

GCE

Mathematics (MEI)

Advanced Subsidiary GCE 4766

Statistics 1

Mark Scheme for June 2010

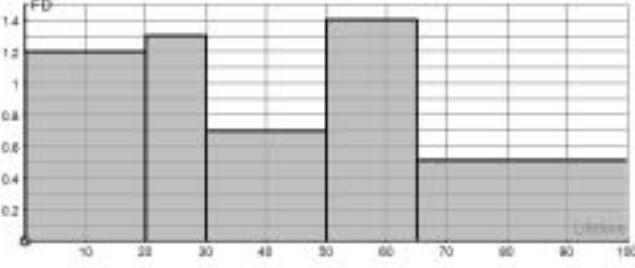
OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.


OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

Q1 (i)	Positive skewness	B1	1																								
(ii)	<p>Inter-quartile range = $10.3 - 8.0 = 2.3$</p> <p>Lower limit $8.0 - 1.5 \times 2.3 = 4.55$ Upper limit $10.3 + 1.5 \times 2.3 = 13.75$</p> <p>Lowest value is 7 so no outliers at lower end Highest value is 17.6 so at least one outlier at upper end.</p>	<p>B1</p> <p>M1 for $8.0 - 1.5 \times 2.3$ M1 for $10.3 + 1.5 \times 2.3$</p> <p>A1 A1</p>	5																								
(iii)	<p>Any suitable answers Eg minimum wage means no very low values</p> <p>Highest wage earner may be a supervisor or manager or specialist worker or more highly trained worker</p>	<p>E1 one comment relating to low earners</p> <p>E1 one comment relating to high earners</p>	2																								
		TOTAL	8																								
Q2 (i)	$4k + 6k + 6k + 4k = 1$ $20k = 1$ $k = 0.05$	M1 A1 NB Answer given	2																								
(ii)	<p>$E(X) = 1 \times 0.2 + 2 \times 0.3 + 3 \times 0.3 + 4 \times 0.2 = 2.5$ (or by inspection)</p> <p>$E(X^2) = 1 \times 0.2 + 4 \times 0.3 + 9 \times 0.3 + 16 \times 0.2 = 7.3$</p> <p>$\text{Var}(X) = 7.3 - 2.5^2 = 1.05$</p>	M1 for $\sum rp$ (at least 3 terms correct) A1 CAO M1 for $\sum r^2 p$ (at least 3 terms correct) M1dep for – their $E(X)^2$ A1 FT their $E(X)$ provided $\text{Var}(X) > 0$	5																								
		TOTAL	7																								
Q3 (i)	<table border="1"> <thead> <tr> <th>Lifetime (x hours)</th> <th>Frequency</th> <th>Width</th> <th>FD</th> </tr> </thead> <tbody> <tr> <td>$0 < x \leq 20$</td> <td>24</td> <td>20</td> <td>1.2</td> </tr> <tr> <td>$20 < x \leq 30$</td> <td>13</td> <td>10</td> <td>1.3</td> </tr> <tr> <td>$30 < x \leq 50$</td> <td>14</td> <td>20</td> <td>0.7</td> </tr> <tr> <td>$50 < x \leq 65$</td> <td>21</td> <td>15</td> <td>1.4</td> </tr> <tr> <td>$65 < x \leq 100$</td> <td>18</td> <td>35</td> <td>0.51</td> </tr> </tbody> </table>	Lifetime (x hours)	Frequency	Width	FD	$0 < x \leq 20$	24	20	1.2	$20 < x \leq 30$	13	10	1.3	$30 < x \leq 50$	14	20	0.7	$50 < x \leq 65$	21	15	1.4	$65 < x \leq 100$	18	35	0.51	M1 for fds A1 CAO Accept any suitable unit for fd such as eg freq per 10 hours. L1 linear scales on both axes and label on vert axis W1 width of bars H1 height of bars	5
Lifetime (x hours)	Frequency	Width	FD																								
$0 < x \leq 20$	24	20	1.2																								
$20 < x \leq 30$	13	10	1.3																								
$30 < x \leq 50$	14	20	0.7																								
$50 < x \leq 65$	21	15	1.4																								
$65 < x \leq 100$	18	35	0.51																								

