

GCE

Mathematics (MEI)

Advanced GCE

Unit 4756: Further Methods for Advanced Mathematics

Mark Scheme for January 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

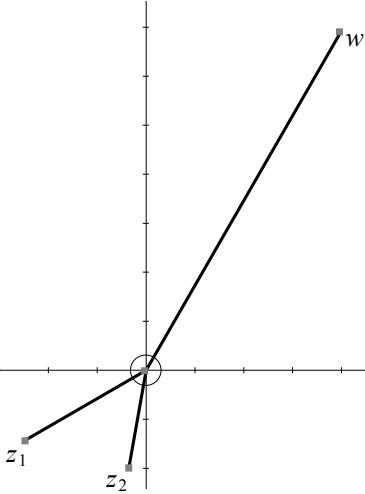
© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

1 (a)(i)	$x = r \cos \theta, y = r \sin \theta, x^2 + y^2 = r^2$ $r = 2(\cos \theta + \sin \theta)$ $\Rightarrow r^2 = 2r(\cos \theta + \sin \theta)$ $\Rightarrow x^2 + y^2 = 2x + 2y$ $\Rightarrow x^2 - 2x + y^2 - 2y = 0$ $\Rightarrow (x - 1)^2 + (y - 1)^2 = 2$ <p>which is a circle centre (1, 1) radius $\sqrt{2}$</p>	M1 A1 (ag) M1 G1 G1	Using at least one of these Working must be convincing Recognise as circle or appropriate algebra leading to $(x - a)^2 + (y - b)^2 = r^2$
			Attempt at complete circle with centre in first quadrant A circle with centre and radius indicated, or centre (1, 1) indicated and passing through (0, 0), or (2, 0) and (0, 2) indicated and passing through (0, 0)
(ii)	$\text{Area} = \frac{1}{2} \int_0^{\frac{\pi}{2}} r^2 d\theta$ $= 2 \int_0^{\frac{\pi}{2}} (\cos \theta + \sin \theta)^2 d\theta$ $= 2 \int_0^{\frac{\pi}{2}} (\cos^2 \theta + 2 \sin \theta \cos \theta + \sin^2 \theta) d\theta$ $= 2 \int_0^{\frac{\pi}{2}} (1 + 2 \sin \theta \cos \theta) d\theta$ $= 2 \left[\theta - \frac{1}{2} \cos 2\theta \right]_0^{\frac{\pi}{2}} \text{ or } 2 \left[\theta + \sin^2 \theta \right]_0^{\frac{\pi}{2}} \text{ etc.}$ $= 2 \left(\left(\frac{\pi}{2} + \frac{1}{2} \right) - \left(0 - \frac{1}{2} \right) \right)$ $= \pi + 2$	M1 M1 A1 A2 M1 A1	Integral expression involving r^2 in terms of θ Multiplying out $\cos^2 \theta + \sin^2 \theta = 1$ used Correct result of integration with correct limits. Give A1 for one error Substituting limits. Dep. on both M1s Mark final answer
(b)(i)	$f'(x) = \frac{1}{2} \frac{1}{\left(1 + \frac{1}{4}x^2\right)} = \frac{2}{4 + x^2}$	M1 A1	Using Chain Rule Correct derivative in any form
(ii)	$f'(x) = \frac{1}{2} \left(1 + \frac{1}{4}x^2\right)^{-1} = \frac{1}{2} \left(1 - \frac{1}{4}x^2 + \frac{1}{16}x^4 - \dots\right)$ $= \frac{1}{2} - \frac{1}{8}x^2 + \frac{1}{32}x^4 - \dots$ $\Rightarrow f(x) = \frac{1}{2}x - \frac{1}{24}x^3 + \frac{1}{160}x^5 - \dots + c$ <p>But $c = 0$ because $\arctan(0) = 0$</p>	M1 A1 M1 A1 A1	Correctly using binomial expansion Correct expansion Integrating at least two terms Independent

