

GCE

Mathematics (MEI)

Advanced GCE

Unit 4758: Differential Equations

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2011

Any enquiries about publications should be addressed to:

OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL

Telephone: 0870 770 6622
Facsimile: 01223 552610
E-mail: publications@ocr.org.uk

4758

Mark Scheme

June 2011

1(i)	$\lambda^2 + 4\lambda + 3 = 0$ $\lambda = -1 \text{ or } -3$ CF $Ae^{-t} + Be^{-3t}$ PI $y = a \cos 2t + b \sin 2t$ $\dot{y} = -2a \sin 2t + 2b \cos 2t$ $\ddot{y} = -4a \cos 2t - 4b \sin 2t$ $-4a \cos 2t - 4b \sin 2t - 8a \sin 2t + 8b \cos 2t + 3a \cos 2t + 3b \sin 3t = 13 \cos 2t$ $8b - a = 13$ $-b - 8a = 0$ $a = -\frac{1}{5}, b = \frac{8}{5}$ GS $y = \frac{1}{5}(8 \sin 2t - \cos 2t) + Ae^{-t} + Be^{-3t}$	M1 A1 F1 B1 M1 M1 M1 A1 A1 F1	Auxiliary equation CF for their roots Differentiate twice and substitute Compare coefficients A1 PI + CF with two arbitrary constants
			9
(ii)	$t = 0, y = 0 \Rightarrow 0 = -\frac{1}{5} + A + B$ $\dot{y} = \frac{1}{5}(16 \cos 2t + 2 \sin 2t) - Ae^{-t} - 3Be^{-3t}$ $t = 0, \dot{y} = 0 \Rightarrow 0 = \frac{16}{5} - A - 3B$ $\Rightarrow A = -\frac{13}{10}, B = \frac{3}{2}$ $y = \frac{1}{5}(8 \sin 2t - \cos 2t) - \frac{13}{10}e^{-t} + \frac{3}{2}e^{-3t}$	M1 M1 F1 M1 A1 A1	Use condition Differentiate Use condition Cao
			6
(iii)	If $z = y + c$, differentiating (*) gives new DE and has 3 arbitrary constants so must be GS or Integrating gives (*) with $+k$ on RHS PI will be previous PI $+\frac{1}{3}k$, CF as before, so GS $y + c$ SC1 for showing that correct y from (i) $+ c$ satisfies new DE	M1 A1 M1 A1	Recognise derivative condone, for this mark only, $+c$ appearing
			2
(iv)	$z = \frac{1}{5}(8 \sin 2t - \cos 2t) + De^{-t} + Ee^{-3t} + c$ $t = 0, z = 2 \Rightarrow 2 = -\frac{1}{5} + D + E + c$ $\dot{z} = \frac{1}{5}(16 \cos 2t + 2 \sin 2t) - De^{-t} - 3Ee^{-3t}$ $t = 0, \dot{z} = 0 \Rightarrow 0 = \frac{16}{5} - D - 3E$ $\ddot{z} = \frac{1}{5}(-32 \sin 2t + 4 \cos 2t) + De^{-t} + 9Ee^{-3t}$ $t = 0, \ddot{z} = 13 \Rightarrow 13 = \frac{4}{5} + D + 9E$ $D = -\frac{13}{10}, E = \frac{3}{2}, c = 2$ $z = \frac{1}{5}(8 \sin 2t - \cos 2t) - \frac{13}{10}e^{-t} + \frac{3}{2}e^{-3t} + 2$	M1 F1 M1 F1 M1 B1 A1	Use condition Derivative Use condition Second derivative: condone, for this mark only, $+c$ appearing Use condition Cao
			7

4758

Mark Scheme

June 2011

2(a)(i)	$I = \exp\left(\int -\frac{2}{x} dx\right)$ $= \exp(-2 \ln x)$ $= x^{-2}$ $x^{-2} \frac{dy}{dx} - 2x^{-3} y = x^{-\frac{3}{2}}$ $\frac{d}{dx}(x^{-2} y) = x^{-\frac{3}{2}}$ $x^{-2} y = -2x^{-\frac{1}{2}} + A$ $y = -2x^{\frac{1}{2}} + Ax^2$	M1 Attempt integrating factor A1 A1 M1 Multiply both sides by IF M1 M1 Integrate both sides A1 F1 Must divide constant	8
(ii)	$0 = -2 + A$ $y = 2x^2 - 2x^{\frac{1}{2}}$	M1 A1	2
(iii)	$x \rightarrow 0, y \rightarrow 0$ $\frac{dy}{dx} = 4x - 3x^{\frac{1}{2}} = 0 \Leftrightarrow x = \frac{9}{16}$ (as $x > 0$) $x \rightarrow 0, \frac{dy}{dx} \rightarrow 0$	F1 M1 F1 B1 Behaviour at origin B1 Through (1,0) and shape for $x > 1$ B1 Stationary point at $\left(\frac{9}{16}, -\frac{27}{32}\right)$	6
(b)(i)	Circle centre origin Radius 1	B1 B1	2
(ii)			3
(iii)			1
(iv)			2

