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INSTRUCTIONS TO CANDIDATES

• Write your name clearly in capital letters, your Centre Number and Candidate Number in the spaces provided
on the Answer Booklet.

• Use black ink. Pencil may be used for graphs and diagrams only.

• Read each question carefully and make sure that you know what you have to do before starting your answer.
• Answer all the questions in Section A and one question from Section B.
• Do not write in the bar codes.
• You are permitted to use a graphical calculator in this paper.

• Final answers should be given to a degree of accuracy appropriate to the context.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail of the working to

indicate that a correct method is being used.

• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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Section A (54 marks)

Answer all the questions

1 (a) (i) Given that f(t) = arcsin t, write down an expression for f ′(t) and show that

f ′′(t) = t

(1 − t2)3
2

. [3]

(ii) Show that the Maclaurin expansion of the function arcsin(x + 1
2
) begins

π

6
+ 2√

3
x,

and find the term in x2. [5]

(b) Sketch the curve with polar equation r = πa

π + θ
, where a > 0, for 0 ≤ θ < 2π.

Find, in terms of a, the area of the region bounded by the part of the curve for which 0 ≤ θ ≤ π

and the lines θ = 0 and θ = π. [6]

(c) Find the exact value of the integral

ä
3
2

0

1

9 + 4x2
dx. [5]

2 (a) Given that ß = cos θ + j sin θ, express ßn + 1ßn and ßn − 1ßn in simplified trigonometric form.

Hence find the constants A, B, C in the identity

sin5
θ ≡ A sin θ + B sin 3θ + C sin 5θ. [5]

(b) (i) Find the 4th roots of −9j in the form rejθ , where r > 0 and 0 < θ < 2π. Illustrate the roots

on an Argand diagram. [6]

(ii) Let the points representing these roots, taken in order of increasing θ, be P, Q, R, S. The

mid-points of the sides of PQRS represent the 4th roots of a complex number w. Find the

modulus and argument of w. Mark the point representing w on your Argand diagram. [5]
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3 (a) (i) A 3 × 3 matrix M has characteristic equation

2λ
3 + λ

2 − 13λ + 6 = 0.

Show that λ = 2 is an eigenvalue of M. Find the other eigenvalues. [4]

(ii) An eigenvector corresponding to λ = 2 is ( 3−3

1

).

Evaluate M( 3−3

1

) and M2( 1−1
1
3

).

Solve the equation M( x

yß) = ( 3−3

1

). [5]

(iii) Find constants A, B, C such that

M4 = AM2 + BM + CI. [4]

(b) A 2 × 2 matrix N has eigenvalues −1 and 2, with eigenvectors (1

2
) and (−1

1
) respectively.

Find N. [6]

Section B (18 marks)

Answer one question

Option 1: Hyperbolic functions

4 (i) Prove, using exponential functions, that

sinh 2x = 2 sinh x cosh x.

Differentiate this result to obtain a formula for cosh 2x. [4]

(ii) Sketch the curve with equation y = cosh x − 1.

The region bounded by this curve, the x-axis, and the line x = 2 is rotated through 2π radians

about the x-axis. Find, correct to 3 decimal places, the volume generated. (You must show your

working; numerical integration by calculator will receive no credit.) [7]

(iii) Show that the curve with equation

y = cosh 2x + sinh x

has exactly one stationary point.

Determine, in exact logarithmic form, the x-coordinate of the stationary point. [7]
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Option 2: Investigation of curves

This question requires the use of a graphical calculator.

5 In parts (i), (ii), (iii) of this question you are required to investigate curves with the equation

xk + yk = 1

for various positive values of k.

(i) Firstly consider cases in which k is a positive even integer.

(A) State the shape of the curve when k = 2.

(B) Sketch, on the same axes, the curves for k = 2 and k = 4.

(C) Describe the shape that the curve tends to as k becomes very large.

(D) State the range of possible values of x and y. [6]

(ii) Now consider cases in which k is a positive odd integer.

(A) Explain why x and y may take any value.

(B) State the shape of the curve when k = 1.

(C) Sketch the curve for k = 3. State the equation of the asymptote of this curve.

(D) Sketch the shape that the curve tends to as k becomes very large. [6]

(iii) Now let k = 1
2
.

Sketch the curve, indicating the range of possible values of x and y. [2]

(iv) Now consider the modified equation |x |k + |y |k = 1.

(A) Sketch the curve for k = 1
2
.

(B) Investigate the shape of the curve for k = 1

n
as the positive integer n becomes very large.

[4]
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