

GCE

Mathematics (MEI)

Advanced GCE 4757

Further Applications of Advanced Mathematics (FP3)

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

4757

Mark Scheme

June 2010

1 (i)	$\overrightarrow{AC} \times \overrightarrow{AB} = \begin{pmatrix} 5 \\ -8 \\ -26 \end{pmatrix} \times \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 42 \\ -42 \\ 21 \end{pmatrix}$ <p>Perpendicular distance is $\frac{ \overrightarrow{AC} \times \overrightarrow{AB} }{ \overrightarrow{AB} }$</p> $= \frac{\sqrt{42^2 + 42^2 + 21^2}}{\sqrt{2^2 + 1^2 + 2^2}} = \frac{63}{3} = 21$	B2 M1 M1 A1	Give B1 for one component correct Calculating magnitude of a vector product www 5
	<p>OR $\left[\begin{pmatrix} 3+2\lambda \\ 8+\lambda \\ 27-2\lambda \end{pmatrix} - \begin{pmatrix} 8 \\ 0 \\ 1 \end{pmatrix} \right] \cdot \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = 0$</p> $2(2\lambda-5) + (\lambda+8) - 2(-2\lambda+26) = 0$ $\lambda = 6 \quad [\text{F is } (15, 14, 15)]$ $CF = \sqrt{7^2 + 14^2 + 14^2} = 21$	M1 A1 A1 ft M1A1	Appropriate scalar product
(ii)	$\overrightarrow{AB} \times \overrightarrow{CD} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} \times \begin{pmatrix} 3 \\ p \\ p-1 \end{pmatrix} = \begin{pmatrix} 3p-1 \\ -2p-4 \\ 2p-3 \end{pmatrix}$ $\overrightarrow{AC} \cdot (\overrightarrow{AB} \times \overrightarrow{CD}) = \begin{pmatrix} 5 \\ -8 \\ -26 \end{pmatrix} \cdot \begin{pmatrix} 3p-1 \\ -2p-4 \\ 2p-3 \end{pmatrix}$ $= 5(3p-1) - 8(-2p-4) - 26(2p-3) \quad [= -21p+105]$ $ \overrightarrow{AB} \times \overrightarrow{CD} = \sqrt{(3p-1)^2 + (-2p-4)^2 + (2p-3)^2}$ $= \sqrt{17p^2 - 2p + 26}$ <p>Distance is $\frac{ \overrightarrow{AC} \cdot (\overrightarrow{AB} \times \overrightarrow{CD}) }{ \overrightarrow{AB} \times \overrightarrow{CD} } = \frac{21 p-5 }{\sqrt{17p^2 - 2p + 26}}$</p>	B1 B1 B1 M1 A1 ft B1 ft M1A1 (ag)	Correctly obtained 8
(iii)	$V = (\pm) \frac{1}{6} (\overrightarrow{AC} \times \overrightarrow{AB}) \cdot \overrightarrow{AD} = (\pm) \frac{1}{6} \begin{pmatrix} 42 \\ -42 \\ 21 \end{pmatrix} \cdot \begin{pmatrix} 8 \\ p-8 \\ p-27 \end{pmatrix}$ $= (\pm) 56 - 7(p-8) + \frac{7}{2}(p-27)$ $= (\pm) \frac{35}{2} - \frac{7}{2}p$ $= \frac{7}{2} p-5 $	M1 A1 ft M1 A1 A1	Appropriate scalar triple product In any form Evaluation of scalar triple product <i>Dependent on previous M1</i> $\frac{1}{6}(105-21p)$ or better 4
(iv)	<p>Intersect when $p = 5$</p> $\begin{pmatrix} 3 \\ 8 \\ 27 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix} = \begin{pmatrix} 8 \\ 0 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 3 \\ 5 \\ 4 \end{pmatrix}$ $3+2\lambda = 8+3\mu$ $8+\lambda = 5\mu \quad [8+\lambda = p\mu]$ $27-2\lambda = 1+4\mu \quad [27-2\lambda = 1+(p-1)\mu]$ $\lambda = 7, \mu = 3$ <p>Point of intersection is $(17, 15, 13)$</p>	B1 B1 ft M1 A1 ft A1 ft M1 A1	Equations of both lines (<i>may involve p</i>) Equation for intersection (<i>must have different parameters</i>) Equation involving λ and μ Second equation involving λ and μ <i>or</i> Two equations in λ , μ , p Obtaining λ or μ 7

