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1 (a)(i) x=rcosf,y=rsinf, x>+’ =, Ml Using at least one of these
r=2(cos 8+ sin 0)
= *=2r(cos 0 +sin 0)
= X +y=2+2 Al (ag) Working must be convincing
= X -2x+)y"-2y=0
= @-1>?+@-17>=2
which is a circle centre (1, 1) radius 2 Mi Recognise as circle or ap;z)ropriate 5
algebra leading to (x — a)* + (y — b)* =/
2
1
Gl Attempt at complete circle with centre in
first quadrant
Gl A circle with centre and radius indicated,
2 or centre (1, 1) indicated and passing
through (0, 0), or (2, 0) and (0, 2)
indicated and passing through (0, 0)
(i) | Area =1 [ d0
- J‘? (cos 0+ sin 9)2 40 M1 Integral expression involving 7* in terms
0 of
= 2Jf (0052 6+ 2sin 6 cos 6 +sin’ :9) déo Ml Multiplying out
=2J.f(1+2sin0cos 6)do Al cos’0 + sin’g = 1 used
z . 5 Correct result of integration with correct
=2[g_1 2 2
2[9 2 008 29]0 or 2[9+ s 0]0 etc. A2 limits. Give A1 for one error
= 2((% + %) - (0 - %)) M1 Substituting limits. Dep. on both M1s
=7+2 Al Mark final answer
b)) flx)=1= 1 __2 M1 Using Chain Rule
(1 +1x? ) 4+x° Al Correct derivative in any form
i) | f'(x)= %(1 + %xz) = %(1 —Ix?+Llxt— ) M1 Correctly using binomial expansion
=1-1x’+Lx'- Al Correct expansion
:>f(x) ly—Lx¥ 4Ly~ tc IXIII Integrating at least two terms
But ¢ = 0 because arctan(0) = 0 Al Independent