3(a)(i)	N2L: $ma = -2k^2 x$ $2v \frac{dv}{dx} = -2k^2 x$ $v \frac{dv}{dx} = -k^2 x$	M1 M1 Acceleration = $v \frac{dv}{dx}$ E1	3
(ii)	$\int v dv = \int -k^2 x dx$ $\frac{1}{2}v^2 = -\frac{1}{2}k^2 x^2 + A$ $x = a, v = 0 \Rightarrow A = \frac{1}{2}k^2 a^2$ $v^2 = k^2(a^2 - x^2)$ So for $v < 0$, $\frac{dx}{dt} = -k\sqrt{a^2 - x^2}$	M1 Separate and integrate A1 LHS A1 RHS M1 Use condition A1 E1	6
(iii)	$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \int -k dt$ $\arcsin \frac{x}{a} + B = -kt$ $x = a, t = 0 \Rightarrow B = -\frac{1}{2}\pi$ $x = a \sin(\frac{1}{2}\pi - kt) = a \cos kt$	M1 Separate and integrate A1 LHS A1 RHS M1 Use condition A1 Either form	5
(b)(i)	$\int \omega d\omega = \int -9 \sin \theta d\theta$ $\frac{1}{2}\omega^2 = 9 \cos \theta + C$ $\theta = \frac{1}{3}\pi, \omega = 0 \Rightarrow C = -\frac{9}{2}$ So $\omega^2 = 9(2 \cos \theta - 1)$ $\frac{d\theta}{dt} = -3\sqrt{2 \cos \theta - 1}$ (decreasing)	M1 Separate and integrate A1 LHS A1 RHS M1 Use condition A1 E1	6
(ii)	$\theta = \frac{1}{3}\pi \Rightarrow \dot{\theta} = 0$ So estimate $= \frac{1}{3}\pi + 0 = \frac{1}{3}\pi$ The algorithm will keep giving $\theta = \frac{1}{3}\pi$ but θ is not constant so not useful	M1 A1 B1 B1	4

4758

Mark Scheme

June 2011

4(i)	$y = -\frac{1}{2}\dot{x} - \frac{3}{2}x + \frac{3}{2}t$	M1		
	$\dot{y} = -\frac{1}{2}\ddot{x} - \frac{3}{2}\dot{x} + \frac{3}{2}$	M1		
	$-\frac{1}{2}\ddot{x} - \frac{3}{2}\dot{x} + \frac{3}{2} = 2x + (-\frac{1}{2}\dot{x} - \frac{3}{2}x + \frac{3}{2}t) + t + 2$	M1	Eliminate $\textcolor{blue}{y}$	
		M1	Eliminate $\textcolor{blue}{y}$	
	$\ddot{x} + 2\dot{x} + x = -5t - 1$	E1		
				5
(ii)	$\lambda^2 + 2\lambda + 1 = 0$	M1	Auxiliary equation	
	$\lambda = -1$ (repeated)	A1	Root	
	CF: $(A + Bt)e^{-t}$	F1	CF for their root(s) (with two constants)	
	PI: $x = at + b$	B1		
	$\dot{x} = a, \ddot{x} = 0$			
	In DE: $0 + 2a + at + b = -5t - 1$	M1	Differentiate and substitute	
	$a = -5$			
	$2a + b = -1$	M1	Compare and solve	
	$a = -5, b = 9$	A1		
	GS: $x = 9 - 5t + (A + Bt)e^{-t}$	F1	GS = PI + CF with two arbitrary constants	
				8
(iii)	$y = -\frac{1}{2}\dot{x} - \frac{3}{2}x + \frac{3}{2}t$	M1		
	$= -\frac{1}{2}[-5 + Be^{-t} - (A + Bt)e^{-t}]$	M1	Differentiate (product rule)	
	$- \frac{3}{2}[9 - 5t + (A + Bt)e^{-t}] + \frac{3}{2}t$	M1	Substitute	
	$= 9t - 11 - (A + \frac{1}{2}B + Bt)e^{-t}$	A1		
				4
(iv)	$t = 0, x = 9 \Rightarrow A = 0$	M1	Use condition	
	$t = 0, y = 0 \Rightarrow 0 = -11 - \frac{1}{2}B \Rightarrow B = -22$	M1	Use condition	
	$x = 9 - 5t - 22te^{-t}$	A1		
	$y = 9t - 11 + (11 + 22t)e^{-t}$	A1		
				4
(v)	$e^{-t} \rightarrow 0$	M1		
	$x \approx 9 - 5t$	F1		
	$y \approx 9t - 11$	F1		
				3

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

