

GCE

Mathematics (MEI)

Advanced GCE

Unit 4756: Further Methods for Advanced Mathematics

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

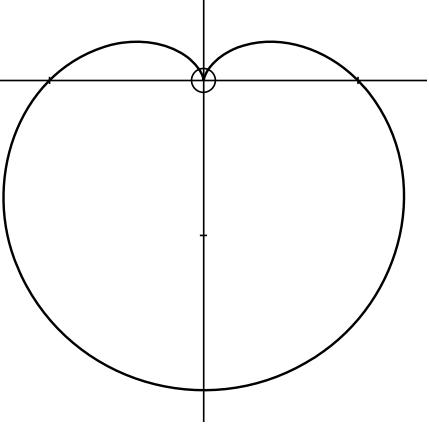
© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

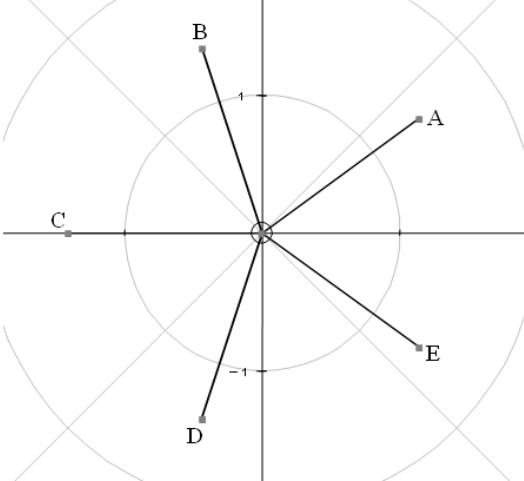
4756 (FP2) Further Methods for Advanced Mathematics

1 (a)(i)		G1 G1	Correct general shape including symmetry in vertical axis Correct form at O and no extra sections. Dependent on first G1 For an otherwise correct curve with a sharp point at the bottom, award G1G0
(ii)	$\begin{aligned} \text{Area} &= \frac{1}{2} a^2 \int_0^{2\pi} (1 - \sin \theta)^2 d\theta \\ &= \frac{1}{2} a^2 \int_0^{2\pi} (1 - 2\sin \theta + \sin^2 \theta) d\theta \\ &= \frac{1}{2} a^2 \int_0^{2\pi} \left(\frac{3}{2} - 2\sin \theta - \frac{1}{2} \cos 2\theta \right) d\theta \\ &= \frac{1}{2} a^2 \left[\frac{3}{2} \theta + 2\cos \theta - \frac{1}{4} \sin 2\theta \right]_0^{2\pi} \\ &= \frac{3}{2} \pi a^2 \end{aligned}$	M1 M1 A1 M1 A2 A1	2 Integral expression involving $(1 - \sin \theta)^2$ Expanding Correct integral expression, incl. limits (which may be implied by later work) Using $\sin^2 \theta = \frac{1}{2} - \frac{1}{2} \cos 2\theta$ Correct result of integration. Give A1 for one error Dependent on previous A2
(b)(i)	$\begin{aligned} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{1+4x^2} dx &= \frac{1}{4} \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\frac{1}{4}+x^2} dx = \frac{1}{4} \left[2 \arctan 2x \right]_{-\frac{1}{2}}^{\frac{1}{2}} \\ &= \frac{1}{2} \left(\frac{\pi}{4} - \left(-\frac{\pi}{4} \right) \right) \\ &= \frac{\pi}{4} \end{aligned}$	M1 A1 A1	7 arctan alone, or any tan substitution $\frac{1}{4} \times 2$ and $2x$ Evaluated in terms of π
(ii)	$\begin{aligned} x &= \frac{1}{2} \tan \theta \\ \Rightarrow dx &= \frac{1}{2} \sec^2 \theta d\theta \\ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{\left(\sec^2 \theta \right)^{\frac{3}{2}}} \times \frac{\sec^2 \theta}{2} d\theta \\ &= \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{2} \cos \theta d\theta \\ &= \left[\frac{1}{2} \sin \theta \right]_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \\ &= \frac{1}{2} \left(\frac{1}{\sqrt{2}} - \left(-\frac{1}{\sqrt{2}} \right) \right) \\ &= \frac{1}{\sqrt{2}} \end{aligned}$	M1 A1A1 M1 A1ft A1	3 Any tan substitution $\frac{1}{\left(\sec^2 \theta \right)^{\frac{3}{2}}}, \frac{\sec^2 \theta}{2}$ Integrating $a \cos b\theta$ and using consistent limits. Dependent on M1 above $\frac{a}{b} \sin b\theta$

