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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully and make sure that you know what you have to do before starting your answer.

• Answer all the questions.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.
• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.
• The total number of marks for this paper is 72.

• This document consists of 4 pages. Any blank pages are indicated.

NOTE

• This paper will be followed by Paper B: Comprehension.
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Section A (36 marks)

1 Find the first three terms in the binomial expansion of
1 + 2x

(1 − 2x)2
in ascending powers of x. State the

set of values of x for which the expansion is valid. [7]

2 Show that cot 2θ = 1 − tan2 θ

2 tan θ
.

Hence solve the equation

cot 2θ = 1 + tan θ for 0◦ < θ < 360◦. [7]

3 A curve has parametric equations

x = e2t, y = 2t

1 + t
.

(i) Find the gradient of the curve at the point where t = 0. [6]

(ii) Find y in terms of x. [2]

4 The points A, B and C have coordinates (1, 3, −2), (−1, 2, −3) and (0, −8, 1) respectively.

(i) Find the vectors
−−→
AB and

−−→
AC. [2]

(ii) Show that the vector 2i − j − 3k is perpendicular to the plane ABC. Hence find the equation of

the plane ABC. [5]

5 (i) Verify that the lines r = (−5

3

4

) + λ( 3

0

−1

) and r = (−1

4

2

) + µ( 2

−1

0

) meet at the point (1, 3, 2).

[3]

(ii) Find the acute angle between the lines. [4]
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Section B (36 marks)

6 In Fig. 6, OAB is a thin bent rod, with OA = a metres, AB = b metres and angle OAB = 120◦. The

bent rod lies in a vertical plane. OA makes an angle θ above the horizontal. The vertical height BD

of B above O is h metres. The horizontal through A meets BD at C and the vertical through A meets

OD at E.

120°

a

b

O

A

B

C

DE

q

h

Fig. 6

(i) Find angle BAC in terms of θ. Hence show that

h = a sin θ + b sin(θ − 60◦). [3]

(ii) Hence show that h = (a + 1
2
b) sin θ −

√
3

2
b cos θ. [3]

The rod now rotates about O, so that θ varies. You may assume that the formulae for h in parts (i)

and (ii) remain valid.

(iii) Show that OB is horizontal when tan θ =
√

3b

2a + b
. [3]

In the case when a = 1 and b = 2, h = 2 sin θ −
√

3 cos θ.

(iv) Express 2 sin θ −
√

3 cos θ in the form R sin(θ − α). Hence, for this case, write down the

maximum value of h and the corresponding value of θ. [7]

[Question 7 is printed overleaf.]
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7 Fig. 7 illustrates the growth of a population with time. The proportion of the ultimate (long term)

population is denoted by x, and the time in years by t. When t = 0, x = 0.5, and as t increases,

x approaches 1.

t

x

0.5

1

Fig. 7

One model for this situation is given by the differential equation

dx

dt
= x(1 − x).

(i) Verify that x = 1

1 + e−t
satisfies this differential equation, including the initial condition. [6]

(ii) Find how long it will take, according to this model, for the population to reach three-quarters of

its ultimate value. [3]

An alternative model for this situation is given by the differential equation

dx

dt
= x2(1 − x),

with x = 0.5 when t = 0 as before.

(iii) Find constants A, B and C such that
1

x2(1 − x)
= A

x2
+ B

x
+ C

1 − x
. [4]

(iv) Hence show that t = 2 + ln( x

1 − x
) − 1

x
. [5]

(v) Find how long it will take, according to this model, for the population to reach three-quarters of

its ultimate value. [2]
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