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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.

NOTE

• This paper will be followed by Paper B: Comprehension.
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Section A (36 marks)

1 Express 4 cos θ − sin θ in the form R cos(θ + α), where R > 0 and 0 < α < 1

2
π.

Hence solve the equation 4 cos θ − sin θ = 3, for 0 ≤ θ ≤ 2π. [7]

2 Using partial fractions, find ä x(x + 1)(2x + 1) dx. [7]

3 A curve satisfies the differential equation
dy

dx
= 3x2y, and passes through the point (1, 1). Find y in

terms of x. [4]

4 The part of the curve y = 4 − x2 that is above the x-axis is rotated about the y-axis. This is shown in

Fig. 4.

Find the volume of revolution produced, giving your answer in terms of π. [5]

y

x

Fig. 4

5 A curve has parametric equations

x = at
3
, y = a

1 + t2
,

where a is a constant.

Show that
dy

dx
= −2

3t(1 + t2)2
.

Hence find the gradient of the curve at the point (a, 1

2
a). [7]

6 Given that cosec2 θ − cot θ = 3, show that cot2 θ − cot θ − 2 = 0.

Hence solve the equation cosec2 θ − cot θ = 3 for 0◦ ≤ θ ≤ 180◦. [6]
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Section B (36 marks)

7 When a light ray passes from air to glass, it is deflected through an angle. The light ray ABC starts

at point A (1, 2, 2), and enters a glass object at point B (0, 0, 2). The surface of the glass object is a

plane with normal vector n. Fig. 7 shows a cross-section of the glass object in the plane of the light

ray and n.

n

q

f A

B

C

Fig. 7

(i) Find the vector
−−→
AB and a vector equation of the line AB. [2]

The surface of the glass object is a plane with equation x + ß = 2. AB makes an acute angle θ with the

normal to this plane.

(ii) Write down the normal vector n, and hence calculate θ , giving your answer in degrees. [5]

The line BC has vector equation r = ( 0

0

2

) + µ (−2−2−1

). This line makes an acute angle φ with the

normal to the plane.

(iii) Show that φ = 45◦. [3]

(iv) Snell’s Law states that sin θ = k sin φ , where k is a constant called the refractive index. Find k.

[2]

The light ray leaves the glass object through a plane with equation x + ß = −1. Units are centimetres.

(v) Find the point of intersection of the line BC with the plane x + ß = −1. Hence find the distance

the light ray travels through the glass object. [5]

[Question 8 is printed overleaf.]
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8 Archimedes, about 2200 years ago, used regular polygons inside and outside circles to obtain

approximations for π.

(i) Fig. 8.1 shows a regular 12-sided polygon inscribed in a circle of radius 1 unit, centre O. AB

is one of the sides of the polygon. C is the midpoint of AB. Archimedes used the fact that the

circumference of the circle is greater than the perimeter of this polygon.

Fig. 8.1

A C B

O

1 1

(A) Show that AB = 2 sin 15◦. [2]

(B) Use a double angle formula to express cos 30◦ in terms of sin 15◦. Using the exact value of

cos 30◦, show that sin 15◦ = 1

2

√
2 − √

3. [4]

(C) Use this result to find an exact expression for the perimeter of the polygon.

Hence show that π > 6
√

2 − √
3. [2]

(ii) In Fig. 8.2, a regular 12-sided polygon lies outside the circle of radius 1 unit, which touches each

side of the polygon. F is the midpoint of DE. Archimedes used the fact that the circumference of

the circle is less than the perimeter of this polygon.

Fig. 8.2

D F E

O

1

(A) Show that DE = 2 tan 15◦. [2]

(B) Let t = tan 15◦. Use a double angle formula to express tan 30◦ in terms of t.

Hence show that t2 + 2
√

3t − 1 = 0. [3]

(C) Solve this equation, and hence show that π < 12(2 − √
3). [4]

(iii) Use the results in parts (i)(C) and (ii)(C) to establish upper and lower bounds for the value of π,

giving your answers in decimal form. [2]
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