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4756 Mark Scheme June 2010
1 (a)(i) f (t) = arcsin t
’ _ 1 _ 2 7%
= fi= T = (1_t ) B1 Any form
_3
= f(t)= —%(1—t2) * -2t M1 Using Chain Rule
_ t
3 Al
(1 _i2 )2 (ag)
(i) f (X) = arcsin (X + %2)
= f(0)=arcsin () :% B1 (ag) % obtained clearly from f (0) www
£10) = (1—(i)2)%—i Ml Clear substitution of Xx=0or t= ">
2 5 Al (ag)
1
and f"(0)= 2= w3
N2\ 9
-(2))
2
f(x)=f(0)+xf'0)+ XTf "(0) + ... M1 Evaluating f "(0) and dividing by 2
= termin X is % X Al Accept 0.385% or better
Dl E—
N
[ ! Gl Complete spiral with r(2m) <r(0)
v ] Gl r(0) = a, r(2n) = a/3 indicated
J or r(0) > r(n/2) > r(m) > r(3m/2) > r(2m)
- Dep. on G1 above
Max. G1 if not fully correct
T
Area = j%rzdﬁ
0
T 2.2 2,27
ra ra 1
= j >-do = J. - do M1 Integral expression involving r
0 2(7+6) 2 o(z+06)
_ ra?[ -1 " Al Correct result of integration with correct
2 |Lz+6], limits
2.2 Substituting limits into an expression of
_ra __1+l M1 k
2 \2r & the form—— . Dep. on M1 above
T+6
_ 1 2
= lra Al
p p 1Ml
1 1 1 1 ) 2x |2 arctan
© j S dx= 4J 3 dx= Zx Earctan? | 2 %
9+4x atX 0 |AIAI —xZand =
4 3 3
1
= A arctan 1 Ml Substituting limits. Dep. on M1 above
V4 .
= % Al Evaluated in terms of ©
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no 1 no 1 .
2(@)| z +—=2cosnd, ' ——=2]sinnd B1 Both
z z
1Y 10 5 1 1y
(z——] :ZS—SZ3+IOZ——+—3——5 Ml Expanding (Z——j
z z 7z z
=7 —%—5(23 —%jﬂo(z—l]
4 Z 4
Ml Introducing sines (and possibly cosines)
= 32j sin’) = 2j sin 50 — 10j sin 30 + 20j sin 0 of multiple angles
Al RHS
= sin’0= L sin 56 -2 sin 30 +3 sin 0 Alft Division by 32(j)
_5 R=—_5 =
A=¢,B=-3,C=
(b)(i) | 4" roots of =9 =9e>" are rel? where
r= \/g Bl Accept g
3
_o BI
_3rm  2km Implied by at least two correct (ft)
=2 27 Ml
8 4 further values
o=tz 1z 157 Al Or stating k= (0), 1, 2, 3
8’ 8 8 Allow arguments inrange t<0<n
-
5 -
[ |
[ |
d
-2 2
u
Ml Points at vertices of a square centre O
- or 3 correct points (ft)
| or 1 point in each quadrant
-2 Al
(i) | Mid-point of SP has argument % Bl
3
and modulus of 3 B1
Argument of W= 4 x % -z
4 M1 Multiplying argument by 4 and modulus
3 9 .
and modulus = | ,[= | == raised to power of 4
2 4 Al Both correct
Gl w plotted on imag. axis above level of P
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3@ |2 + X130+ 6=0= (A—2)2A*+ 5L —3)=0 Bl Substituting A = 2 or factorising
= A=20r2A*+51-3=0 M1 Obtaining and solving a quadratic
= (2A-DA+3)=0
= A=¥A=-3 AlAl
4
3 3 6
()| M| =3 |=2|-3|=|-6 B1
1 1 2
1 4
M2v=22v=4|—11=|_4 B2 Give Bl’for one component with the
. . wrong sign
3 3
3 3
3 (3 iy .
