

GCE

MEI Mathematics

Advanced GCE 4769

Statistics 4

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

Question 1

$f(x) = \frac{x e^{-x/\lambda}}{\lambda^2} \quad (x > 0)$		
(i)	$E(X) = \frac{1}{\lambda^2} \int_0^\infty x^2 e^{-x/\lambda} dx$ $= \frac{1}{\lambda^2} \left\{ \left[-\lambda x^2 e^{-x/\lambda} \right]_0^\infty + \int_0^\infty \lambda \cdot 2x e^{-x/\lambda} dx \right\}$ $= \frac{1}{\lambda^2} \{ [0 - 0] \} + 2\lambda \cdot 1 = 2\lambda.$ $E(\bar{X}) = E(X) \quad \therefore E(\hat{\lambda} [= \frac{1}{2} \bar{X}]) = \lambda \quad \therefore \hat{\lambda} \text{ is unbiased.}$	M1 for integral for $E(X)$ M1 for attempt to integrate by parts For second term: M1 for use of integral of pdf or for integr'g by parts again A1 M1 A1 E1 [7]
(ii)	$\text{Var}(\hat{\lambda}) = \frac{1}{4} \text{Var}(\bar{X}) = \frac{1}{4} \frac{\text{Var}(X)}{n}$ $E(X^2) = \frac{1}{\lambda^2} \int_0^\infty x^3 e^{-x/\lambda} dx$ $= \frac{1}{\lambda^2} \left\{ \left[-\lambda x^3 e^{-x/\lambda} \right]_0^\infty + \int_0^\infty 3\lambda x^2 e^{-x/\lambda} dx \right\}$ $= \frac{1}{\lambda^2} \{ [0 - 0] \} + 3\lambda E(X) = 6\lambda^2.$ $\therefore \text{Var}(X) = E(X^2) - \{E(X)\}^2 = 6\lambda^2 - 4\lambda^2 = 2\lambda^2.$ $\therefore \text{Var}(\hat{\lambda}) = \frac{\lambda^2}{2n}.$	M1 M1 for use of $E(X^2)$ By parts M1 M1 for use of $E(X)$ A1 for $6\lambda^2$ A1 A1 [7]
(iii)	Variance of $\hat{\lambda}$ becomes very small as n increases. It is unbiased and so becomes increasingly concentrated at the correct value λ .	E1 E1 [2]
(iv)	$E(\tilde{\lambda}) = \left(\frac{1}{8} + \frac{1}{4} + \frac{1}{8} \right) 2\lambda = \lambda. \quad \therefore \tilde{\lambda} \text{ is unbiased.}$ $\text{Var}(\tilde{\lambda}) = \left(\frac{1}{64} + \frac{1}{16} + \frac{1}{64} \right) 2\lambda^2 = \frac{3}{16} \lambda^2.$ $\therefore \text{relative efficiency of } \tilde{\lambda} \text{ to } \hat{\lambda} \text{ is } \frac{\lambda^2/6}{3\lambda^2/16} = \frac{8}{9}.$ <p>Special case. If done as $\text{Var}(\tilde{\lambda}) / \text{Var}(\hat{\lambda})$, award 1 out of 2 for the second M1 and the A1 in the scheme.</p> <p>So $\hat{\lambda}$ is preferred.</p>	$E(\tilde{\lambda})$: B1; "unbiased": E1 M1 A1 M1 any comparison of variances M1 correct comparison A1 for 8/9 [Note: This M1M1A1 is allowable in full as FT if everything is plausible.] E1 (FT from above) [8]

