

Mathematics (MEI)

Advanced Subsidiary GCE

Unit **4761**: Mechanics 1

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

comment

You should expect to follow through from one part to another unless the scheme says otherwise but not follow through within a part unless the scheme specifies this. Each script must be viewed as a whole at some stage so that

- (i) a candidate's writing of letters, digits, symbols on diagrams etc can be better interpreted;
- (ii) repeated mistakes can be recognised (e.g. calculator in wrong angle mode throughout – penalty 1 in the script and FT except given answers).

You are advised to 'set width' for most questions but to 'set height' for the following:

Q 1		mark	note
(i)		B1 B1 2	Section from $t = 10$ to $t = 15$ Section from $t = 15$ to $t = 20$. FT connecting from their point when $t = 15$. Ignore graph outside $0 \leq t \leq 20$.
(ii)	$\frac{-6-14}{10} = -2$ so -2 m s^{-2}	M1 A1 2	Attempt at $\frac{\Delta v}{\Delta t}$
(iii)	either Displacement is $\frac{14}{2} \times 7 - \frac{13+5}{2} \times 6$ or $\frac{14}{2} \times 7 - \frac{3 \times 6}{2} - 5 \times 6 - \frac{5 \times 6}{2}$ $= -5$ so 5 m downwards	M1 B1 B1 A1	FT misread from graph or graphing error to all but final A1 cao Attempt at whole area. Condone 'overlap' but not 'gaps'. 'Positive' area expression correct. Condone sign error. 'Negative' area expression correct. Condone overall sign error. Accept -5 m cao

	<p>or</p> <p>Displacement is</p> $14 \times 10 + \frac{1}{2} \times (-2) \times 10^2 - 5 \times 6 + \frac{-6+0}{2} \times 5$ $= 140 - 100 - 30 - 15 = -5$ <p>so 5 m downwards</p>	M1 A1 B1 A1 4	Using <i>suvat</i> from 0 to 10 or 15 to 20. Condone 'overlap' but not 'gaps' Subtracting 30 or 15 or 45 Accept -5 m cao
	8		

Q 2		mark	notes
(i)	$\mathbf{F} = (10 - 8\cos 50^\circ)\mathbf{i} + 8\sin 50^\circ\mathbf{j}$ $= 4.85769\dots\mathbf{i} + 6.128355\dots\mathbf{j}$ <p>so $4.86\mathbf{i} + 6.13\mathbf{j}$ (3 s. f.)</p>	M1 A1 A1 3	Resolution. Accept $s \leftrightarrow c$. Condone resolution in only one direction. Award for a vector with either component correct or consistent $s \leftrightarrow c$ error if only mistake in the vector. Need not be evaluated. cao. Must be in $a\mathbf{i} + b\mathbf{j}$ or column format. Must be correct to 3 s. f.
(ii)	$ \mathbf{F} = \sqrt{4.85769\dots^2 + 6.12835\dots^2} = 7.820101\dots$ <p>so 7.82 (3 s. f.)</p> <p>angle is $\arctan \frac{4.857\dots}{6.128\dots}$</p> $= 38.40243\dots$ so 38.4° (3 s. f.)	B1 M1 F1 3	FT their F Or equivalent. FT their F . Accept $\arctan \frac{6.128\dots}{4.857\dots}$. Accept complementary angle and \pm signs FT only their F .
	6		

Q 3		mark	notes
(i)	For P: the distance is $8T$ For Q: the distance is $\frac{1}{2} \times 4 \times T^2$	B1 B1 2	Allow – ve. Allow any form. Allow – ve. Allow any form.
(ii)	Require $8T + \frac{1}{2} \times 4 \times T^2 = 90$ so $8T + 2T^2 - 90 = 0$ so $T^2 + 4T - 45 = 0$ This gives $(T - 5)(T + 9) = 0$ so $T = 5$ since $T > 0$	M1 A1 E1 M1 A1 5	For linking correct expressions or their expressions from (i) with 90. Condone sign errors and use of displacement instead of distance. Condone ' $= 0$ ' implied. The expression is correct or correctly derived from their (i). Reason not required. Must be established. Do not award if their 'correct expression' comes from incorrect manipulation. Solving to find +ve root. Accept $(T + 5)(T - 9)$. Condone 2 nd root not found/discussed but not both roots given.
		7	

