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1  The differential equation
d? d
d—g+4d—);+3y=130082t (%)
is to be solved.
(i) Find the general solution. [9]
R . . . dy
(ii) Find the particular solution, given that when # = 0, y and U are both zero. [6]

Now consider the differential equation
d’z d’z dz

@4_ ¥+3a:—2681n2t

(iif) Show that the general solution may be expressed as z = y + ¢ where y is the general solution of

(%) and c is a constant. [2]
dz d’z .. . .
(iv) Whent=0,z=2, & =0and ? = 13. Use these conditions to find the particular solution. [7]

2 (a) A curve in the x-y plane satisfies the differential equation

dy 2y
o
for x > 0.
(i) Find the general solution for y in terms of x. [8]
The curve passes through (1, 0).
(ii) Find the equation of this curve. [2]

(iii) Find the coordinates of the stationary point of this curve and find the values to which y and

% tend as x — 0. Sketch the curve. [6]

(b) The differential equation
d
Y _ 2 + 12

is to be solved approximately by using a tangent field.

d
(i) Describe the shape of the isocline for which ay =1. [2]
. . . dy dy dy
(ii) Sketch, on the same axes, the isoclines for the cases o =1, i =2, i = 3. Use these
isoclines to draw a tangent field. [3]
(iii) Sketch the solution curve through (0, 1). [1]
(iv) Sketch the solution curve through the origin. [2]
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3 (a) A particle of mass 2kg moves on a horizontal straight line containing the origin O. When its
displacement is xm from O, it is subject to a force of magnitude 2k*x N directed towards O,
where k is a positive constant.

1

(i) Show that the velocity, vms™, of the particle satisfies the differential equation

d
vav = _kx, [3]

The particle is at rest when x = a, where a is a positive constant.

(ii) Solve the differential equation, subject to this condition. Hence show that, while the particle
moves in the negative direction,

Y 6]

E =
Initially the particle is at x = a.

(iii) Use the standard integral

J‘\/ﬁ dx = arcsin(g) +c

to find x in terms of ¢, k and a. [5]

(b) At time s, the angle, O rad, that a pendulum makes with the vertical satisfies the differential
equation
wd_a) =-9sin 6
de
doe

where o = —.
dr

(i) Solve the differential equation for @ in terms of 6 subject to the condition @ = 0 when

0= %n Hence show that, while 0 is decreasing,

% =-34/2cos 6 - 1. [6]

(ii) Starting from 6 = %n when ¢ = 0, use Euler’s method with a step length of 0.1 to estimate
6 when ¢ = 0.1. The algorithm is givenby ¢, ., =7 +h, 0, , =0, + hér. State whether this
algorithm can usefully be continued, justifying your answer. [4]

[Question 4 is printed overleaf.]
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4  The quantities x and y at time ¢ are modelled by the simultaneous differential equations

dx
i —3x—-2y+3t,
d
d—f =2x+y+1+2.
i) Show that & 428 4 _ s [5]
> Tdr T '

(ii) Find the general solution for x. [8]
(iii) Find the corresponding general solution for y. [4]
Whent=0,x=9andy =0.

(iv) Find the particular solutions. [4]

(v) Find approximate expressions for x and y in terms of #, valid for large positive values of z.  [3]
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