

GCE

Physics A

Unit **H556/02**: Exploring physics

Advanced GCE

Mark Scheme for June 2018

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

© OCR 2018

Annotations available in RM Assessor

Annotation		Meaning
	Correct response	Used to indicate the point at which a mark has been awarded (one tick per mark awarded).
	Incorrect response	Used to indicate an incorrect answer or a point where a mark is lost.
AE	Arithmetic error	Do not allow the mark where the error occurs. Then follow through the working/calculation giving full subsequent ECF if there are no further errors.
BOD	Benefit of doubt given	Used to indicate a mark awarded where the candidate provides an answer that is not totally satisfactory, but the examiner feels that sufficient work has been done.
BP	Blank page	Use BP on additional page(s) to show that there is no additional work provided by the candidates.
CON	Contradiction	No mark can be awarded if the candidate contradicts himself or herself in the same response.
ECF	Error carried forward	Used in <u>numerical answers only</u> , unless specified otherwise in the mark scheme. Answers to later sections of numerical questions may be awarded up to full credit provided they are consistent with earlier incorrect answers. Within a question, ECF can be given for AE, TE and POT errors but not for XP.
L1	Level 1	L1 is used to show 2 marks awarded and L1 [^] is used to show 1 mark awarded.
L2	Level 2	L2 is used to show 4 marks awarded and L2 [^] is used to show 3 marks awarded.
L3	Level 3	L3 is used to show 6 marks awarded and L3 [^] is used to show 5 marks awarded.
POT	Power of 10 error	This is usually linked to conversion of SI prefixes. Do not allow the mark where the error occurs. Then follow through the working/calculation giving ECF for subsequent marks if there are no further errors.
SEEN	Seen	To indicate working/text has been seen by the examiner.
SF	Error in number of significant figures	Where more SFs are given than is justified by the question, do not penalise. Fewer significant figures than necessary will be considered within the mark scheme. Penalised only once in the paper.
TE	Transcription error	This error is when there is incorrect transcription of the correct data from the question, graphical read-off, formulae booklet or a previous answer. Do not allow the relevant mark and then follow through the working giving ECF for subsequent marks.
XP	Wrong physics or equation	Used in <u>numerical answers only</u> , unless otherwise specified in the mark scheme. Use of an incorrect equation is wrong physics even if it happens to lead to the correct answer.
^	Omission	Used to indicate where more is needed for a mark to be awarded (what is written is not wrong but not enough).

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
Reject	Answers which are not worthy of credit
Not	Answers which are not worthy of credit
Ignore	Statements which are irrelevant
Allow	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

SECTION A

Question	Answer	Marks	Guidance
1	A	1	
2	C	1	
3	C	1	
4	B	1	
5	A	1	
6	C	1	
7	B	1	
8	A	1	
9	D	1	
10	C	1	
11	D	1	
12	B	1	
13	B	1	
14	C	1	
15	A	1	
	Total	15	

SECTION B

Question		Answer	Marks	Guidance
16	(a)	$(R = \frac{V}{I} = \frac{W}{QI}; Q = It)$ <p>charge $\rightarrow A \text{ s}$ or energy $\rightarrow \text{kg m s}^{-2} \times \text{m}$ or $\text{kg m}^2 \text{ s}^{-2}$</p> <p>(base units) $\text{kg m}^2 \text{ A}^{-2} \text{ s}^{-3}$</p>	C1 A1	Allow other correct methods Allow Q or C or coulomb for 'charge'; E or W or joule or J or work done for 'energy' Allow 1 mark for $\text{J s}^{-1} \text{ A}^{-2}$ Allow $\frac{\text{kg m}^2}{\text{A}^2 \text{ s}^3}$ or $\text{kg m}^2 / (\text{A}^2 \text{ s}^3)$ Not $\text{kg m}^2 / \text{A}^2 / \text{s}^3$ or $\text{kg m}^2 / \text{s}^3 / \text{A}^2$
	(b) (i)	$(R = \frac{6.0}{0.150})$ $R = 40 \Omega$	M1 A0	Allow any correct value of V (± 0.1 V) divided by the correct value of I (± 10 mA) from the straight line for R
	(ii)1	$(V_L =) 1.4 \text{ (V)} \text{ or } (V_R =) 4.0 \text{ (V)} \text{ or } (R_T =) 6.0/0.1 \text{ (}\Omega\text{)}$ $(V_{\text{terminal}} =) 5.4 \text{ (V)} \text{ or } (V_r =) 0.6 \text{ (V)} \text{ or } (r =) 60 - 54 \text{ (}\Omega\text{)}$ $r = 6.0 \text{ (}\Omega\text{)}$	C1 C1 A1	Allow full credit for other correct methods Possible ECF from (i) Allow ± 0.1 V for the value of p.d. from the graph Note getting to this stage will also secure the first C1 mark Allow 1 SF answer here without any SF penalty
	(ii)2	$\rho = \frac{40 \times 2.4 \times 10^{-6}}{8.0 \times 10^{-3}}$ (Any subject) $\rho = 0.012 \text{ (}\Omega \text{ m)}$	C1 A1	Allow ECF Allow 1 mark for either 0.018 for using 60Ω , 0.016(2) for using 54Ω or for 0.0018 for 6.0Ω
	(ii)3	$n = \frac{6.5 \times 10^{17}}{2.4 \times 10^{-6} \times 0.008}$ $\text{or } n = 3.385 \times 10^{25} \text{ (m}^{-3}\text{)}$ $V = \frac{0.100}{2.4 \times 10^{-6} \times 3.385 \times 10^{25} \times 1.60 \times 10^{-19}}$ (Any subject) $v = 7.7 \times 10^{-3} \text{ (m s}^{-1}\text{)}$	C1 C1 A1	Note do not penalise again for the same POT error Allow 1 mark for $4(0) \times 10^5 \text{ (m s}^{-1}\text{)}$; $n = 6.5 \times 10^{17}$ used
		Total	11	