Q 4		mark	notes
(i)	When $t = 1$, $\mathbf{r} = \begin{pmatrix} 8 \\ 10-2 \end{pmatrix} = \begin{pmatrix} 8 \\ 8 \end{pmatrix}$ $[8\mathbf{i} + (10-2)\mathbf{j} = 8\mathbf{i} + 8\mathbf{j}]$ Bearing OP is 045°	B1 F1 2	Accept column or $a\mathbf{i} + b\mathbf{j}$ notation May be implied Accept 45° . Accept NE and northeast. Condone $ \mathbf{r} $ given as well.
(ii)	$\mathbf{v} = \begin{pmatrix} 8 \\ 20t-6t^2 \end{pmatrix} [8\mathbf{i} + (20t-6t^2)\mathbf{j}]$ The \mathbf{i} cpt is always 8 so $\mathbf{v} \neq \mathbf{0}$ for any t	M1 A1 E1 3	Differentiating both components. Condone 1 error if clearly attempting differentiation. Must be a vector answer. Accept any correct argument e.g. based on \mathbf{i} cpt never 0.
(iii)	$\mathbf{a} = \begin{pmatrix} 0 \\ 20-12t \end{pmatrix} [(20-12t)\mathbf{j}]$ $\mathbf{a} = \mathbf{0}$ when $t = \frac{20}{12} = \frac{5}{3}$ so $\frac{5}{3}$ s (1.67 s (3 s. f.))	M1 F1 B1 3	Differentiating as a vector. Condone 1 error if clearly attempting differentiation of their v . FT their v . cao. Condone obtained from scalar equation.
		8	

Q5		mark	notes
(i)	<p>In direction $\rightarrow 0^2 = 1.5^2 + 2 \times a \times 0.375$ so $a = -3$ and deceleration is 3 m s^{-2}</p> <p>N2L on both boxes $\rightarrow -2F = (12 + 6) \times (-3)$ so $F = 27$</p>	M1 A1 M1 A1 4	Use of $v^2 = u^2 + 2as$ or complete sequence of suvat. CWO. Accept ± 3 and ignore accel or decel. N2L. Correct mass. Condone $F = mga$. Allow F on LHS. FT their a . Accept sign errors. No extra terms. cao Condone this obtained from an equation with consistent signs not justified.
(ii)	<p>Suppose the force in the rod is a tension T N2L gives box A $\rightarrow T - 27 = 12 \times (-3)$ [box B $\rightarrow -T - 27 = 6 \times (-3)$] so $T = -9$ and the force has magnitude 9 N It is a thrust (tension is +ve).</p>	M1 F1 E1 3	N2L. $F = ma$. Correct mass. The '27' and the '3' must have the same sign. Ignore the sign of 'T'. FT only for mod(their 27) in place of '27' and/or mod(their 3) in place of '3' in this sign pattern. No extra terms. Accept $T = \pm 9$. FT only for mod(their 27) in place of '27' and/or mod(their 3) in place of '3'. cao Only accept thrust with $T = \pm 9$ and a sound argument.
		7	

Q 6		mark	notes
(i)	Let tension be T N $N2L \rightarrow T - 6 = 4 \times 3$ $T = 18$ so 18 N	M1 A1 A1 3	Condone $F = mga$. Condone resistance omitted or an extra force. Allow only sign error(s). cao
(ii)	Let acceleration be a $m s^{-2}$ $25 \cos 40 - 6 = 4a$ $a = 3.28777\ldots$ so $3.29 m s^{-2}$ (3 s. f.)	M1 M1 A1 3	Attempt at resolution of 25 N. Allow $s \leftrightarrow c$. Allow $F = mga$ and sign error(s). No extra forces. Both forces present. cao
(iii)	Let tension be T N up the slope $T + 6 - 4 \times 9.8 \times \sin 35 = 0$ $T = 16.48419\ldots$ so 16.5 N (3 s. f.)	M1 B1 A1 3	Resolving along slope. Allow 6 N omitted. If different direction used all required forces present (except 6 N). Allow $s \leftrightarrow c$. No extra forces. Allow sign errors. Condone g omitted. If resolution is along plane, weight term correct. If resolution in another direction, one resolution correct.
(iv) (A)		B1 B1 2	At least two of tension, weight and NR marked correctly with arrows and labels (accept mg , W , T and words etc). All correct. No extra forces. Accept mg , W , T and words etc. Condone resolved parts as well only if clearly indicated as such by e.g. using dotted lines.
(B)	continued		