4756

Mark Scheme

June 2011

<p>2 (a) $\cos 5\theta + j \sin 5\theta = (\cos \theta + j \sin \theta)^5$ $= c^5 + 5c^4js - 10c^3s^2 - 10c^2js^3 + 5cs^4 + js^5$</p> $\Rightarrow \cos 5\theta = c^5 - 10c^3s^2 + 5cs^4$ $\sin 5\theta = 5c^4s - 10c^2s^3 + s^5$ $\Rightarrow \tan 5\theta = \frac{5c^4s - 10c^2s^3 + s^5}{c^5 - 10c^3s^2 + 5cs^4}$ $= \frac{5t - 10t^3 + t^5}{1 - 10t^2 + 5t^4}$ $= \frac{t(t^4 - 10t^2 + 5)}{5t^4 - 10t^2 + 1}$	M1 M1 A1 A1 M1 A1 (ag)	Expanding Separating real and imaginary parts. Dependent on first M1 Alternative: $16c^5 - 20c^3 + 5c$ Alternative: $16s^5 - 20s^3 + 5s$ Using $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and simplifying
6		
(b)(i) $\arg(-4\sqrt{2}) = \pi$ \Rightarrow fifth roots have $r = \sqrt{2}$ and $\theta = \frac{\pi}{5}$ $\Rightarrow z = \sqrt{2}e^{\frac{1}{5}j\pi}, \sqrt{2}e^{\frac{3}{5}j\pi}, \sqrt{2}e^{j\pi}, \sqrt{2}e^{\frac{7}{5}j\pi}, \sqrt{2}e^{\frac{9}{5}j\pi}$	B1 B1 M1 A1	No credit for arguments in degrees Adding (or subtracting) $\frac{2\pi}{5}$ All correct. Allow $-\pi \leq \theta < \pi$
4		
(ii) 	G1 G1	Points at vertices of "regular" pentagon, with one on negative real axis Points correctly labelled
2		
(iii) $\arg(w) = \frac{1}{2} \left(\frac{\pi}{5} + \frac{3\pi}{5} \right) = \frac{2\pi}{5}$ $ w = \sqrt{2} \cos \frac{\pi}{5}$	B1 M1 A1ft	Attempting to find length F.t. (positive) r from (i)
3		
(iv) $w = \sqrt{2} \cos \frac{\pi}{5} e^{\frac{2}{5}\pi j} \Rightarrow w^n = \left(\sqrt{2} \cos \frac{\pi}{5} \right)^n e^{\frac{2}{5}\pi nj}$ which is real if $\sin \frac{2\pi n}{5} = 0 \Rightarrow n = 5$ $ w^5 = \left(\sqrt{2} \cos \frac{\pi}{5} \right)^5$ $\Rightarrow a = 2^{\frac{5}{2}} \cos^5 \frac{\pi}{5}$	B1 M1 A1	Attempting the n th power of his modulus in (iii), or attempting the modulus of the n th power here Accept 1.96 or better
3		18

