) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 9.124) = 0.1042$. No ft from here if wrong. Correct conclusion. Comment about the effect of estimated p , consistent with conclusion in part (iii).	4																
				18																

4771 Decision Mathematics 1

1.

M1 bipartite
 A1 one arc from each letter

A1 David
 A1 rest

(ii) Can't both have someone shaking hands with everyone and someone not shaking hands at all.

(iii) n arcs leaving
 By (ii) only $n-1$ destinations

B1 $0 \Rightarrow \sim 3$
 B1 $3 \Rightarrow \sim 0$

B1
 B1

2.

(i)

n	i	j	k
5	1	3	3
	2	2	8
	3	1	13
	4	0	16

B1
 B1
 B1
 B1

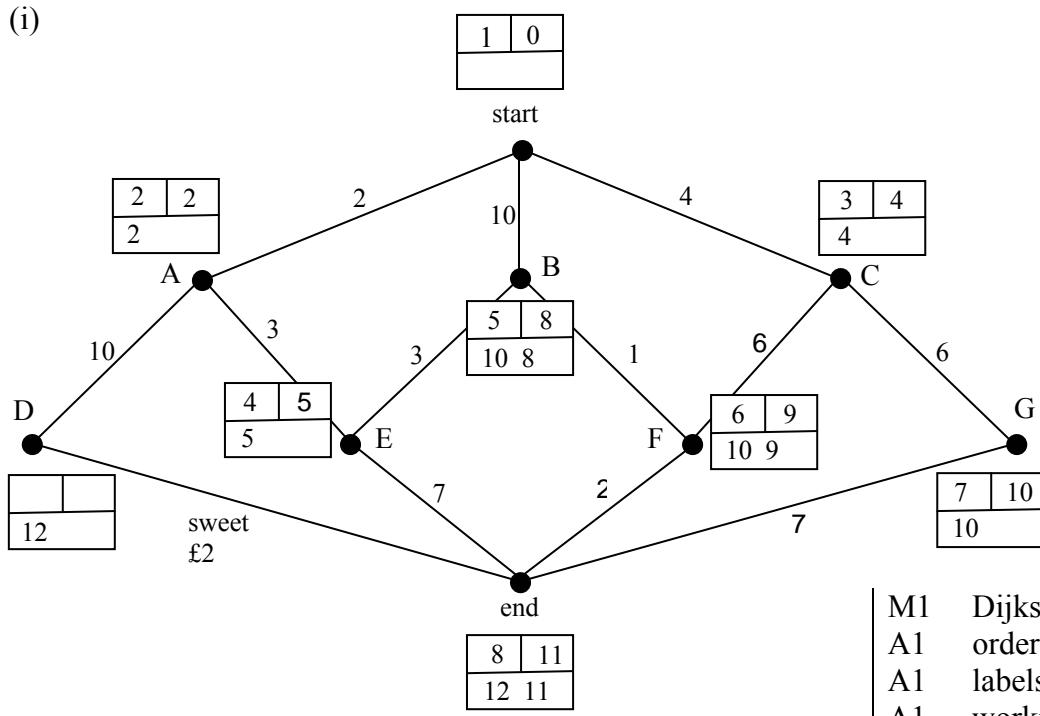
$$k = 16$$

B1

(ii) $f(5) = 125/6 - 35/6 + 1 = 90/6 + 1 = 16$

M1 substituting

(Need to see 125 or $20.8\dot{3}$ for A1)


A1

(iii) cubic complexity

B1

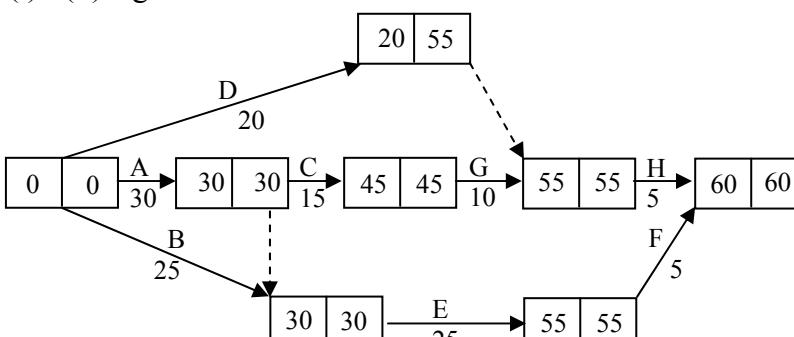
3.