4761

Mark Scheme

January 2011

Q6 (iv) (B)	up the slope $25 \cos \theta + 6 - 4g \sin 35 = 0$ so $25 \cos \theta = 16.48414\dots$ so $\theta = 48.7483\dots$ so 48.7° (3 s. f.)	M1 A1 A1 3	No extra forces. Allow $s \leftrightarrow c$. All forces present and required resolutions attempted. Allow sign errors. Condone g omitted. Condone g omitted. cao [If they use their (iii): M1 Equating their (iii) to an attempt at resolving 25. Allow $s \leftrightarrow c$. No extra forces. A1 FT their T from (iii) A1 cao]
(C)	Resolve perp to slope $R + 25 \sin \theta - 4 \times 9.8 \times \cos 35 = 0$ $R = 13.315248\dots$ so 13.3 N (3 s. f.)	M1 A1 A1 3	All forces present and resolutions attempted. No extra forces. Allow $s \leftrightarrow c$. FT their angle. Condone g omitted. FT their angle. Condone g omitted. cao
	17		

Q7		mark	notes
(i) (A)	$x = Ut \cos 68.5^\circ$	B1 1	
(i) (B)	$y = Ut \sin 68.5^\circ - 4.9 \times t^2$	M1 A1 2	Allow ' u ' = U . Allow $s \leftrightarrow c$. Allow g as g , $\pm 9.8, \pm 9.81, \pm 10$. Allow +2. Accept not 'shown'. Do not allow +2. Allow e.g. $+0.5 \times (-9.8) \times t^2$ instead of $-4.9t^2$. Accept g not evaluated
	continued		

Q7 (ii)	<p>either At D, $y = 0$ so $U \sin 68.5^\circ T - 4.9 \times T^2 = 0$ $\Rightarrow T(U \sin 68.5^\circ - 4.9T) = 0$</p> <p>so $T = 0$ (at C) or $T = \frac{U \sin 68.5^\circ}{4.9}$ (at D)</p> <p>or</p> <p>Use (i)(A) and put $x = 10$ with $t = T$ to get $UT \cos 68.5^\circ = 10$</p>	M1 M1 E1 M1 M1 E1 B1 4	<p>Equating correct y to 0 or their y to correct value.</p> <p>Attempting to factorise (or solve). Allow $\div T$ without comment.</p> <p>Properly shown. Accept no ref to $T = 0$. Accept $T = 0$ given as well without comment.</p> <p>Find time to top Double time to the top</p>
(iii)	<p>Eliminating T from the results in (ii) gives</p> $U \cos 68.5^\circ \times \frac{U \sin 68.5^\circ}{4.9} = 10$ <p>so $U = 11.98729\dots$ so 12.0 (3 s. f.)</p>	M1 M1 E1 3	<p>Substituting, using correct expressions or their expressions from (ii).</p> <p>Attempt to solve for U^2 or U.</p> <p>Some evidence seen. e.g. $142.8025\dots < U^2 < 145.2025\dots$ with clear statement, or 11.9... seen with clear statement or 11.98... seen. Accept 11.98... seen for full marks.</p>
(iv)	<p>continued</p>		

(iv)	<p>Require $Ut \sin 68.5^\circ - 4.9t^2 = -2$ Solving $4.9t^2 - Ut \sin 68.5^\circ - 2 = 0$ $t = -0.1670594541\dots, 2.4431591\dots$ (Using 12: $-0.1669052502\dots, 2.445478886\dots$)</p> <p>Require $U \cos 68.5^\circ \times 2.44\dots - 10$ $= 0.7336\dots$ so 0.734 m (3 s. f.) (Using 12 consistently, $0.7552\dots$ so 0.755 (3 s. f.))</p>	5	<p>M1 Equating correct y to -2 or their y to correct value. Allow use of U, $11.987\dots$ or 12. Allow implicit '$= 0$' M1 Dep on 1st M1. Attempt to solve a 3 term quadratic to find at least the +ve root. Allow if two correct roots seen WW. A1 Accept only +ve root given</p> <p>M1 Alternative method of e.g. finding time to highest point and then time to the ground. M1 all times attempted, at least one by a sound method. M1 both methods sound and complete. A1. A1 Dep on first M1. Allow their expression for x. Allow '-10' omitted. cao. Accept $0.73 \leq x \leq 0.76$</p>
(v)	<p>Eliminate t from (i) (B) using $t = \frac{x}{U \cos 68.5^\circ}$ from (i)(A) so $y = x \tan 68.5^\circ - \frac{4.9x^2}{U^2 (\cos 68.5^\circ)^2}$ We require $y = 0$ when $x = 10$ so $U = 11.98729\dots$ so 12.0 (3 s. f.)</p>	4	<p>M1 May be implied. FT their (i).</p> <p>E1 Clearly shown.</p> <p>M1 Must see attempt to solve. Or use $x = 10.73\dots$ when $y = -2$.</p> <p>E1 Must see evidence of fresh calculation or statement that they have now got the same expression for evaluation.</p>
	19		

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553