

GCE

Mathematics (MEI)

Advanced GCE 4776

Numerical Methods

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

4776

Mark Scheme

June 2010

(ii)	E.g. $x_{r+1} = \sqrt{3 - 1/x}$						E.g. $x_{r+1} = 3/x - 1/x^2$					
	r	0	1	2	3		0	1	2	3		
	x_r	1.5	1.527525	1.531452	1.532		1.5	1.555556	1.515306	1.544287		
			4	5				4	5			
			1.532077	1.532087				1.523326	1.538438			

2(i) Forward difference: $(0.9996 - 0.9854)/0.2 = 0.071$ [M1A1]
Central difference: $(0.9996 - 0.9508)/0.4 = 0.122$ [M1A1]
Central difference expected to be more accurate. [E1]

(ii) Forward difference maximum: $(0.99965 - 0.98535)/0.2 = 0.0715$ [B1]
 Central difference maximum: $(0.99965 - 0.95075)/0.4 = 0.12225$ [B1]
[TOTAL 7]

3(i) r is the relative error (in X as an approximation to x) [E1]
 $X^n = x^n (1 + r)^n$ $(1 + r)^n = 1 + nr$ (provided r is small) [M1M1A1]

(ii) G^2 ($= 0.332\ 929$, not required) is about 0.08% smaller than g^2
 \sqrt{G} ($= 0.795\ 605$, not required) is about 0.02% smaller than \sqrt{g} [M1A1A1]

4(i)	x	$\sin + \tan$	$2x$	error	rel error	accept:	+ve, +ve	
	0.2	0.401379	0.4	-0.00138	-0.00344		-ve, +ve	[M1A1A1A1]
	0.1	0.200168	0.2	-0.00017	-0.00084		-ve, -ve	

(ii) $2 \times 0.2^3 / k = 0.00138$ gives $k = 11.59$ Either of these (or other methods) to suggest $k = 12$ [M1A1] [B1] [TOTAL 7]

$2 \times 0.1^3 / k = 0.00017$ gives $k = 11.76$

5 Data not equally spaced in x [E1]

$$f(x) = -10(x-3)(x-6) / (1-3)(1-6) - 12(x-1)(x-6) / (3-1)(3-6) + 30(x-1)(x-3) / (6-1)(6-3)$$

[M1A1A1A1]

$$f(x) = -(x^2 - 9x + 18) + 2(x^2 - 7x + 6) + 2(x^2 - 4x + 3)$$

$$= 3x^2 - 13x$$

[TOTAL 7]

4776

Mark Scheme

June 2010

6(i)	<i>h</i>	<i>M</i>	<i>T</i>	<i>S</i>	<i>M</i> :	[M1A1A1]
	0.8	1.547953	1.611209	1.569038		
	0.4	1.563639	1.579581	1.568953	<i>T</i> :	[M1A1]
	0.2	1.567619	1.571610	1.568949	<i>S</i> :	[M1A1]

(iii)	h	M error	T error	
	0.8	-0.02100	0.04226	<i>accept consistent</i>
	0.4	-0.00531	0.01063	<i>use of other sign</i>
	0.2	-0.00133	0.00266	<i>convention</i>

(A) M errors are about half the T errors so M is twice as accurate as T [E1A1]
(B) Errors for both T and M reduce by a factor of 4 as h is halved so [E1]
the rates of convergence are the same, both second order [A1A1]

[subtotal 8]
[TOTAL 17]

7(i) $f(0) = 5, f(1) = -2$. (Change of sign implies root.) [M1A1]

$f'(x) = 5x^4 - 8$ hence N-R formula [M1A1]

r	0	1	2	3	4	
x_r	0.5	0.634146	0.638232	0.638238	0.638238	[M1A1A1]
differences		0.134146	0.004086	5.98E-06	1.29E-11	[A1]
ratios			0.030457	0.001462	2.17E-06	[M1A1]

The ratios of differences are decreasing (fast) so process is faster than first order

**[subtotal
11]**

r	0	1	2	3	4
x_r	1.4	1.5	1.458054	1.462741	1.46312
$f(x_r)$	-0.82176	0.59375	-0.0747	-0.00559	5.99E-05

root is 1.46 correct to 3 sf

differences	0.1	-0.04195	0.004687	0.000379
ratios		-0.41946	-0.11175	0.080876

The ratios of differences are decreasing (fast) so process is faster than first order

accept 'second order'

[subtotal 8]
[TOTAL 19]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