Question		Answer	Marks	Guidance
17*		<p>Level 3 (5–6 marks) Clear explanation, some description and both resistance values correct <i>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.</i></p> <p>Level 2 (3–4 marks) Some explanation, limited or no description and both resistance values correct OR Clear explanation, limited or no description and calculations mostly correct / one correct calculation OR Clear explanation, some description and no calculations <i>There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.</i></p> <p>Level 1 (1–2 marks) Some explanation OR Some description OR Some calculation <i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i></p> <p>0 marks No response or no response worthy of credit</p>	B1 × 6	<p>Indicative scientific points may include:</p> <p>Explanation of trace</p> <ul style="list-style-type: none"> • The ‘trace’ is because of light reaching and not reaching LDR • Resistance of LDR varies with (intensity) of light • In light <ul style="list-style-type: none"> ◦ resistance of LDR is low ◦ p.d. across LDR is low ◦ p.d across resistor (or V) is high ◦ current in circuit is large • In darkness <ul style="list-style-type: none"> ◦ resistance of LDR is high ◦ p.d. across LDR is high ◦ p.d across resistor (or V) is low ◦ current in circuit is small • $V_{\text{max}} = 4.0 \text{ V}; V_{\text{min}} = 2.0 \text{ V}$ • Potential divider equation quoted • Substitution into potential divider equation <p>Description of determining frequency</p> <ul style="list-style-type: none"> • Time between pulses is constant because of constant speed • Time between pulses = 0.4 (s) • $f = 1/T$ • frequency = 2.5 (Hz) <p>Calculations</p> <ul style="list-style-type: none"> • Resistance of LDR is 150 (Ω) in light • Resistance of LDR is 1500 (Ω) in darkness
		Total	6	

Question		Answer	Marks	Guidance
18	(a)	$1.00 \times \sin 56.3 = 1.50 \times \sin r$ (Any subject) $r = 33.7^\circ$ Correct working / reasoning leading to 90.0° (e.g. $\theta = 180 - (56.3 + 33.7)$, therefore $\theta = 90.0^\circ$)	M1 A1 A1	Allow with or without the 1.00 Allow 34°
	(b)	Use a polaroid / polarising filter Rotation will change intensity	B1 B1	Allow brightness / light
	(c)	distance = $6.0/\cos 33.7$ or 7.2 (cm) OR $v = 3.00 \times 10^8 / 1.50$ or $2.00 \times 10^8 \text{ (m s}^{-1}\text{)}$ $t = 7.2 \times 10^{-2} / 2.00 \times 10^8$ $t = 3.6 \times 10^{-10} \text{ (s)}$	C1 A1	Allow 34° Allow 2×10^8
		Total	7	

Question		Answer	Marks	Guidance
19	(a)	Any two from: • Reflection • Diffraction • Interference / superposition	B1 × 2	Allow correct annotation of Fig. 19.1 for each effect
	(b)	Interference / superposition (of microwaves along PQ) Maximum (signal) / constructive (interference) when waves are in phase Minimum (signal) / destructive (interference) when waves are in anti-phase	B1 B1 B1	 Allow constructive when <u>phase</u> difference is $n \times 360^\circ$ (n is an integer) / 0° / 360° Allow destructive <u>phase</u> difference is $[2n + 1] \times 180^\circ$ (n is an integer) / 180° Not 'out of phase' Special case - allow 1 mark from the last two B1 marks, for signal linked to <u>path</u> difference and wavelength
		Total	5	

