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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided

on the Answer Booklet.
• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer any three questions.

• Do not write in the bar codes.
• There is an insert for use in Question 2.
• You are permitted to use a graphical calculator in this paper.
• Final answers should be given to a degree of accuracy appropriate to the context.

• The acceleration due to gravity is denoted by g m s
−2

. Unless otherwise instructed, when a numerical value
is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.
• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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1 A particle is attached to a spring and suspended vertically from an oscillating platform. The vertical

displacement, y, of the particle from a fixed point at time t is modelled by the differential equation

d2y

dt2
+ 6

dy

dt
+ 9y = 0.5 sin t.

(i) Find the general solution. [9]

Initially the displacement and velocity are both zero.

(ii) Find the solution. [5]

(iii) Describe the motion of the particle for large values of t. [2]

(iv) Find approximate values of the velocity and displacement at t = 20π. [3]

The motion of the platform is stopped at t = 20π and the differential equation modelling the subsequent

motion of the particle is

d2y

dt2
+ 6

dy

dt
+ 9y = 0.

(v) Write down the general solution. Sketch the solution curve for t > 20π. [5]

2 There is an insert for use with part (b)(i) of this question.

(a) The differential equation

dy

dx
− y tan x = tan x

is to be solved for |x | < 1
2
π.

(i) Find the general solution. [8]

(ii) Find the equation of the solution curve that passes through the origin and sketch the curve.

[4]

(b) The differential equation

dy

dx
− y2 tan x = tan x

is to be solved approximately, first by using a tangent field and then by Euler’s method.

(i) On the insert is a tangent field for the differential equation. Sketch the solution curves

through the origin and through (0, 1). [4]

Euler’s method is now used, starting at x = 0, y = 1. The algorithm is given by x
r+1

= x
r
+ h,

y
r+1

= y
r
+ hy ′

r
.

(ii) Carry out two steps with a step length of 0.1 to verify that the algorithm gives x = 0.2,

y ≈ 1.0201. [5]

(iii) Explain why it would be inappropriate to extend this numerical solution as far as x = 1.6.

[2]

(iv) How could the accuracy of the estimate found in part (b)(ii) be improved? [1]
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3 Fig. 3 shows a small ball projected from a point O over

horizontal ground. The forces acting on the ball are its weight

and air resistance. Its initial horizontal component of velocity

is v
1

and its subsequent horizontal velocity ẋ is modelled by

the differential equation

dẋ

dt
= −kẋ,

where k is a positive constant.
x

y

Fig. 3

O

The units of displacement are metres and the units of time are

seconds.

(i) Solve this differential equation to find ẋ in terms of t and hence show that the horizontal

displacement from O is given by x =
v

1

k
(1 − e−kt). [8]

The ball’s initial vertical component of velocity is v
2

and its subsequent vertical velocity ẏ is modelled

by the differential equation

dẏ

dt
= −kẏ − g.

(ii) Solve this differential equation to find ẏ in terms of t and hence show that the vertical displacement

from O is given by y =
kv

2
+ g

k2
(1 − e−kt) − g

k
t. [10]

(iii) Eliminate t between the expressions for x and y to show that y = (kv
2
+ g

kv
1

)x +
g

k2
ln(1 −

kx

v
1

).

[4]

(iv) In the case v
1
= v

2
= 10, k = 0.1, determine whether the ball will pass over a 5 m high wall at a

horizontal distance 8 m from O. [2]

4 The simultaneous differential equations

dx

dt
= −3x − 4y + 23,

dy

dt
= 2x + y − 7

are to be solved.

(i) Show that
d2x

dt2
+ 2

dx

dt
+ 5x = 5. [5]

(ii) Find the general solution for x. [7]

(iii) Find the corresponding general solution for y. [4]

When t = 0, x = 8 and y = 0.

(iv) Find the particular solutions for x and y. [4]

(v) Show that for sufficiently large t, y is always greater than x. [4]
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Booklet.
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