19




www.xtrapapers.com

4756 Mark Scheme January 2011
2 (a)(@) |Z"+z"=2cosnb B1
Z'—z"=2jsinnd BI
2
(i) |z + 271)6 =2+ 6 '+ 152 +20+ 1522+ 624+ M1 Expanding (z + 271)6
=L +z0+ 6"+ +15(2+22)+20
65 Using z" +z " =2 cos nf withn=2,4 or
= 64 cos’d=2cos 660+ 12 cos 46+ 30 cos260+20 |Ml 6. Allow M1 if 2 omitted, etc.
= cos’0 = 2500566 +=cos 460 + 12 c0s 20 + =
:>cos°9=§(cos6¢9+6cos40+1500520+10) Al (ag)
3
(i) [z -z )’ =+z—6"+zH)+ 15 +279)-20 Bl
> 64 5in% = 2 cos 60— 12 cos 46+ 30 cos 20— 20 | M1 Using (i) as in part (il
Al Correct expression in any form
= —sin’g = 508660 —2-cos46 ++-cos20 - =
— cos’0 — sin6€ Lcos60+Lcos20 I\A/Ill Attempting to add or subtract
OR cos’0=1(cos20+1) Bl Thisused _
16 cos*0 =2 cos 40 + 8 cos 20 + 6 Ml Obtaining an expression for cos*0
=  cos'@=Lcos 40+ cos20+3 Al Correct expression in any form
cos®6 — sin60 =2 cos’0 — 3 cos'@ + 3 cos’d — 1
= =4-cos 60 ++2c0s 26 MI1A1 Attempting to add or subtract
L X - - e -
iz (7 Correctly manipulating modulus and
I jl =+ y p g
(b)) |22 =8¢ =z, =2\2e¢ {6 j Ml argument
_ 2\/5@% Al \/_ —or—? Condone r(c +js)
i f[%*%”j M1 Correctly manipulating modulus and
z,"=8e3 = z,=2e argument
. 1
_ Ze% Al 2, % or —5? Condone r(c + jis)
w
Gl Moduli approximately correct
Gl Arguments approximately correct
21 Give G1GO for two points approximately
= correct
6
iz j13z
(ii) | 2122 =2v/2¢ ¢ x2¢ °
LEMEL; Correctly manipulating modulus and
= 4x/— [ ) MI argument
NG e% Al Accept any equivalent form
Lies in second quadrant Al
3 19
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3@ |detM—-AD=(1-)[B-1)(1-1)+8] Ml Obtaining det(M — Al)
+4[2(1 -2)-2]+5[8 + (B3 —N)] Al Any correct form
=(1 =)W =40+ 11) +4(=210) + 5(11 = X)
=X +507 150+ 11 —8L+55-50L=0 Ml Simplification
= M-507+28-66=0 Al (ag) www, but condone omission of =0
4
oo |43 2 _ Factorising and obtaining a quadratic.
(i) | A" — 51"+ 28) — 66 =0 M1 If MO, give B1 for substituting , = 3
=MA-3)F-21+22)=0 Al Correct quadratic
M —20+22=0=b*—4ac=-84 M1 Considering discriminant o.e.
so no other real eigenvalues Al Conclusion from correct evidence www
4
-2 -4 5)\(x 0
i) |A=3=[2 0 2| »|=|0
-1 4 2)\z 0
= 2x-4y+5z=0
2x—-2z=0
—x+4y—-2z=0 Ml Two independent equations
= x=z=ky=+k Ml Obtaining a non-zero eigenvector
4
= eigenvectoris | 3 Al
4
. 4
= eigenvector with unit length is v=——| 3 Bl
¢ ¢ Jat
4
Magnitude of M"v is 3" BI Must be a magnitude
5
(v) | AP =502 + 28— 66 =0
= M’ - 5M? + 28M — 661 = 0 M1 Use of Cayley-Hamilton Theorem
= M’ - 5M +281-66M ' =0
S 2 M1 Multiplying by M and rearranging
= — - +
=M 66 (M —5M+ 28D) Al Must contain I
3 16
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4 (i) sinh ¢+ 7 cosht=28
= 1@E-e)+tTxL(+e")=8 M1 Substituting correct exponential forms
= 4e'+3¢'=8
= 4e”—8'+3=0 M1 Obtaining quadratic in ¢’
= (-2 -3)=0 Ml Solving to obtain at least one value of e’
= e=Jor2 AlAl Condone extra values
= t=In(3)orln(3) Al These two values o.e. only. Exact form
(i) ? =2 sinh 2x + 14 cosh 2x or 8¢* + 6¢ ** Bl
X
2 sinh 2x + 14 cosh 2x = 16 = sinh 2x + 7 cosh 2x =8
M1 Complete method to obtain an x value
2% =1In(+ In(2 =Llip(L Lin(2 p
= Zx=I(3)orln(3)=x=3n(3)or 7In(3) Al Both x co-ordinates in any exact form
x=iin(H)>y=-4  (LIn(L),-4)
x=2In(3)=>y=4 ($1n(3),4) BI1 Both y co-ordinates
ﬂ:0:>25inh2x-5- 14 cosh 2x=0
x
= tanh2x=-7ore™=-2 etc. Ml Any complete method
No solutions because —1 < tanh 2x < 1 or €" > 0 etc. Al (ag) WWW
40 T
20 T
Gl Curve (not st. line) with correct general
shape (positive gradient throughout)
Gl Curve through (0, 1). Dependent on last
Gl
(iii) Joa (cosh 2x+7sinh Zx) dx =+ M1 Attempting integration
= B sinh 2x +Zcosh Zx]z =< Al Correct result of integration
= (%sinh 2a +%cosh2a)—%:%
= sinh 2a + 7 cosh 2a =8
_ _ Using both limits and a complete method
= 2a=In(3)orln(2)=a=1In($)or LIn(3) M1 o ob%ainavalue ofa p
fectL In(L
= a=1ln(2) (L1n(1)<0) Al Must reject 5 In( 5 ), but reason need not
be given
18
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5(@)]a=1

Gl

x

5 4 \F 2 4 )
= Gl

a=0.5
2 y
1.5
;
-6 -4 -2 2 4 );
Gl
M2 Evidence s.o.1. of further investigation
(A) | Loops when a > 1 Al
(B) | Cusps whena =1 Al
7
(i) | Ifx > —x, t > —¢ Ml Considering effect on ¢
but y(—f) = y(¢¥) Al (ag) Effecton y
Curve is symmetrical in the y-axis B1
3
.o | dy _ asint M1 Using Chain Rule
(iii) | —=—
dx l+acost Al
Z—y=0:>asint=O:>t=0andin Al Values of ¢
X
t=0=TP.is(0,1 —a) Al
t=+n= T.P.are (+n, 1 +a) Al Both, in any form
5
(iv) |a =% : both t =Z and 3£ give the point (x, 1) BI1 (ag) Verification
Gradients are @ and —a (orZ and — %)
. £~ . Ml Complete method for angle
H le is 2 arctan(Z ) = 2.01
ence angle is 2 arctan( 5 ) 01 radians Al Accept 115° (or 65°)
3 18
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