4757

Mark Scheme

June 2010

2 (i)	$\frac{\partial g}{\partial x} = (y + xy + z^2)e^{x-2y}$ $\frac{\partial g}{\partial y} = (x - 2xy - 2z^2)e^{x-2y}$ $\frac{\partial g}{\partial z} = 2ze^{x-2y}$	M1 A1 A1 4	Partial differentiation
(ii)	At $(2, 1, -1)$, $\frac{\partial g}{\partial x} = 4$, $\frac{\partial g}{\partial y} = -4$, $\frac{\partial g}{\partial z} = -2$ Normal has direction $\begin{pmatrix} 4 \\ -4 \\ -2 \end{pmatrix}$ L passes through $(2, 1, -1)$ and has this direction	M1 A1 M1 A1 (ag) 4	
(iii)	When $g = 0$, $xy + z^2 = 0$ $(2 - 2\lambda)(1 + 2\lambda) + (-1 + \lambda)^2 = 0$ $3 - 3\lambda^2 = 0$ $\lambda = \pm 1$ $\lambda = 1$ gives $P(0, 3, 0)$ $\lambda = -1$ gives $Q(4, -1, -2)$	M1 M1 A1 (ag) A1 4	Obtaining a value of λ Or B1 for verifying $g(0, 3, 0) = 0$ and showing that P is on L
(iv)	At P , $\frac{\partial g}{\partial x} = 3e^{-6}$, $\frac{\partial g}{\partial y} = 0$, $\frac{\partial g}{\partial z} = 0$ $\delta g \approx \frac{\partial g}{\partial x} \delta x + \frac{\partial g}{\partial y} \delta y + \frac{\partial g}{\partial z} \delta z$ $= 3e^{-6}(-2\mu) + 0 + 0 = -6\mu e^{-6}$	M1 M1 A1 (ag) 3	OR give M2 A1 www for $g(-2\mu, 3 + 2\mu, \mu)$ $= (-3\mu^2 - 6\mu)e^{-6\mu-6} \approx -6\mu e^{-6}$
(v)	When $-6\mu e^{-6} \approx h$, $\mu \approx -\frac{1}{6}e^6 h$ Point $(-2\mu, 3 + 2\mu, \mu)$ is approximately $(\frac{1}{3}e^6 h, 3 - \frac{1}{3}e^6 h, -\frac{1}{6}e^6 h)$	M1 A1 (ag) 2	
(vi)	At Q , $\frac{\partial g}{\partial x} = -e^6$, $\frac{\partial g}{\partial y} = 4e^6$, $\frac{\partial g}{\partial z} = -4e^6$ When $x = 4 - 2\mu$, $y = -1 + 2\mu$, $z = -2 + \mu$ $\delta g \approx (-e^6)(-2\mu) + (4e^6)(2\mu) + (-4e^6)(\mu)$ $= 6\mu e^6$ If $6\mu e^6 \approx h$, then $\mu \approx \frac{1}{6}e^{-6} h$ Point is approximately $(4 - \frac{1}{3}e^{-6} h, -1 + \frac{1}{3}e^{-6} h, -2 + \frac{1}{6}e^{-6} h)$	M1 M1 M1A1 M1 A2 7	OR give M1 M2 A1 www for $g(4 - 2\mu, -1 + 2\mu, -2 + \mu)$ $= (-3\mu^2 + 6\mu)e^{-6\mu+6} \approx 6\mu e^6$ Give A1 for one coordinate correct If partial derivatives are not evaluated at Q , max mark is M0M1M0M0