4756

Mark Scheme

June 2011

3 (i)	$\det(\mathbf{M}) = 1(16 - 12) + 1(20 - 18) + k(10 - 12) \\ = 6 - 2k$ $\Rightarrow \text{no inverse if } k = 3$ $\mathbf{M}^{-1} = \frac{1}{6-2k} \begin{pmatrix} 4 & 4+2k & -6-4k \\ -2 & 4-3k & 5k-6 \\ -2 & -5 & 9 \end{pmatrix}$	M1 A1 A1 M1 A1 M1 A1	Obtaining $\det(\mathbf{M})$ in terms of k Accept $k \neq 3$ after correct determinant Evaluating at least four cofactors (including one involving k) Six signed cofactors correct (including one involving k) Transposing and dividing by $\det(\mathbf{M})$. Dependent on previous M1M1
(ii)	$\begin{pmatrix} 1 & -1 & 3 \\ 5 & 4 & 6 \\ 3 & 2 & 4 \end{pmatrix} \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix} = \begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix}$	M1 A1	Setting $k = 3$ and multiplying
(iii)	$\begin{pmatrix} -3 \\ 3 \\ 1 \end{pmatrix}$ is an eigenvector corresponding to an eigenvalue of 1	B1 B1	For credit here, 2/2 scored in (ii) Accept "invariant point"
(iv)	$3x + 6y = 1 - 2t, x + 2y = 2, 5x + 10y = -4t$ $(\text{or } 9x + 18z = 4t + 1, 5x + 10z = 2t, x + 2z = -1)$ $(\text{or } 9y - 9z = 1 - 5t, 5y - 5z = -3t, 2y - 2z = 3)$ For solutions, $1 - 2t = 3 \times 2$ $\Rightarrow t = -\frac{5}{2}$ $x = \lambda, y = 1 - \frac{1}{2}\lambda, z = -\frac{1}{2} - \frac{1}{2}\lambda$ Straight line	M1 A1 M1 A1 M1 A1 B1	Eliminating one variable in two different ways Two correct equations Validly obtaining a value of t Obtaining general solution by setting one unknown = λ and finding other two in terms of λ (accept unknown instead of λ) Accept "sheaf". Independent of all previous marks

7

18

4756

Mark Scheme

June 2011

4 (i)	$\cosh y = x \Rightarrow x = \frac{1}{2}(e^y + e^{-y})$	B1	Using correct exponential definition
	$\Rightarrow 2x = e^y + e^{-y}$	M1	Obtaining quadratic in e^y
	$\Rightarrow (e^y)^2 - 2xe^y + 1 = 0$	M1	Solving quadratic
	$\Rightarrow e^y = \frac{2x \pm \sqrt{4x^2 - 4}}{2} = x \pm \sqrt{x^2 - 1}$	A1	$x \pm \sqrt{x^2 - 1}$
	$\Rightarrow y = \ln(x \pm \sqrt{x^2 - 1})$	M1	Validly attempting to justify \pm in printed answer
	$(x + \sqrt{x^2 - 1})(x - \sqrt{x^2 - 1}) = 1$	A1 (ag)	
	$\Rightarrow y = \pm \ln(x + \sqrt{x^2 - 1})$	B1	Reference to arcosh as a function, or correctly to domains/ranges
	$\text{arcosh}(x) = \ln(x + \sqrt{x^2 - 1})$ because this is the principal value		
			7
(ii)	$\int_{\frac{4}{5}}^1 \frac{1}{\sqrt{25x^2 - 16}} dx = \frac{1}{5} \int_{\frac{4}{5}}^1 \frac{1}{\sqrt{x^2 - \frac{16}{25}}} dx$	M1	arcosh alone, or any cosh substitution
	$= \frac{1}{5} \left[\text{arcosh}\left(\frac{5x}{4}\right) \right]_{\frac{4}{5}}^1$	A1A1	$\frac{1}{5}, \frac{5x}{4}$
	$= \frac{1}{5} \left(\text{arcosh}\left(\frac{5}{4}\right) - \text{arcosh}(1) \right)$	M1	Substituting limits and using (i) correctly at any stage (or using limits of u in logarithmic form). Dep. on first M1
	$= \frac{1}{5} \ln\left(\frac{5}{4} + \sqrt{\left(\frac{5}{4}\right)^2 - 1}\right) - 0$	A1	
	$= \frac{1}{5} \ln 2$		
	OR $= \frac{1}{5} \left[\ln\left(x + \sqrt{x^2 - \frac{16}{25}}\right) \right]_{\frac{4}{5}}^1$	M	$\ln(kx + \sqrt{k^2x^2 + \dots})$
		A1A	Give M1 for $\ln(k_1x + \sqrt{k_2^2x^2 + \dots})$ $\frac{1}{5}, \ln\left(x + \sqrt{x^2 - \frac{16}{25}}\right)$ o.e.
	$= \frac{1}{5} \ln \frac{8}{5} - \frac{1}{5} \ln \frac{4}{5}$	A	
	$= \frac{1}{5} \ln 2$		
			5
(iii)	$5 \cosh x - \cosh 2x = 3$	M1	Attempting to express $\cosh 2x$ in terms of $\cosh x$
	$\Rightarrow 5 \cosh x - (2 \cosh^2 x - 1) = 3$	M1	Solving quadratic to obtain at least one real value of $\cosh x$
	$\Rightarrow 2 \cosh^2 x - 5 \cosh x + 2 = 0$	A1	Or factor $2 \cosh x - 1$
	$\Rightarrow (2 \cosh x - 1)(\cosh x - 2) = 0$	A1	
	$\Rightarrow \cosh x = \frac{1}{2}$ (rejected)	A1	
	or $\cosh x = 2$	A1	
	$\Rightarrow x = \ln(2 + \sqrt{3})$	A1ft	F.t. $\cosh x = k, k > 1$
	$x = -\ln(2 + \sqrt{3})$ or $\ln(2 - \sqrt{3})$	A1ft	F.t. other value. Max. A1A0 if additional real values quoted
		6	18