2 (a)(i)	$z^n + z^{-n} = 2 \cos n\theta$ $z^n - z^{-n} = 2j \sin n\theta$	B1 B1	2
(ii)	$(z + z^{-1})^6 = z^6 + 6z^4 + 15z^2 + 20 + 15z^{-2} + 6z^{-4} + z^{-6}$ $= z^6 + z^{-6} + 6(z^4 + z^{-4}) + 15(z^2 + z^{-2}) + 20$ $\Rightarrow 64 \cos^6 \theta = 2 \cos 6\theta + 12 \cos 4\theta + 30 \cos 2\theta + 20$ $\Rightarrow \cos^6 \theta = \frac{1}{32} \cos 6\theta + \frac{3}{16} \cos 4\theta + \frac{15}{32} \cos 2\theta + \frac{5}{16}$ $\Rightarrow \cos^6 \theta = \frac{1}{32} (\cos 6\theta + 6 \cos 4\theta + 15 \cos 2\theta + 10)$	M1 M1 A1 (ag)	Expanding $(z + z^{-1})^6$ Using $z^n + z^{-n} = 2 \cos n\theta$ with $n = 2, 4$ or 6. Allow M1 if 2 omitted, etc. 3
(iii)	$(z - z^{-1})^6 = z^6 + z^{-6} - 6(z^4 + z^{-4}) + 15(z^2 + z^{-2}) - 20$ $\Rightarrow -64 \sin^6 \theta = 2 \cos 6\theta - 12 \cos 4\theta + 30 \cos 2\theta - 20$ $\Rightarrow -\sin^6 \theta = \frac{1}{32} \cos 6\theta - \frac{3}{16} \cos 4\theta + \frac{15}{32} \cos 2\theta - \frac{5}{16}$ $\Rightarrow \cos^6 \theta - \sin^6 \theta = \frac{1}{16} \cos 6\theta + \frac{15}{16} \cos 2\theta$ OR $\cos^2 \theta = \frac{1}{2} (\cos 2\theta + 1)$ $16 \cos^4 \theta = 2 \cos 4\theta + 8 \cos 2\theta + 6$ $\Rightarrow \cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$ $\cos^6 \theta - \sin^6 \theta = 2 \cos^6 \theta - 3 \cos^4 \theta + 3 \cos^2 \theta - 1$ $\Rightarrow = \frac{1}{16} \cos 6\theta + \frac{15}{16} \cos 2\theta$	B1 M1 A1 M1 A1 B1 M1 A1 M1A1	Using (i) as in part (ii) Correct expression in any form Attempting to add or subtract Attempting to add or subtract Attempting to add or subtract 5
(b)(i)	$z_1^2 = 8e^{\frac{j\pi}{3}} \Rightarrow z_1 = 2\sqrt{2}e^{j\left(\frac{\pi}{6} + \pi\right)}$ $= 2\sqrt{2}e^{\frac{j7\pi}{6}}$ $z_2^3 = 8e^{\frac{j\pi}{3}} \Rightarrow z_2 = 2e^{j\left(\frac{\pi}{9} + \frac{4\pi}{3}\right)}$ $= 2e^{\frac{j13\pi}{9}}$	M1 A1 M1 A1	Correctly manipulating modulus and argument $\sqrt{8}, \frac{7\pi}{6}$ or $-\frac{5\pi}{6}$. Condone $r(c + js)$ Correctly manipulating modulus and argument $2, \frac{13\pi}{9}$ or $-\frac{5\pi}{9}$. Condone $r(c + js)$
		G1 G1	Moduli approximately correct Arguments approximately correct Give G1G0 for two points approximately correct
(ii)	$z_1 z_2 = 2\sqrt{2}e^{\frac{j7\pi}{6}} \times 2e^{\frac{j13\pi}{9}}$ $= 4\sqrt{2}e^{j\left(\frac{7\pi}{6} + \frac{13\pi}{9}\right)}$ $= 4\sqrt{2}e^{\frac{j11\pi}{18}}$ Lies in second quadrant	M1 A1 A1	Correctly manipulating modulus and argument Accept any equivalent form 3