M| -2 |=2| 23 |=| -3 M1 Recognising that the solution is a
12 12 multiple of the given RHS
2 7)) \l
= X:%,y=—%,2=% Al Correct multiple
5
(iii) 20+ - 130+ 6=0
= 2M’+M?-13M +6l =0 Ml Using Cayley-Hamilton Theorem
3__1Mm2413
= M =—ZM"+3M -3l
= Mi=-IM’+LEM>-3Mm Ml Multiplying by M
= Mi=-lEIM*+EM-3)+LM*-3M Ml Substituting for M*
4_21\2_25 3
= M= M -2M+21 Al
—21 R=_25 (~=3
A=5,B=-3.,C=3
4
(b)|N=PDP! Bl Order must be correct
hereD=| ' ° Bl
where D =
0 2
1 -1
and P=[2 1) Bl For B1BI1, order must be consistent
- prAft BIft Ft their P
3l eir
1(1 -1)(-1 O 1 1
:> =
312 1 0 2){-21
e [ Ml Attempting matrix product
3l 2l empting matrix produc
13 3 (1 -1 N
306 0 -2 0
a C
OR LetN=
b d
a cj1 1 a+l ¢ 1 0
=-1 Bl Or =
b d){2 2 b d+1){2 0
a c\(-1 -1 a-2 ¢ -1 0
=2 B1 Or =
b d){ 1 1 b d-2)1 0
= at+2c=-1,-atc=-2 Bl
b+2d=-2,-b+d=2 Bl
= a=lec=-1;b=-2d=0_____ MIAI Solving both pairs of equations |
6 19
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4 (i) |2 sinh X cosh x
e€+e -~
=2 X X
2 2
e Mi Using exponential definitions and
B > multiplying or factorising
= sinh 2x Al (ag)
Differentiating,
2 cosh 2x =2 cosh®x + 2 sinh’x B1 One side correct
= cosh 2x = cosh® + sinh’x B1 Correct completion
DI )
\\\ /
\\\ /”
\ ///
e Gl Correct shape and through origin
2
Volume =7rj(cosh X—l)2 dx M1 J.(cosh X—l)2 dx
0
2 A correct expanded integral expression
=r I cosh? x—2cosh x+1dx Al including limits 0, 2 (may be implied by
0 later work)
2
-7 J' 1 cosh 2x—2 cosh X+ 2 dx M1 Attempting to obtain an integrable form
. 2 2 Dep. on M1 above
2
= ﬁl:% sinh 2X—2sinh X +% X]O A2 Give Al for two terms correct
= | Lsinh4-2sinh2+3]
=8.070 Al 3 d.p. required. Condone 8.07
(i) y = cosh 2x + sinh X
= % = 2 sinh 2X + cosh X B1 Any correct form
X
At S.P. 2 sinh 2x+ cosh x=0
— 4 sinh X cosh X+ cosh X= 0 Ml Se.ttmg der{vatlve equal to zero and
using identity
= cosh X(4 sinhx+1)=0 Ml Solving ;ﬂ =0 to obtain value of sinh X
X
= cosh x=0 (rejected) Al Repudiating cosh x=10
= sinhx=—7 Al
1 17 M1 Using log form of arsinh, or setting up
= x=1 _Z+T and solving quadratic in €"
Al AQ if extra “roots” quoted
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5(i)(A) BI
(B)
Gl Sketch of circle, centre (0, 0)
Gl Sketch of “squarer” circle on same axes
(C) | Square Bl
(D)|-1<x<1 Bl Give B1BO for not all non-strict or
-1<y<1 Bl unclear
6
(i)(A) | Odd roots exist for all real numbers B1 Any equivalent explanation
(B) | Line Bl Sketch insufficient
© \ T
S~ —
\\\
|
|
\
\ Gl
Asymptote: X+y=0 B1
D)| T
\\
N —
AN . . .
\\ Gl Line X + y = 0 outside unit square
N Gl Lines y=1 and X =1 on unit square
6
(iii)
\\
\
\\
—— Gl GO if curve beyond (1, 0) or (0, 1)
0<xy<l1 Bl Accept strict, or indication on graph
2
VA) T
/I
S RN
_— // \\‘\,,
\\ /
\|/
“ | QG2ft Give Gl for a partial attempt. Ft from
L (iii) on shape
(B) | Limit is a “plus sign” B1
where X — 0 for -1 <y <1 and vice versa Bl
4 18
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