(ii)	Median lies in third class interval ($30 < x \leq 50$) Median = 45.5th lifetime (which lies beyond 37 but not as far as 51)	B1 CAO E1 dep on B1	2
		TOTAL	7
Q4 (i)	$1 \times \frac{1}{5} = \frac{1}{5}$	M1 A1	2
(ii)	$1 \times \frac{4}{5} \times \frac{3}{5} \times \frac{2}{5} \times \frac{1}{5} = \frac{24}{625} = 0.0384$	M1 For $1 \times \frac{4}{5} \times \text{or just } \frac{4}{5} \times$ M1 dep for fully correct product A1	3
(iii)	$1 - 0.0384 = 0.9616$ or $601/625$	B1	1
		TOTAL	6
Q5 (i)	Mean = $\frac{0 \times 37 + 1 \times 23 + 2 \times 11 + 3 \times 3 + 4 \times 0 + 5 \times 1}{75} = \frac{59}{75} = 0.787$ $S_{xx} =$ $0^2 \times 37 + 1^2 \times 23 + 2^2 \times 11 + 3^2 \times 3 + 4^2 \times 0 + 5^2 \times 1 - \frac{59^2}{75} = 72.59$ $s = \sqrt{\frac{72.59}{74}} = 0.99$	M1 A1 M1 for Σfx^2 s.o.i. M1 dep for good attempt at S_{xx} BUT NOTE M1M0 if their $S_{xx} < 0$ A1 CAO	5
(ii)	New mean = $0.787 \times £1.04 = £0.818$ or 81.8 pence New $s = 0.99 \times £1.04 = £1.03$ or 103 pence	B1 ft their mean B1 ft their s B1 for correct units dep on at least 1 correct (ft)	3
		TOTAL	8
	Section B		
Q6 (i)	$X \sim B(18, 0.1)$ (A) $P(2 \text{ faulty tiles}) = \binom{18}{2} \times 0.1^2 \times 0.9^{16} = 0.2835$ OR from tables $0.7338 - 0.4503 = 0.2835$	M1 $0.1^2 \times 0.9^{16}$ M1 $\binom{18}{2} \times p^2 q^{16}$ A1 CAO OR: M2 for $0.7338 - 0.4503$ A1 CAO	3
	 (B) $P(\text{More than 2 faulty tiles}) = 1 - 0.7338 = 0.2662$	M1 $P(X \leq 2)$ M1 dep for $1 - P(X \leq 2)$ A1 CAO	3

	(C) $E(X) = np = 18 \times 0.1 = 1.8$	M1 for product 18×0.1 A1 CAO	2
(ii)	(A) Let p = probability that a randomly selected tile is faulty $H_0: p = 0.1$ $H_1: p > 0.1$	B1 for definition of p in context B1 for H_0 B1 for H_1	3
	(B) H_1 has this form as the manufacturer believes that the number of faulty tiles may <u>increase</u> .	E1	1
(iii)	Let $X \sim B(18, 0.1)$ $P(X \geq 4) = 1 - P(X \leq 3) = 1 - 0.9018 = 0.0982 > 5\%$ $P(X \geq 5) = 1 - P(X \leq 4) = 1 - 0.9718 = 0.0282 < 5\%$ So critical region is $\{5,6,7,8,9,10,11,12,13,14,15,16,17,18\}$	B1 for 0.0982 B1 for 0.0282 M1 for at least one comparison with 5% A1 CAO for critical region <i>dep</i> on M1 and at least one B1	4
(iv)	4 does not lie in the critical region, (so there is insufficient evidence to reject the null hypothesis and we conclude that there is not enough evidence to suggest that the number of faulty tiles has increased.)	M1 for comparison A1 for conclusion in context	2
		TOTAL	18
Q7 (i)		G1 first set of branches G1 <i>indep</i> second set of branches G1 <i>indep</i> third set of branches G1 labels	4

(ii)	<p>(A) $P(\text{all on time}) = 0.95^3 = 0.8574$</p>	<p>M1 for 0.95^3 A1 CAO</p>	2
	<p>(B) $P(\text{just one on time}) =$ $0.95 \times 0.05 \times 0.4 + 0.05 \times 0.6 \times 0.05 + 0.05 \times 0.4 \times 0.6$ $= 0.019 + 0.0015 + 0.012 = 0.0325$</p>	<p>M1 first term M1 second term M1 third term A1 CAO</p>	4
	<p>(C) $P(1200 \text{ is on time}) =$ $0.95 \times 0.95 \times 0.95 + 0.95 \times 0.05 \times 0.6 + 0.05 \times 0.6 \times 0.95 +$ $0.05 \times 0.4 \times 0.6 = 0.857375 + 0.0285 + 0.0285 + 0.012 = 0.926375$</p>	<p>M1 any two terms M1 third term M1 fourth term A1 CAO</p>	4
(iii)	<p>$P(1000 \text{ on time given } 1200 \text{ on time}) =$ $P(1000 \text{ on time and } 1200 \text{ on time}) / P(1200 \text{ on time}) =$ $\frac{0.95 \times 0.95 \times 0.95 + 0.95 \times 0.05 \times 0.6}{0.926375} = \frac{0.885875}{0.926375} = 0.9563$</p>	<p>M1 either term of numerator M1 full numerator M1 denominator A1 CAO</p>	4
		Total	18

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