(i)

Cheapest: £11

[start (£2 starter)] \rightarrow A (£3 main) \rightarrow E (£3 main) \rightarrow B (£1 main) \rightarrow F (£2 sweet) \rightarrow [end]

(ii) repeated mains !
directed network


M1	Dijkstra
A1	order
A1	labels
A1	working values
B1	£11
B1	route

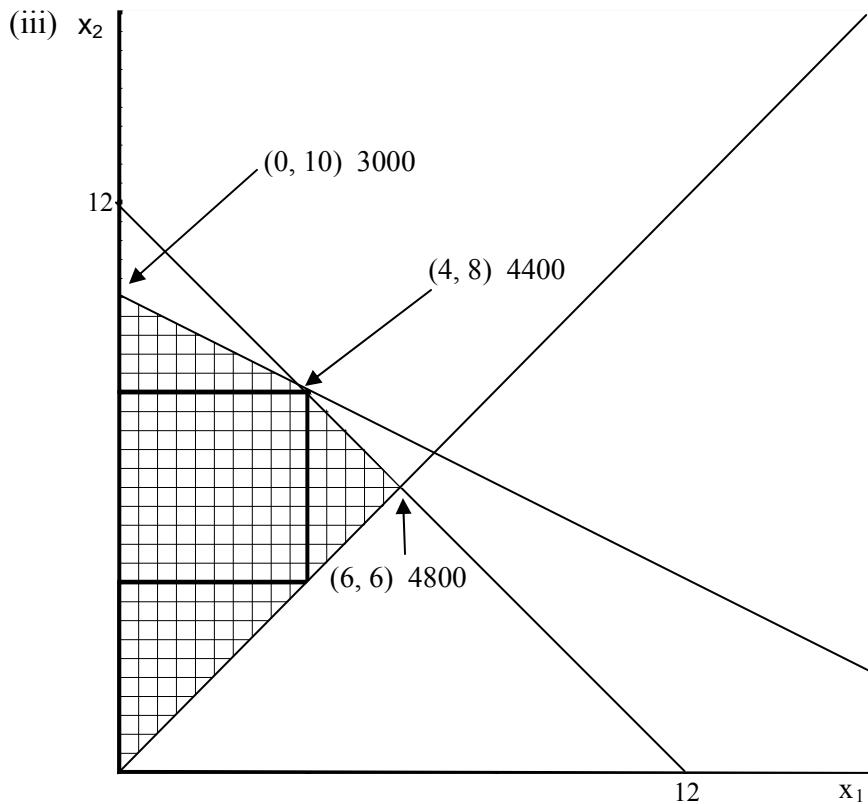
B1
B1

4.

(i) e.g.	00-47→90 48-79→80 80-95→40 96, 97, 98, 99 ignore	M1 some rejected A3 correct proportions (-1 each error) A1 efficient
(ii)	smaller proportion rejected	B1
(iii) e.g.	90, 90, 90, 80	350 M1 A1 A1 ✓
(iv) e.g.	90, 80, 90, 80 80, 90, 80, 80 90, 40, 80, 90 40, 90, 90, 90 90, 90, 90, 90 80, 80, 40, 90 80, 80, 80, 90 90, 80, 90, 90 90, 40, 40, 80	340 330 300 310 360 290 330 350 250 M1 A3 (-1 each error) ✓
	prob (load>325) = 0.6	M1 A1
(v) e.g. family groups		B1

5.

(i) & (ii) e.g.		M1 sca (activity on arc) A1 single start & end A1 dummy A1 rest M1 forward pass A1 M1 backward pass A1
	time - 60 minutes critical - A; C; E; F; G; H	B1 ✓ B1 cao
(iii) A and B at £300		B1 2 out of A, B, E B1 A B1 B B1 300 from A and B B1
	A; C; G; H B; E; F	


6.