Question 2

<p>(i) $G(t) = E(t^x) = \sum_{x=0}^{\infty} \frac{e^{-\lambda} (\lambda t)^x}{x!}$ [M1] $= e^{-\lambda} \left(1 + \lambda t + \frac{\lambda^2 t^2}{2!} + \dots\right)$ [A1]</p> <p>$= e^{-\lambda} e^{\lambda t} = e^{\lambda(t-1)}$ [A1] [Allow omission of previous A1 step and write-down of this for A2 provided opening M1 has been earned (NB answer is given)]</p>	[3]
<p>(ii) Mean = $G'(1)$ $G'(t) = \lambda e^{\lambda(t-1)}$ [M1] $G'(1) = \lambda$ [A1]</p> <p>Variance = $G''(1) + \text{mean} - \text{mean}^2$ $G''(t) = \lambda^2 e^{\lambda(t-1)}$ [M1] $G''(1) = \lambda^2$ [A1]</p> <p>$\therefore \text{variance} = \lambda^2 + \lambda - \lambda^2 = \lambda$ [A1]</p>	[5]
<p>(iii) $Z = \frac{X - \mu}{\sigma}$: mean 0 [B1] variance 1 [B1]</p>	[2]
<p>(iv) Mgf of X is $M(\theta) = G(e^\theta) = e^{\lambda(e^\theta - 1)}$ [B1]</p> <p>Linear transformation result is $M_{aX+b}(\theta) = e^{b\theta} M_X(a\theta)$</p> <p>[B2 if fully correct, any equivalent form. Allow B1 if either factor correct.]</p>	
<p>Use with $a = \frac{1}{\sigma} = \frac{1}{\sqrt{\lambda}}$ and $b = -\frac{\mu}{\sigma} = -\sqrt{\lambda}$ [M1]</p> <p>$M_Z(\theta) = e^{-\sqrt{\lambda}\theta} e^{\lambda(e^{\theta/\sqrt{\lambda}} - 1)} = e^{\lambda(e^{\theta/\sqrt{\lambda}} - \frac{\theta}{\sqrt{\lambda}} - 1)}$</p> <p>[A1] [A1] [A1] [NB answer is given]</p>	[7]
<p>(v) Consider $\lambda \left(e^{\theta/\sqrt{\lambda}} - \frac{\theta}{\sqrt{\lambda}} - 1 \right) = \lambda \left(1 + \frac{\theta}{\sqrt{\lambda}} + \frac{\theta^2}{2!\lambda} + \frac{\theta^3}{3!\lambda^{3/2}} + \dots - \frac{\theta}{\sqrt{\lambda}} - 1 \right)$ [M1]</p> <p>$= \frac{\theta^2}{2} + \text{terms in } \lambda^{-1/2}, \lambda^{-1}, \lambda^{-3/2}, \dots$ [A1] $\rightarrow \frac{\theta^2}{2}$ as $\lambda \rightarrow \infty$ [M1]</p> <p>[some explanation required]</p> <p>$\therefore M_Z(\theta) \rightarrow e^{\theta^2/2}$ as $\lambda \rightarrow \infty$ [A1] [answer given]</p>	[4]
<p>(vi) $e^{\theta^2/2}$ is the mgf of $N(0, 1)$ [E1],</p> <p>and the relationship between distributions and their mgfs is unique [E1].</p> <p>"Unstandardising", X tends to $N(\mu, \sigma^2)$ i.e. $N(\lambda, \lambda)$ [B1, parameters must be given].</p>	[3]

Question 3

<p>(i) H_0 is accepted if $-1.96 < \text{value of test statistic} < 1.96$</p> <p>i.e. if $-1.96 < \frac{(\bar{x}_1 - \bar{x}_2) - (0)}{\sqrt{\frac{1.2^2}{8} + \frac{1.4^2}{10}}} < 1.96$</p> <p>i.e. if $-1.96 \times 0.6132 < \bar{x}_1 - \bar{x}_2 < 1.96 \times 0.6132$</p> <p>i.e. if $-1.20(18) < \bar{x}_1 - \bar{x}_2 < 1.20(18)$</p> <p>Note. Use of $\mu_1 - \mu_2$ instead of $\bar{x}_1 - \bar{x}_2$ can score M1 B1 M0 M1 A0 A0.</p>	<p>M1 double inequality B1 1.96</p> <p>M1 num' of test statistic</p> <p>M1 den' of test statistic</p> <p>A1</p> <p>A1</p> <p>Special case. Allow 1 out of 2 of the A1 marks if 1.645 used provided all 3 M marks have been earned.</p> <p>[6]</p>																
<p>(ii) $\bar{x}_1 - \bar{x}_2 = 1.4$</p> <p>which is outside the acceptance region</p> <p>so H_0 is rejected.</p> <p>CI for $\mu_1 - \mu_2$: $1.4 \pm (2.576 \times 0.6132)$,</p> <p>i.e. 1.4 ± 1.5796, i.e. $(-0.18 [-0.1796], 2.97[96])$</p>	<p>B1 FT if wrong</p> <p>M1 [FT can's acceptance region if reasonable]</p> <p>E1</p> <p>M1 for 1.4 B1 for 2.576 M1 for 0.6132 A1 cao for interval</p> <p>[7]</p>																
<p>(iii) Wilcoxon rank sum test (or Mann-Whitney form of test)</p> <p>Ranks are:</p> <table style="margin-left: 100px;"> <tr> <td>First</td> <td>14</td> <td>13</td> <td>10</td> <td>8</td> <td>6</td> <td>11</td> </tr> <tr> <td>Second</td> <td>2</td> <td>12</td> <td>3</td> <td>1</td> <td>4</td> <td>7</td> <td>5</td> <td>9</td> </tr> </table> <p>$W = 14 + 13 + 10 + 8 + 6 + 11 = 62$ [or $8 + 8 + 7 + 7 + 6 + 5 = 41$ if M-W used]</p> <p>Refer to $W_{6,8}$ [or $MW_{6,8}$] tables.</p> <p>Lower 2½% critical point is 29 [or 8 if M-W used].</p> <p>Consideration of upper 2½% point is also needed.</p> <p>Eg: by using symmetry about mean of $(\frac{1}{2} \times 6 \times 8) + (\frac{1}{2} \times 6 \times 7) = 45$, critical point is 61. [For M-W: mean is $\frac{1}{2} \times 6 \times 8 = 24$, hence critical point is 40.]</p> <p>Result is significant. Seems (population) medians may not be assumed equal.</p>	First	14	13	10	8	6	11	Second	2	12	3	1	4	7	5	9	<p>M1</p> <p>M1 Combined ranking A1 Correct [allow up to 2 errors; FT provided M1 earned]</p> <p>B1</p> <p>M1 No FT if wrong A1</p> <p>Special case 1. If M1 for $W_{6,8}$ has not been awarded (likely to be because rank sum 43 has been used, which should be referred to $W_{6,6}$), the next two M1 marks can be earned but <i>nothing beyond them</i>.</p> <p>M1</p> <p>M1 for any correct method A1 if 61 correct</p> <p>E1, E1</p> <p>Special case 2 (does not apply if Special Case 1 has been invoked). These 2 marks may be earned even if only 1 or 2 of the preceding 3 have been earned.</p> <p>[11]</p>
First	14	13	10	8	6	11											
Second	2	12	3	1	4	7	5	9									