4756

Mark Scheme

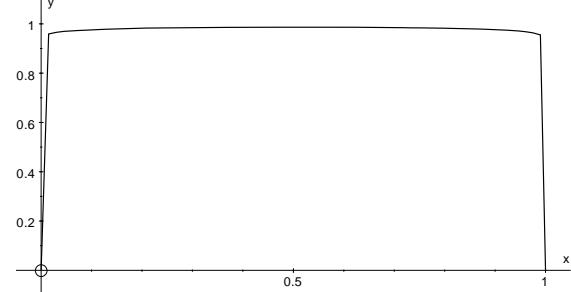
June 2011

5 (i)	(A) $m = 1, n = 1$	G1	Negative parabola from (0,0) to (1,0), symmetrical about $x = 0.5$
	(B) $m = 2, n = 2$		
	(C) $m = 2, n = 4$		
	(D) $m = 4, n = 2$		
(ii)	When $m = n$, the curve is symmetrical Exchanging m and n reflects the curve	B1 B1 2	
(iii)	If $m > n$, the maximum is to the right of $x = 0.5$ As m increases relative to n , the maximum point moves further to the right $y = x^m (1-x)^n \Rightarrow \frac{dy}{dx} = mx^{m-1} (1-x)^n - nx^m (1-x)^{n-1}$ $= x^{m-1} (1-x)^{n-1} [m(1-x) - nx]$ $\frac{dy}{dx} = 0 \Rightarrow \text{maximum at } x = \frac{m}{m+n}$	B1 B1 M1 A1 M1 A1 6	<p>o.e. Give B1B0 if the idea is correct but vaguely expressed Using product rule Any correct form</p> <p>Setting derivative = 0 and solving to find a value of x other than 0 or 1</p>

4756

Mark Scheme

June 2011

(iv)	$y''(0) = 0$ provided $m > 1$ $y'(1) = 0$ provided $n > 1$	B1 B1 2	
(v)	For large m and n , the curve approaches the x -axis $\Rightarrow \int_0^1 x^m (1-x)^n dx \rightarrow 0$ as $m, n \rightarrow \infty$	B1 B1 2	Comment on shape Independent
(vi)	e.g. $m = 0.01, n = 0.01$  The curve tends to $y = 1$	M1 A1 2	Evidence of investigation s.o.i. Accept "three sides of (unit) square" 18

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

