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INSTRUCTIONS TO CANDIDATES

• Write your name, centre number and candidate number in the spaces provided on the
answer booklet. Please write clearly and in capital letters.

• Use black ink. Pencil may be used for graphs and diagrams only.
• Read each question carefully. Make sure you know what you have to do before starting

your answer.
• Answer any three questions.
• Do not write in the bar codes.
• You are permitted to use a scientific or graphical calculator in this paper.
• Final answers should be given to a degree of accuracy appropriate to the context.

• The acceleration due to gravity is denoted by g m s−2. Unless otherwise instructed, when
a numerical value is needed, use g = 9.8.

INFORMATION FOR CANDIDATES

• The number of marks is given in brackets [ ] at the end of each question or part question.
• You are advised that an answer may receive no marks unless you show sufficient detail

of the working to indicate that a correct method is being used.
• The total number of marks for this paper is 72.
• This document consists of 4 pages. Any blank pages are indicated.
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1 The differential equation

d2y

dt2
+ 4

dy

dt
+ 3y = 13 cos 2t (∗)

is to be solved.

(i) Find the general solution. [9]

(ii) Find the particular solution, given that when t = 0, y and
dy

dt
are both zero. [6]

Now consider the differential equation

d3ß
dt3

+ 4
d2ß
dt2

+ 3
dß
dt

= −26 sin 2t.

(iii) Show that the general solution may be expressed as ß = y + c where y is the general solution of

(∗) and c is a constant. [2]

(iv) When t = 0, ß = 2,
dß
dt

= 0 and
d2ß
dt2

= 13. Use these conditions to find the particular solution. [7]

2 (a) A curve in the x-y plane satisfies the differential equation

dy

dx
− 2y

x
= √

x

for x > 0.

(i) Find the general solution for y in terms of x. [8]

The curve passes through (1, 0).
(ii) Find the equation of this curve. [2]

(iii) Find the coordinates of the stationary point of this curve and find the values to which y and
dy

dx
tend as x → 0. Sketch the curve. [6]

(b) The differential equation

dy

dx
= √

x2 + y2

is to be solved approximately by using a tangent field.

(i) Describe the shape of the isocline for which
dy

dx
= 1. [2]

(ii) Sketch, on the same axes, the isoclines for the cases
dy

dx
= 1,

dy

dx
= 2,

dy

dx
= 3. Use these

isoclines to draw a tangent field. [3]

(iii) Sketch the solution curve through (0, 1). [1]

(iv) Sketch the solution curve through the origin. [2]
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3 (a) A particle of mass 2 kg moves on a horizontal straight line containing the origin O. When its

displacement is x m from O, it is subject to a force of magnitude 2k2x N directed towards O,

where k is a positive constant.

(i) Show that the velocity, v m s−1, of the particle satisfies the differential equation

v
dv

dx
= −k2x. [3]

The particle is at rest when x = a, where a is a positive constant.

(ii) Solve the differential equation, subject to this condition. Hence show that, while the particle

moves in the negative direction,

dx

dt
= −k

√
a2 − x2. [6]

Initially the particle is at x = a.

(iii) Use the standard integral

ä 1√
a2 − x2

dx = arcsin( x

a
) + c

to find x in terms of t, k and a. [5]

(b) At time t s, the angle, θ rad, that a pendulum makes with the vertical satisfies the differential

equation

ω
dω

dθ
= −9 sin θ

where ω = dθ

dt
.

(i) Solve the differential equation for ω in terms of θ subject to the condition ω = 0 when

θ = 1
3
π. Hence show that, while θ is decreasing,

dθ

dt
= −3

√
2 cos θ − 1. [6]

(ii) Starting from θ = 1
3
π when t = 0, use Euler’s method with a step length of 0.1 to estimate

θ when t = 0.1. The algorithm is given by t
r+1

= t
r
+ h, θ

r+1
= θ

r
+ hθ̇

r
. State whether this

algorithm can usefully be continued, justifying your answer. [4]

[Question 4 is printed overleaf.]
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4 The quantities x and y at time t are modelled by the simultaneous differential equations

dx

dt
= −3x − 2y + 3t,

dy

dt
= 2x + y + t + 2.

(i) Show that
d2x

dt2
+ 2

dx

dt
+ x = −5t − 1. [5]

(ii) Find the general solution for x. [8]

(iii) Find the corresponding general solution for y. [4]

When t = 0, x = 9 and y = 0.

(iv) Find the particular solutions. [4]

(v) Find approximate expressions for x and y in terms of t, valid for large positive values of t. [3]
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