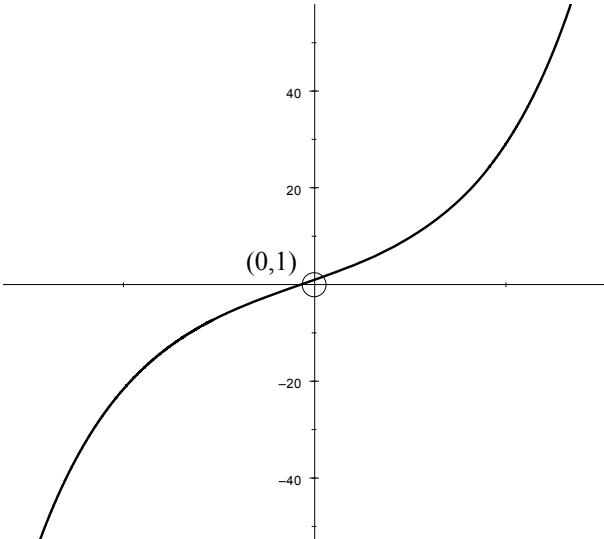
4756

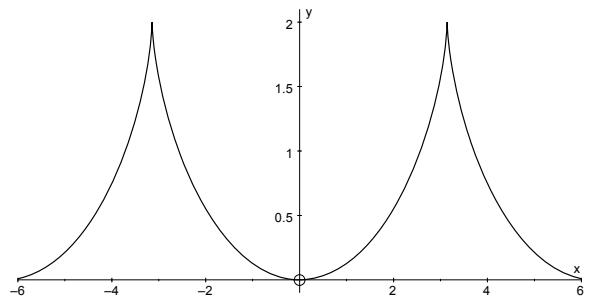
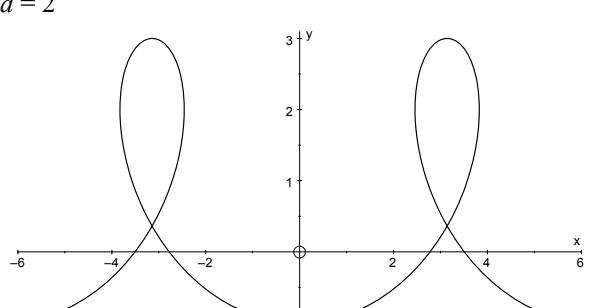
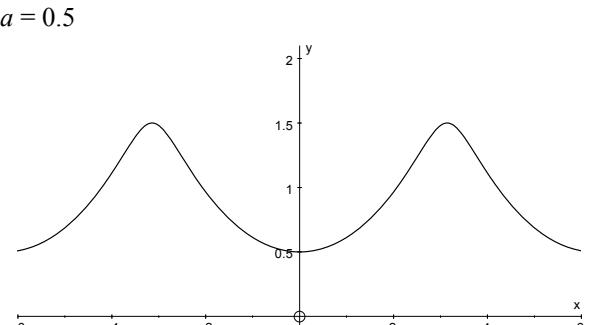
Mark Scheme