Question 4

(i) Randomised blocks	B1																				
<p>Eg:-</p> <table border="1" data-bbox="366 361 843 460"> <tr> <td>WEST</td> <td>D</td> <td>C</td> <td>D</td> <td>EAST</td> </tr> <tr> <td></td> <td>A</td> <td>B</td> <td>C</td> <td></td> </tr> <tr> <td></td> <td>C</td> <td>A</td> <td>A</td> <td></td> </tr> <tr> <td></td> <td>B</td> <td>D</td> <td>B</td> <td></td> </tr> </table>	WEST	D	C	D	EAST		A	B	C			C	A	A			B	D	B		<p>Plots in strips (blocks) correctly aligned w.r.t. fertility trend. Each letter occurs at least once in each block in a random arrangement.</p> <p>M1 E1 M1 E1</p> <p>[5]</p>
WEST	D	C	D	EAST																	
	A	B	C																		
	C	A	A																		
	B	D	B																		
<p>(ii) μ = population [B1] grand mean for whole experiment [B1] α_i = population [B1] mean amount by which the ith treatment differs from μ [B1]</p> <p>$e_{ij} \sim \text{ind N} [\mathbf{B1}, \text{accept "uncorrelated"}] (0 [\mathbf{B1}], \sigma^2 [\mathbf{B1}])$</p>	<p>4 marks, as shown</p> <p>3 marks, as shown</p> <p>[7]</p>																				
<p>(ii) Totals are 62.7 65.6 69.0 67.8 all from samples of size 5</p> <p>Grand total 265.1 "Correction factor" CF = $265.1^2/20 = 3513.9005$</p> <p>Total SS = $3524.31 - CF = 10.4095$</p> <p>Between varieties SS = $\frac{62.7^2}{5} + \frac{65.6^2}{5} + \frac{69.0^2}{5} + \frac{67.8^2}{5} - CF$ $= 3518.498 - CF = 4.5975$</p> <p>Residual SS (by subtraction) = $10.4095 - 4.5975 = 5.8120$</p>	<p>M1 for attempt to form three sums of squares.</p> <p>M1 for correct method for any two.</p> <p>A1 if each calculated SS is correct.</p>																				
<table border="1" data-bbox="161 1381 1119 1493"> <thead> <tr> <th>Source of variation</th> <th>SS</th> <th>df</th> <th>MS [M1]</th> <th>MS ratio [M1]</th> </tr> </thead> <tbody> <tr> <td>Between varieties</td> <td>4.5975</td> <td>3 [B1]</td> <td>1.5325</td> <td>4.22 [A1 cao]</td> </tr> <tr> <td>Residual</td> <td>5.8120</td> <td>16 [B1]</td> <td>0.36325</td> <td></td> </tr> <tr> <td>Total</td> <td>10.4095</td> <td>19</td> <td></td> <td></td> </tr> </tbody> </table> <p>Refer MS ratio to $F_{3,16}$.</p> <p>Upper 5% point is 3.24. Significant. Seems the mean yields of the varieties are not all the same.</p>	Source of variation	SS	df	MS [M1]	MS ratio [M1]	Between varieties	4.5975	3 [B1]	1.5325	4.22 [A1 cao]	Residual	5.8120	16 [B1]	0.36325		Total	10.4095	19			<p>5 marks within the table, as shown</p> <p>M1 No FT if wrong</p> <p>A1 No FT if wrong E1 E1</p> <p>[12]</p>
Source of variation	SS	df	MS [M1]	MS ratio [M1]																	
Between varieties	4.5975	3 [B1]	1.5325	4.22 [A1 cao]																	
Residual	5.8120	16 [B1]	0.36325																		
Total	10.4095	19																			

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