3 (i)	$\frac{dy}{dx} = \frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}x^{\frac{1}{2}}$ $1 + \left(\frac{dy}{dx} \right)^2 = 1 + \left(\frac{1}{2}x^{-\frac{1}{2}} - \frac{1}{2}x^{\frac{1}{2}} \right)^2$ $= 1 + \frac{1}{4}x^{-1} - \frac{1}{2} + \frac{1}{4}x = \frac{1}{4}x^{-1} + \frac{1}{2} + \frac{1}{4}x$ $= \left(\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{\frac{1}{2}} \right)^2$	B1 M1 A1	
	Arc length is $\int_0^a \left(\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{\frac{1}{2}} \right) dx$ $= \left[x^{\frac{1}{2}} + \frac{1}{3}x^{\frac{3}{2}} \right]_0^a$ $= a^{\frac{1}{2}} + \frac{1}{3}a^{\frac{3}{2}}$	M1 A1 (ag)	5
(ii)	Curved surface area is $\int 2\pi y \, ds$ $= \int_0^3 2\pi \left(x^{\frac{1}{2}} - \frac{1}{3}x^{\frac{3}{2}} \right) \left(\frac{1}{2}x^{-\frac{1}{2}} + \frac{1}{2}x^{\frac{1}{2}} \right) dx$ $= 2\pi \int_0^3 \left(\frac{1}{2} + \frac{1}{3}x - \frac{1}{6}x^2 \right) dx$ $= 2\pi \left[\frac{1}{2}x + \frac{1}{6}x^2 - \frac{1}{18}x^3 \right]_0^3$ $= 3\pi$	M1 A1 M1A1 A1	For $\int y \, ds$ Correct integral form <i>including limits</i> For $\frac{1}{2}x + \frac{1}{6}x^2 - \frac{1}{18}x^3$ 5
(iii)	When $x = 4$, $\frac{dy}{dx} = -\frac{3}{4}$ Unit normal vector is $\begin{pmatrix} -\frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$ $\frac{d^2y}{dx^2} = -\frac{1}{4}x^{-\frac{3}{2}} - \frac{1}{4}x^{-\frac{1}{2}} \quad (= -\frac{5}{32})$ $\rho = \frac{\left\{ 1 + (-\frac{3}{4})^2 \right\}^{\frac{3}{2}}}{(-\frac{5}{32})} \quad (= \frac{125/64}{5/32} = \frac{25}{2})$ $\mathbf{c} = \begin{pmatrix} 4 \\ -\frac{2}{3} \end{pmatrix} + \frac{25}{2} \begin{pmatrix} -\frac{3}{5} \\ -\frac{4}{5} \end{pmatrix}$ $= \begin{pmatrix} -3\frac{1}{2} \\ -10\frac{2}{3} \end{pmatrix}$	B1 M1 A1 ft B1 M1 A1 ft M1 A1	Finding a normal vector Correct unit normal (either direction) Applying formula for ρ or κ 9
(iv)	Differentiating partially w.r.t. p $0 = 2p x^{\frac{1}{2}} - p^2 x^{\frac{3}{2}}$ $p = \frac{2}{x}$ Envelope is $y = \frac{4}{x^2} x^{\frac{1}{2}} - \frac{1}{3} \frac{8}{x^3} x^{\frac{3}{2}}$ $y = \frac{4}{3} x^{-\frac{3}{2}}$	M1 A1 M1 A1 M1 A1	