Question		Answer	Marks	Guidance
20	(a)	(i) A straight line with non-zero V_0 intercept gradient = 1.3×10^{-6}	B1 B1	Ignore spread of data points on either side of the line Allow Intercept > 0 and < 1.0 V Allow $(1.10 \text{ to } 1.60) \times 10^{-6}$; no need to check calculation
	(ii)	gradient = $\frac{hc}{e}$ (Any subject) $h = \frac{1.3 \times 10^{-6} \times 1.60 \times 10^{-19}}{3.00 \times 10^8}$ (Any subject) $h = 6.9 \times 10^{-34} \text{ (J s)}$	C1 C1 A1	Possible ECF from (i) Note the answer must be given 2 SF only
	(iii)	difference = $\frac{6.9 \times 10^{-34} - 6.6(3) \times 10^{-34}}{6.6(3) \times 10^{-34}} \times 100 \%$ difference = 4.1 %	B1	Possible ECF from (ii) Ignore sign Not division by value from (ii) Allow 1 SF answer
	(iv)	Random (error) / data points are spread about line Systematic (error) / line does not pass through origin Take (many) repeat readings (of V_0) and average Conduct the experiment in a darkroom / use (black) tube over the LED to view when it is lit / use a (digital) voltmeter with no zero error	B1 B1 B1 B1	Allow other sensible suggestion Not faulty voltmeter

Question		Answer	Marks	Guidance
	(b)	<p>Any <u>one</u> from: Energy of visible light photon < work function (of zinc) (frequency of) visible (light/photon) < threshold frequency</p> <p>Any <u>one</u> from: Energy of UV photon > work function (of zinc) (frequency of) UV (radiation/photon) > threshold frequency</p> <p>Any <u>two</u> from:</p> <ul style="list-style-type: none"> • Collapse of leaf linked to removal of electrons • One-to-one interaction of photon and (surface) electron • Photon energy is independent of intensity / Intensity linked to rate of photons (incident on the zinc plate) 	B1 B1 B1 × 2	<p>Allow f for frequency, λ for wavelength and ϕ for work function throughout</p> <p>Allow 'overcome' / 'met' / 'reached' when describing $>$ or $<$</p> <p>Allow photons</p> <p>Not f_0 for threshold frequency</p> <p>Allow equivalent statement with wavelength</p> <p>Allow = instead of $>$ or $<$ throughout for UV</p> <p>Allow equivalent statement with wavelength</p> <p>Ignore stem / plate / leaf / electroscope becoming positive</p>
		Total	14	

Question		Answer	Marks	Guidance
21	(a)	(i) The gradient is maximum / maximum rate of change of B / maximum rate of change of flux (linkage)	B1	Allow slope instead of gradient
	(ii)	Tangent drawn to curve at $B = 0$ gradient = 12.5 (maximum e.m.f. = $12.5 \times 14 \times 10^{-4} \times 85$) maximum e.m.f. = 1.5 (V)	C1 C1 A1	Allow 11.70 to 13.30; no need to check calculation Allow fraction if calculated value is within the range Allow ECF from the gradient value if value is outside the range Alternative: $E = BAN\omega$ C1 $E = 40 \times 10^{-3} \times 14 \times 10^{-4} \times 85 \times 2\pi \times 50$ C1 maximum e.m.f. = 1.5 (V) A1
	(b)	Sinusoidal curve with the same peak e.m.f. Sinusoidal curve with half period	B1 B1	Note curve must show at least half a period Allow ± 1 small square for e.m.f. Ignore phase Note graph must show at least half a period Allow ± 1 small square for t
		Total	6	

Question		Answer	Marks	Guidance
22	(a)	$(V = V_0 e^{-t/CR}) \quad \ln(V/V_0) = -t/CR \quad \text{or} \quad \ln V = \ln V_0 - t/CR$ $\ln V = \ln V_0 - t/CR \quad \text{and} \quad y = mx + c / \text{gradient} = -1/CR$	B1 B1	<p>Note the minus sign is necessary</p>
	(b)*	<p>Level 3 (5–6 marks) Clear description and correct value of C</p> <p><i>There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated.</i></p> <p>Level 2 (3–4 marks) Clear description and some correct working OR Some description and correct value for C</p> <p><i>There is a line of reasoning presented with some structure. The information presented is in the most-part relevant and supported by some evidence.</i></p> <p>Level 1 (1–2 marks) Some description OR Some working</p> <p><i>There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant.</i></p> <p>0 marks No response or no response worthy of credit</p>	B1 × 6	<p>Indicative scientific points may include:</p> <p>Description</p> <ul style="list-style-type: none"> • $C = \epsilon A/d$ • A = area (of overlap) and d = separation. • Use ruler to measure the side / radius / diameter (and hence the area A) • Ensure total overlap of plates. • Measure the thickness / d of paper using micrometer / (vernier) caliper. • Take several readings of thickness and determine an average value for d <p>Calculation of capacitance</p> <ul style="list-style-type: none"> • gradient ≈ 85 • $C \approx 1.2 \times 10^{-8}$ (F)