(i) x_i represents the number of tonnes produced in month i
 $x_2 \leq x_3$
 $x_1 + x_2 \leq 12$

M1 quantities
A1 tonnes
B1
B1

(ii) Substitute $x_3 = 20 - x_1 - x_2$
 $x_2 \leq x_3 \rightarrow x_1 + 2x_2 \leq 20$
Min $2000x_1 + 2200x_2 + 2500x_3 \rightarrow \text{Max } 500x_1 + 300x_2$

M1
A1
A1

M1 sca
A3 lines
A1 shading

M1 >1 evaluated
point or profit
line
A1 (6, 6) or 4800

Production plan: 6 tonnes in month 1
6 tonnes in month 2
8 tonnes in month 3
Cost = £45200

M1 ✓ all 3
A1 cao

4776 Numerical Methods

1(i)	x	y	1st diff	2nd diff	
	-3	-16			
	-1	-2	14		
	1	4	6	-8	
	3	2	-2	-8	2nd difference constant so quadratic fits

[M1A1]
[E1]

(ii)
$$\begin{aligned} f(x) &= -16 + 14(x + 3)/2 - 8(x + 3)(x + 1)/8 \\ &= -16 + 7x + 21 - x^2 - 4x - 3 \\ &= 2 + 3x - x^2 \end{aligned}$$

[A1]
[TOTAL 8]

2(i)	Convincing algebra to demonstrate result			[M1A1]
(ii)(A)	Direct subtraction: 0.0022			[B1]
(B)	Using (*): $1/(223.6090+223.6068) = 0.002236057$			[M1A1]
	Second value has many more significant figures ("more accurate") -- may be implied			[E1]
	Subtraction of nearly equal quantities loses precision			[E1]

[TOTAL 7]

3(i)	x	f(x)			
	0	1			
	0.8	0.819951	T1 = 0.72798		[M1]
	0.4	0.994867	M1 = 0.795893		[M1]
			hence S1 = 0.773256		[M1]
				all values	[A1]
(ii)		T2 = 0.761937			[B1]
		M2 = 0.784069 so S2 = 0.776692			[M1A1]
		S2 will be much more accurate than S1 so 0.78 or 0.777 would be justified			[A1]

[TOTAL 8]

4(i)	x	cosx	1 - 0.5x ²	error	rel error	
	0.3	0.955336	0.955	-0.000336	-0.000352	condone signs here but require correct
(ii)		want $k 0.3^4 = 0.000336$			sign for k	[M1]
		gives $k = 0.041542 (0.0415, 0.042, 1/24)$				[A1]

[TOTAL 6]

5	r	0	1	2	
	x _r	3	3	3	
	x _r	2.99	2.9701	2.911194	
	x _r	3.01	3.0301	3.091206	
		Derivative is $2x - 3$. Evaluates to 3 at $x = 3$			[M1A1]
		3 is clearly a root, but the iteration does not converge			[E1]
		Need $-1 < g'(x) < 1$ at root for convergence			[E1]

[TOTAL 7]

Grade Thresholds

Advanced GCE (Subject) (Aggregation Code(s))
January 2009 Examination Series

Unit Threshold Marks

Unit	Maximum Mark	A	B	C	D	E	U
All units	UMS	100	80	70	60	50	40
4751	Raw	72	61	53	45	37	30
4752	Raw	72	60	53	46	40	34
4753/01	Raw	72	61	54	47	40	32
4753/02	Raw	18	15	13	11	9	8
4754	Raw	90	75	66	57	49	41
4755	Raw	72	57	49	41	33	26
4756	Raw	72	53	47	42	37	32
4758/01	Raw	72	61	53	45	37	29
4758/02	Raw	18	15	13	11	9	8
4761	Raw	72	58	50	42	34	27
4762	Raw	72	57	49	41	33	26
4763	Raw	72	53	46	39	32	25
4766/G241	Raw	72	57	48	40	32	24
4767	Raw	72	60	52	45	38	31
4768	Raw	72	53	46	39	33	27
4771	Raw	72	57	51	45	39	33
4776/01	Raw	72	56	49	43	37	30
4776/02	Raw	18	14	12	10	8	7

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A	B	C	D	E	U
3895-3898	300	240	210	180	150	120	0
7895-7898	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	A	B	C	D	E	U	Total Number of Candidates
3895	18.3	43.5	65.4	83.8	96.0	100.0	640
3896	39.2	58.8	78.4	86.3	96.1	100.0	94
3897	100.0	100.0	100.0	100.0	100.0	100.0	1
7895	22.2	57.6	81.7	93.0	98.1	100.0	186
7896	18.8	56.3	87.5	87.5	93.8	100.0	16

For a description of how UMS marks are calculated see:

http://www.ocr.org.uk/learners/ums_results.html

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