January 2011

3 (i)	$\begin{aligned} \det(\mathbf{M} - \lambda\mathbf{I}) &= (1 - \lambda)[(3 - \lambda)(1 - \lambda) + 8] \\ &\quad + 4[2(1 - \lambda) - 2] + 5[8 + (3 - \lambda)] \\ &= (1 - \lambda)(\lambda^2 - 4\lambda + 11) + 4(-2\lambda) + 5(11 - \lambda) \\ &= -\lambda^3 + 5\lambda^2 - 15\lambda + 11 - 8\lambda + 55 - 5\lambda = 0 \\ \Rightarrow \lambda^3 - 5\lambda^2 + 28\lambda - 66 &= 0 \end{aligned}$	M1 A1 M1 A1 (ag)	Obtaining $\det(\mathbf{M} - \lambda\mathbf{I})$ Any correct form Simplification www, but condone omission of = 0
(ii)	$\begin{aligned} \lambda^3 - 5\lambda^2 + 28\lambda - 66 &= 0 \\ \Rightarrow (\lambda - 3)(\lambda^2 - 2\lambda + 22) &= 0 \\ \lambda^2 - 2\lambda + 22 &= 0 \Rightarrow b^2 - 4ac = -84 \\ \text{so no other real eigenvalues} & \end{aligned}$	M1 A1 M1 A1	Factorising and obtaining a quadratic. If M0, give B1 for substituting $\lambda = 3$ Correct quadratic Considering discriminant o.e. Conclusion from correct evidence www
(iii)	$\begin{aligned} \lambda = 3 \Rightarrow \begin{pmatrix} -2 & -4 & 5 \\ 2 & 0 & -2 \\ -1 & 4 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} &= \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \\ \Rightarrow -2x - 4y + 5z &= 0 \\ 2x - 2z &= 0 \\ -x + 4y - 2z &= 0 \\ \Rightarrow x = z = k, y = \frac{3}{4}k & \\ \Rightarrow \text{eigenvector is } & \begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix} \\ \Rightarrow \text{eigenvector with unit length is } \mathbf{v} &= \frac{1}{\sqrt{41}} \begin{pmatrix} 4 \\ 3 \\ 4 \end{pmatrix} \\ \text{Magnitude of } \mathbf{M}^n \mathbf{v} & \text{is } 3^n \end{aligned}$	M1 M1 A1 B1 B1	Two independent equations Obtaining a non-zero eigenvector Must be a magnitude
(iv)	$\begin{aligned} \lambda^3 - 5\lambda^2 + 28\lambda - 66 &= 0 \\ \Rightarrow \mathbf{M}^3 - 5\mathbf{M}^2 + 28\mathbf{M} - 66\mathbf{I} &= \mathbf{0} \\ \Rightarrow \mathbf{M}^2 - 5\mathbf{M} + 28\mathbf{I} - 66\mathbf{M}^{-1} &= \mathbf{0} \\ \Rightarrow \mathbf{M}^{-1} &= \frac{1}{66} (\mathbf{M}^2 - 5\mathbf{M} + 28\mathbf{I}) \end{aligned}$	M1 M1 A1	Use of Cayley-Hamilton Theorem Multiplying by \mathbf{M}^{-1} and rearranging Must contain \mathbf{I}

