

GCE

Mathematics (MEI)

Advanced GCE 4777

Numerical Computation

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

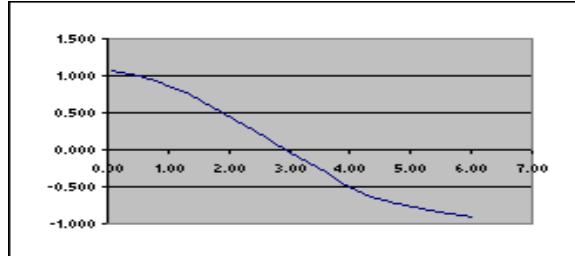
OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk


4777

Mark Scheme

June 2010

- 1 (i) The data are not evenly spaced so (ordinary) differences will not work
 Lagrange's method is not well suited to increasing the degree of the approximating polynomial because it requires complete recalculation [E1]
 [E1]
 [E1]
 [subtotal 3]

(ii)	x	f
	0.09	1.076
	0.93	0.897
	1.91	0.498
	4.10	-0.544
	4.91	-0.740
	6.04	-0.900

[subtotal 2]

(iii)	x	f	1DD	2DD	3DD	4DD	5DD
	1.91	0.498					
	4.10	-0.544	-0.4758				
	4.91	-0.740	-0.24198	0.077941			
	0.93	0.897	-0.41131	0.053417	0.025025		
	0.09	1.076	-0.2131	-0.04112	0.023576	0.000796	
	6.04	-0.900	-0.3321	-0.02329	0.015782	-0.00402	-0.00117

re-order: [M1A1]
 table: [M1A1]

f(3)	=	0.498					
	+	-0.51862	-0.021	linear			
	+	-0.09345	-0.114	quadratic			
	+	0.057309	-0.057	cubic			
	+	0.003774	-0.053	quartic			

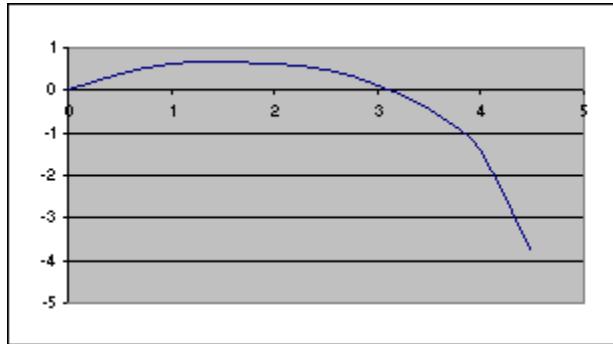
f(3) approximately zero, but difficult to say whether -0.05 or -0.06, -0.1 or 0.0.

[E1E1]

[subtotal 14]

(iv)	x	f	1DD	2DD	3DD	4DD	5DD
	1.91	0.498					
	4.10	-0.544	-0.4758				
	4.91	-0.740	-0.24198	0.077941			
	0.93	0.897	-0.41131	0.053417	0.025025		
	0.09	1.076	-0.2131	-0.04112	0.023576	0.000796	
	6.04	-0.900	-0.3321	-0.02329	0.015782	-0.00402	-0.00117

user-specified x:	2.89	0.498					
		-0.46628	0.032				
		-0.09242	-0.061				
		0.056679	-0.004				
		0.003738	0.000				


adjust SS to allow
 user-specified x: [M1A1]

trial and error:
 answer: [A1]

[subtotal 5]
 [TOTAL 24]

2 (i) $T_n - I = A_2 h^2 + A_4 h^4 + A_6 h^6 + \dots$ [M1A1]
 $T_{2n} - I = A_2 (h/2)^2 + A_4 (h/2)^4 + A_6 (h/2)^6 + \dots$ [M1]
 $4(T_{2n} - I) - (T_n - I) = b_4 h^4 + b_6 h^6 + \dots$ [A1]
 $4T_{2n} - T_n - 3I = b_4 h^4 + b_6 h^6 + \dots$ [A1]
 $(4T_{2n} - T_n)/3 - I = B_4 h^4 + B_6 h^6 + \dots$ [A1]
 $(T_n^* = (4T_{2n} - T_n)/3 \text{ has error of order } h^4 \text{ as given})$
 $T_n^{**} = (16T_{2n}^* - T_n^*)/15 \text{ has error of order } h^6$ [B1]
[subtotal 6]

(ii)

[G2]

[subtotal 2]

(iii)

	x	f(x)	T	T*	T**	T***	(T****)
	0	0					
3.141593	2.22E-16	3.49E-16					
1.570796	0.693147	1.088793	1.451724				
0.785398	0.5348						f: [A1]
2.356194	0.5348	1.384458	1.483014	1.485099			
0.392699	0.324026						T: [M1A2]
1.178097	0.654344						
1.963495	0.654344						T*: [M1A1]
2.748894	0.324026	1.460639	1.486033	1.486234	1.486252		T**: [M1A1]
0.19635	0.178222						T***: [M1A1]
0.589049	0.441842						
0.981748	0.605119						answer: [A1]
1.374447	0.683493						
1.767146	0.683493						
2.159845	0.605119						
2.552544	0.441842						
2.945243	0.178222	1.479855	1.48626	1.486275	1.486276	1.486276	