Question			Answer	Marks	Guidance
23	(a)	(i)	$(N \text{ at } 15^\circ / N \text{ at } 150^\circ =) 10^{5.1} \div 10^{1.5} \text{ or } 10^{3.6} (\approx 4000)$	B1	
		(ii)	<p>Most of the (alpha) particles went through without (much) deflection, hence the atom is mostly empty / space / vacuum</p> <p>Some of the (alpha) particles were scattered (through large angles / greater than 90°), hence there must be a <u>nucleus</u> (at the centre of the atom).</p> <p>Any <u>one</u> from:</p> <ul style="list-style-type: none"> • The nucleus is very small compared with the atom • Positive charge at the centre / nucleus is positive • Most of the mass (of the atom) is at centre / dense nucleus 	B1 B1 B1	Allow Many / Majority / Lots of the alpha particles Allow Few(er) / Small(er) number of the alpha particles ...
	(b)	(i)	<p>Kinetic energy (of proton) changes to potential (energy) or Potential energy increases as the kinetic energy (of the proton) decreases or Potential energy increases as work is done against the field / against repulsion / positive charge</p>	B1	Allow 'it' / PE for (electric) potential energy Allow KE / E_k
		(ii)	$\text{energy} = 0.52 \times 10^6 \times 1.60 \times 10^{-19} \text{ or } 8.3(2) \times 10^{-14} (\text{J})$ $\frac{1.60 \times 10^{-19} \times 27 \times 1.60 \times 10^{-19}}{4\pi\epsilon_0 R} = 8.32 \times 10^{-14}$ $R = 7.5 \times 10^{-14} (\text{m})$	C1 C1 A1	Allow 2 mark for 1.6×10^{-13} (m); $Z = 59$ used Allow 2 mark for 8.9×10^{-14} (m); $Z = 32$ used Allow 1 mark for 2.8×10^{-15} (m); $Z = 1$ used Allow 1 mark for 1.2×10^{-32} (m); energy = 5.2×10^5 used
			Total	8	

Question		Answer	Marks	Guidance
25	(a) (i)	<p>Proton is repelled (by nucleus)</p> <p>(High-speed) proton can get close to (oxygen) nucleus</p>	B1 B1	<p>Allow 'proton can experience the strong (nuclear) force'</p> <p>Not 'collide / hit nucleus'</p>
	(ii)	$E = [0.25 - (2.24 - 2.20)] \times 10^{-11} \text{ (J)} \quad \text{or} \quad 0.21 \times 10^{-11} \text{ (J)}$ $\lambda = \frac{6.63 \times 10^{-34} \times 3.00 \times 10^8}{0.21 \times 10^{-11}} \quad (\text{Any subject})$ $\lambda = 9.5 \times 10^{-14} \text{ (m)}$	C1 C1 A1	<p>Allow 2 marks for 6.9×10^{-14}; $E = 0.29 \times 10^{-11}$ used</p> <p>Allow 1 mark for a value correctly calculated based on any other incorrect value for E (e.g. $8(0) \times 10^{-14}$ for $E = 0.25 \times 10^{-11}$ and $5(0) \times 10^{-13}$ for $E = 0.04 \times 10^{-11}$)</p>
	(iii)	<p>Used in PET (scans)</p> <p>Any <u>one</u> from:</p> <p>Used to diagnose function of organ / brain / body</p> <p>Detection of cancer / tumour</p> <p>Non-invasive / no surgery / no infection</p> <p>3D (image)</p>	M1 A1	
	(b)	<p>X-ray (tube) moves around the patient</p> <p>A thin (fan-shaped X-ray) beam is used</p> <p>(Images / scans of) cross-sections through the patient are taken</p> <p>Any <u>one</u> from:</p> <ul style="list-style-type: none"> • A three-dimensional image is produced • (Soft) tissues can be identified 	B1 B1 B1 B1	<p>Allow 'X-rays passed through different angles.'</p> <p>Allow 'slice(s)'</p> <p>Allow 'good contrast image'</p>
		Total	11	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA

OCR Customer Contact Centre

Education and Learning
Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: The Triangle Building, Shaftesbury Road, Cambridge, CB2 8EA
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2018

 **Cambridge
Assessment**