4 (i)	$st(x) = s\left(\frac{x}{x-1}\right) = \frac{\frac{x}{x-1}-1}{\frac{x}{x-1}}$ $= \frac{x-(x-1)}{x} = \frac{1}{x} = r(x)$ $ts(x) = t\left(\frac{x-1}{x}\right) = \frac{\frac{x}{x-1}}{\frac{x-1}{x}-1}$ $= \frac{x-1}{(x-1)-x} = 1-x = q(x)$	M1 A1 (ag) M1 A1	4																																																	
(ii)	<table border="1" style="width: 100%; text-align: center;"> <tr> <td></td><td>p</td><td>q</td><td>r</td><td>s</td><td>t</td><td>u</td></tr> <tr> <td>p</td><td>p</td><td>q</td><td>r</td><td>s</td><td>t</td><td>u</td></tr> <tr> <td>q</td><td>q</td><td>p</td><td>s</td><td>r</td><td>u</td><td>t</td></tr> <tr> <td>r</td><td>r</td><td>u</td><td>p</td><td>t</td><td>s</td><td>q</td></tr> <tr> <td>s</td><td>s</td><td>t</td><td>q</td><td>u</td><td>r</td><td>p</td></tr> <tr> <td>t</td><td>t</td><td>s</td><td>u</td><td>q</td><td>p</td><td>r</td></tr> <tr> <td>u</td><td>u</td><td>r</td><td>t</td><td>p</td><td>q</td><td>s</td></tr> </table>		p	q	r	s	t	u	p	p	q	r	s	t	u	q	q	p	s	r	u	t	r	r	u	p	t	s	q	s	s	t	q	u	r	p	t	t	s	u	q	p	r	u	u	r	t	p	q	s	B3 3	Give B2 for 4 correct, B1 for 2 correct
	p	q	r	s	t	u																																														
p	p	q	r	s	t	u																																														
q	q	p	s	r	u	t																																														
r	r	u	p	t	s	q																																														
s	s	t	q	u	r	p																																														
t	t	s	u	q	p	r																																														
u	u	r	t	p	q	s																																														
(iii)	<table border="1" style="width: 100%; text-align: center;"> <tr> <td>Element</td><td>p</td><td>q</td><td>r</td><td>s</td><td>t</td><td>u</td><td rowspan="2"></td></tr> <tr> <td>Inverse</td><td>p</td><td>q</td><td>r</td><td>u</td><td>t</td><td>s</td></tr> </table>	Element	p	q	r	s	t	u		Inverse	p	q	r	u	t	s	B3 3	Give B2 for 4 correct, B1 for 2 correct																																		
Element	p	q	r	s	t	u																																														
Inverse	p	q	r	u	t	s																																														
(iv)	$\{p\}$, F $\{p, q\}$, $\{p, r\}$, $\{p, t\}$ $\{p, s, u\}$	B1B1B1 B1 4	<i>Ignore these in the marking</i> Deduct one mark for each non-trivial subgroup in excess of four																																																	
(v)	<table border="1" style="width: 100%; text-align: center;"> <tr> <td>Element</td><td>1</td><td>-1</td><td>$e^{\frac{\pi}{3}j}$</td><td>$e^{-\frac{\pi}{3}j}$</td><td>$e^{\frac{2\pi}{3}j}$</td><td>$e^{-\frac{2\pi}{3}j}$</td><td rowspan="2"></td></tr> <tr> <td>Order</td><td>1</td><td>2</td><td>6</td><td>6</td><td>3</td><td>3</td></tr> </table>	Element	1	-1	$e^{\frac{\pi}{3}j}$	$e^{-\frac{\pi}{3}j}$	$e^{\frac{2\pi}{3}j}$	$e^{-\frac{2\pi}{3}j}$		Order	1	2	6	6	3	3	B4 4	Give B3 for 4 correct, B2 for 3 correct B1 for 2 correct																																		
Element	1	-1	$e^{\frac{\pi}{3}j}$	$e^{-\frac{\pi}{3}j}$	$e^{\frac{2\pi}{3}j}$	$e^{-\frac{2\pi}{3}j}$																																														
Order	1	2	6	6	3	3																																														
(vi)	$2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 13$, $2^6 = 7$ $2^7 = 14$, $2^8 = 9$, $2^9 = 18$, $2^{10} = 17$, $2^{11} = 15$, $2^{12} = 11$ $2^{13} = 3$, $2^{14} = 6$, $2^{15} = 12$, $2^{16} = 5$, $2^{17} = 10$, $2^{18} = 1$ Hence 2 has order 18	M1 A1 A1 3	Finding (at least two) powers of 2 For $2^6 = 7$ and $2^9 = 18$ Correctly shown <i>All powers listed implies final A1</i>																																																	
(vii)	G is abelian (so all its subgroups are abelian) F is not abelian	B1 1	<i>Can have 'cyclic' instead of 'abelian'</i>																																																	
(viii)	Subgroup of order 6 is $\{1, 2^3, 2^6, 2^9, 2^{12}, 2^{15}\}$ i.e. $\{1, 7, 8, 11, 12, 18\}$	M1 A1 2	or B2																																																	

4757

Mark Scheme

June 2010

Pre-multiplication by transition matrix

5 (i)	$P = \begin{pmatrix} 0.16 & 0.28 & 0.43 & 1 \\ 0.84 & 0 & 0 & 0 \\ 0 & 0.72 & 0 & 0 \\ 0 & 0 & 0.57 & 0 \end{pmatrix}$	B2	Allow tolerance of ± 0.0001 in probabilities throughout this question Give B1 for two columns correct
(ii)	$P^9 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.3349 \\ 0.3243 \\ 0.2231 \\ 0.1177 \end{pmatrix}$ Prob(C) = 0.2231	M2 A1	Using P^9 Give M1 for using P^{10}
(iii)	Week 5 $P^4 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.5020 \\ 0.2851 \\ 0.1577 \\ 0.0552 \end{pmatrix}$	B1 M1 A1	First column of a power of P SC Give B0M1A1 for Week 9 and 0.3860 0.3098 0.2066 0.0976
(iv)	$P^7 = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ 0.2869 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$ $P^8 = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & 0.2262 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$ Probability is $0.2869 \times 0.2262 = 0.0649$	M1M1 M1 A1	Elements from P^7 and P^8 Multiplying appropriate probabilities
(v)	Expected run length is $\frac{1}{1-0.16} = 1.19$ (3 sf)	M1 A1	Allow 1.2
(vi)	$P^n \rightarrow \begin{pmatrix} 0.3585 & 0.3585 & 0.3585 & 0.3585 \\ 0.3011 & 0.3011 & 0.3011 & 0.3011 \\ 0.2168 & 0.2168 & 0.2168 & 0.2168 \\ 0.1236 & 0.1236 & 0.1236 & 0.1236 \end{pmatrix}$ A: 0.3585 B: 0.3011 C: 0.2168 D: 0.1236	M1 M1 A2	Evaluating P^n with $n \geq 10$ or Obtaining (at least) 3 equations from $\mathbf{Pp} = \mathbf{p}$ Limiting matrix with equal columns or Solving to obtain one equilib prob Give A1 for two correct
(vii)	Expected number is $145 \times 0.3585 \approx 52$	M1 A1 ft	
(viii)	$\begin{pmatrix} a & b & c & 1 \\ 1-a & 0 & 0 & 0 \\ 0 & 1-b & 0 & 0 \\ 0 & 0 & 1-c & 0 \end{pmatrix} \begin{pmatrix} 0.4 \\ 0.25 \\ 0.2 \\ 0.15 \end{pmatrix} = \begin{pmatrix} 0.4 \\ 0.25 \\ 0.2 \\ 0.15 \end{pmatrix}$ $0.4a + 0.25b + 0.2c + 0.15 = 0.4$ $0.4(1-a) = 0.25$ $0.25(1-b) = 0.2$ $0.2(1-c) = 0.15$ $a = 0.375, b = 0.2, c = 0.25$	M1 A1 M1 A1	Transition matrix and $\begin{pmatrix} 0.4 \\ 0.25 \\ 0.2 \\ 0.15 \end{pmatrix}$ Forming at least one equation Dependent on previous M1