16

4 (i)	$\begin{aligned} \sinh t + 7 \cosh t &= 8 \\ \Rightarrow \frac{1}{2}(e^t - e^{-t}) + 7 \times \frac{1}{2}(e^t + e^{-t}) &= 8 \\ \Rightarrow 4e^t + 3e^{-t} &= 8 \\ \Rightarrow 4e^{2t} - 8e^t + 3 &= 0 \\ \Rightarrow (2e^t - 1)(2e^t - 3) &= 0 \\ \Rightarrow e^t &= \frac{1}{2} \text{ or } \frac{3}{2} \\ \Rightarrow t &= \ln\left(\frac{1}{2}\right) \text{ or } \ln\left(\frac{3}{2}\right) \end{aligned}$	M1 M1 M1 A1A1 A1	Substituting correct exponential forms Obtaining quadratic in e^t Solving to obtain at least one value of e^t Condone extra values These two values o.e. only. Exact form 6
(ii)	$\begin{aligned} \frac{dy}{dx} &= 2 \sinh 2x + 14 \cosh 2x \text{ or } 8e^{2x} + 6e^{-2x} \\ 2 \sinh 2x + 14 \cosh 2x &= 16 \Rightarrow \sinh 2x + 7 \cosh 2x = 8 \\ \Rightarrow 2x = \ln\left(\frac{1}{2}\right) \text{ or } \ln\left(\frac{3}{2}\right) &\Rightarrow x = \frac{1}{2}\ln\left(\frac{1}{2}\right) \text{ or } \frac{1}{2}\ln\left(\frac{3}{2}\right) \\ x = \frac{1}{2}\ln\left(\frac{1}{2}\right) &\Rightarrow y = -4 \quad \left(\frac{1}{2}\ln\left(\frac{1}{2}\right), -4\right) \\ x = \frac{1}{2}\ln\left(\frac{3}{2}\right) &\Rightarrow y = 4 \quad \left(\frac{1}{2}\ln\left(\frac{3}{2}\right), 4\right) \\ \frac{dy}{dx} = 0 &\Rightarrow 2 \sinh 2x + 14 \cosh 2x = 0 \\ \Rightarrow \tanh 2x &= -7 \text{ or } e^{4x} = -\frac{3}{4} \text{ etc.} \\ \text{No solutions because } -1 < \tanh 2x < 1 \text{ or } e^x > 0 \text{ etc.} & \end{aligned}$	B1 M1 A1 B1 M1 A1 (ag)	Complete method to obtain an x value Both x co-ordinates in any exact form Both y co-ordinates Any complete method www
(iii)	 $\begin{aligned} \int_0^a (\cosh 2x + 7 \sinh 2x) dx &= \frac{1}{2} \\ \Rightarrow \left[\frac{1}{2} \sinh 2x + \frac{7}{2} \cosh 2x \right]_0^a &= \frac{1}{2} \\ \Rightarrow \left(\frac{1}{2} \sinh 2a + \frac{7}{2} \cosh 2a \right) - \frac{7}{2} &= \frac{1}{2} \\ \Rightarrow \sinh 2a + 7 \cosh 2a &= 8 \\ \Rightarrow 2a = \ln\left(\frac{1}{2}\right) \text{ or } \ln\left(\frac{3}{2}\right) &\Rightarrow a = \frac{1}{2}\ln\left(\frac{1}{2}\right) \text{ or } \frac{1}{2}\ln\left(\frac{3}{2}\right) \\ \Rightarrow a = \frac{1}{2}\ln\left(\frac{3}{2}\right) &\quad \left(\frac{1}{2}\ln\left(\frac{1}{2}\right) < 0\right) \end{aligned}$	M1 A1 M1 A1	Curve (not st. line) with correct general shape (positive gradient throughout) Curve through (0, 1). Dependent on last G1 8 Attempting integration Correct result of integration Using both limits and a complete method to obtain a value of a Must reject $\frac{1}{2}\ln\left(\frac{1}{2}\right)$, but reason need not be given 18

5 (i)	$a = 1$ 		
	$a = 2$ 	G1	
	$a = 0.5$ 	G1	
	(A) Loops when $a > 1$ (B) Cusps when $a = 1$	G1 M2 A1 A1	Evidence s.o.i. of further investigation
		7	
(ii)	If $x \rightarrow -x$, $t \rightarrow -t$ but $y(-t) = y(t)$ Curve is symmetrical in the y -axis	M1 A1 (ag) B1	Considering effect on t Effect on y
		3	
(iii)	$\frac{dy}{dx} = \frac{a \sin t}{1 + a \cos t}$ $\frac{dy}{dx} = 0 \Rightarrow a \sin t = 0 \Rightarrow t = 0 \text{ and } \pm\pi$ $t = 0 \Rightarrow \text{T.P. is } (0, 1 - a)$ $t = \pm\pi \Rightarrow \text{T.P. are } (\pm\pi, 1 + a)$	M1 A1	Using Chain Rule
		A1	Values of t
		A1 A1	Both, in any form
		5	
(iv)	$a = \frac{\pi}{2}$: both $t = \frac{\pi}{2}$ and $\frac{3\pi}{2}$ give the point $(\pi, 1)$ Gradients are a and $-a$ (or $\frac{\pi}{2}$ and $-\frac{\pi}{2}$) Hence angle is $2 \arctan(\frac{\pi}{2}) \approx 2.01$ radians	B1 (ag)	Verification
		M1 A1	Complete method for angle Accept 115° (or 65°)
		3	18

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553