[subtotal 11]

(iv) Spreadsheet as above, but seen to work for user-specified c in place of 3.141593 [M2]

Sequence of values representing trial and error towards solution:

c	4	4.5	4.4	4.45	4.44	4.442
I	0.977343	-0.20713	0.133659	-0.02687	0.006681	0.00003

[M1A1]

Answer 4.442 to 3 decimal places [A1]

[subtotal 5]

[TOTAL 24]

3 (i) Modified Euler method

h	x	y	k1	k2	new y
0.1	1	1	0.141421	0.150185	1.145803
	1.1	1.145803	0.150346	0.159856	1.300904
	1.2	1.300904	0.160034	0.170271	1.466056
	1.3	1.466056	0.170466	0.181415	1.641997
	1.4	1.641997	0.181626	0.193273	1.829446
	1.5	1.829446	0.193499	0.205833	2.029112
	1.6	2.029112	0.206072	0.219085	2.24169
	1.7	2.24169	0.219337	0.23302	2.467869
	1.8	2.467869	0.233284	0.247633	2.708328
	1.9	2.708328	0.247908	0.262916	2.963739
	2	2.963739			

h	α	diffs	ratio
			of diffs
0.1	2.963739		
0.05	2.964219	0.000480	
0.025	2.964341	0.000122	0.254789
0.0125	2.964372	0.000031	0.252418
0.00625	2.964380	0.000008	0.251215

setup: [M2]

first run: [A2]

further runs: [A1A1A1]

differences: [M1]

ratios: [M1A1]

Correct to 4 dp, $\alpha = 2.9644$ [A1]

Ratio of differences indicates 2nd order convergence [E1]

[subtotal 12]

(ii) Predictor corrector method

h	x	y	y pred	y corr1	y corr2	y corr3
0.1	1	1	1.141421	1.145803	1.145884	1.145885
	1.1	1.145885	1.296234	1.300989	1.301078	1.30108
	1.2	1.30108	1.46112	1.466239	1.466336	1.466338
	1.3	1.466338	1.636815	1.64229	1.642395	1.642397
	1.4	1.642397	1.824039	1.829862	1.829975	1.829978
	1.5	1.829978	2.023497	2.029664	2.029784	2.029786
	1.6	2.029786	2.235885	2.242392	2.242518	2.24252
	1.7	2.24252	2.461889	2.468732	2.468864	2.468866
	1.8	2.468866	2.702189	2.709364	2.709501	2.709504
	1.9	2.709504	2.957457	2.964961	2.965104	2.965107
	2	2.965107				

h	α	diffs	ratio
			of diffs
0.1	2.965107		
0.05	2.964564	-0.000543	
0.025	2.964428	-0.000136	0.250154
0.0125	2.964394	-0.000034	0.250039
0.00625	2.964385	-0.000008	0.25001

further runs: [A1A1A1]

these -->
may appear in (iii)
differences
and ratios: [M1]

[subtotal 8]

(iii) The rate of convergence (see ratio of differences) is the same for both methods. [E1]

Magnitude of errors about the same for a given h [E1]

More programming required for predictor-corrector [E1]

Modified Euler (at least in this case) is preferable [E1]

[subtotal 4]
[TOTAL 24]

4777

Mark Scheme

June 2010

4 (i)	7.1	6	5	4	1	x1 = 0.320827	Gauss elim: [M2A2]
	6	5.1	4	3	1		pivoting: [M1A2]
	5	4	3.1	2	1		
	4	3	2	1.1	1		
	0.029577	-0.22535	-0.38028	0.15493			
	-0.22535	-0.42113	-0.8169	0.295775		x2 = 0.103317	back subn: [M1A2]
	-0.38028	-0.8169	-1.15352	0.43662		x3 = -0.11419	
		-0.28889	-0.47	0.188889			solutions:
		0.062963	-0.13333	0.037037		x4 = -0.3317	[A2]
			-0.23577	0.078205			

product of pivots: -0.18390 magnitude of determinant: 0.18390 [M1A1]
[subtotal 14]

(ii) $\alpha = 0.01$ $\beta = 0.01$

7.01	6	5	4	1.01	x1 = 0.599796
6	5.01	4	3	1	
5	4	3.01	2	1	
4	3	2	1.01	1	
-0.12552	-0.2796	-0.42368	0.135521		
-0.2796	-0.55633	-0.85307	0.279601		x2 = -0.2999
-0.42368	-0.85307	-1.27245	0.42368		x3 = -0.1996
	-0.02687	-0.0467	0.01		
	0.006633	-0.01333	0		x4 = -0.09929
		-0.02486	0.002469		

product of pivots: -0.00198 magnitude of determinant: 0.001984 [M1A1]

$\alpha =$
0.01 (A) $\beta = 0$ $(B)\beta =$
x1 0.302 0.600
x2 0.100 -0.300
x3 -0.101 -0.200
x4 -0.303 -0.099

solutions:
[M1A1]
[M1A1]

Very large changes in the solution for small change in one coefficient. [E1E1]
The determinant is very small in relation to the magnitude of the coefficients. [E1E1]

[subtotal 10]
[TOTAL 24]

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