4757

Mark Scheme

June 2010

Post-multiplication by transition matrix

5 (i)	$\mathbf{P} = \begin{pmatrix} 0.16 & 0.84 & 0 & 0 \\ 0.28 & 0 & 0.72 & 0 \\ 0.43 & 0 & 0 & 0.57 \\ 1 & 0 & 0 & 0 \end{pmatrix}$	B2	2	Allow tolerance of ± 0.0001 in probabilities throughout this question Give B1 for two rows correct
(ii)	$(1 \ 0 \ 0 \ 0) \mathbf{P}^9$ $= (0.3349 \ 0.3243 \ 0.2231 \ 0.1177)$ $\text{Prob}(C) = 0.2231$	M2 A1	3	Using \mathbf{P}^9 Give M1 for using \mathbf{P}^{10}
(iii)	Week 5 $(1 \ 0 \ 0 \ 0) \mathbf{P}^4$ $= (0.5020 \ 0.2851 \ 0.1577 \ 0.0552)$	B1 M1 A1	3	First row of a power of \mathbf{P} SC Give B0M1A1 for Week 9 and 0.3860 0.3098 0.2066 0.0976
(iv)	$\mathbf{P}^7 = \begin{pmatrix} \cdot & 0.2869 & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix} \quad \mathbf{P}^8 = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & 0.2262 & \cdot \\ \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{pmatrix}$ Probability is 0.2869×0.2262 $= 0.0649$	M1M1 M1 A1	4	Elements from \mathbf{P}^7 and \mathbf{P}^8 Multiplying appropriate probabilities
(v)	Expected run length is $\frac{1}{1-0.16} = 1.19$ (3 sf)	M1 A1	2	Allow 1.2
(vi)	$\mathbf{P}^n \rightarrow \begin{pmatrix} 0.3585 & 0.3011 & 0.2168 & 0.1236 \\ 0.3585 & 0.3011 & 0.2168 & 0.1236 \\ 0.3585 & 0.3011 & 0.2168 & 0.1236 \\ 0.3585 & 0.3011 & 0.2168 & 0.1236 \end{pmatrix}$ A: 0.3585 B: 0.3011 C: 0.2168 D: 0.1236	M1 M1 A2	4	Evaluating \mathbf{P}^n with $n \geq 10$ or Obtaining (at least) 3 equations from $\mathbf{p}\mathbf{P} = \mathbf{p}$ Limiting matrix with equal rows or Solving to obtain one equilib prob Give A1 for two correct
(vii)	Expected number is 145×0.3585 ≈ 52	M1 A1 ft	2	
(viii)	$(0.4 \ 0.25 \ 0.2 \ 0.15) \begin{pmatrix} a & 1-a & 0 & 0 \\ b & 0 & 1-b & 0 \\ c & 0 & 0 & 1-c \\ 1 & 0 & 0 & 0 \end{pmatrix}$ $= (0.4 \ 0.25 \ 0.2 \ 0.15)$ $0.4a + 0.25b + 0.2c + 0.15 = 0.4$ $0.4(1-a) = 0.25$ $0.25(1-b) = 0.2$ $0.2(1-c) = 0.15$ $a = 0.375, \ b = 0.2, \ c = 0.25$	M1 A1 M1 A1	4	Transition matrix and $(0.4 \ 0.25 \ 0.2 \ 0.15)$ Forming at least one equation Dependent on previous M1

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

