

GCE

Physics A

Unit H156/01: Breadth in physics

Advanced Subsidiary GCE

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2017

Annotations available in RM Assessor

Annotation	Meaning
BOD	Benefit of doubt given
CON	Contradiction
X	Incorrect response
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
TE	Transcription error
NBOD	Benefit of doubt not given
POT	Power of 10 error
▲	Omission mark
SF	Error in number of significant figures
✓	Correct response
?	Wrong physics or equation

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
/	alternative and acceptable answers for the same marking point
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
ignore	Statements which are irrelevant
allow	Answers that can be accepted
()	Words which are not essential to gain credit
—	Underlined words must be present in answer to score a mark
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

MARKING INSTRUCTIONS

Generic version as supplied by OCR Sciences

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a **B**-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which **A**-marks (accuracy marks) later depend. For an **M**-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular **M**-mark, then none of the dependent **A**-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a **C**-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the **C**-mark is given.

A marks: These are accuracy or answer marks, which either depend on an **M**-mark, or allow a **C**-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf, then allow to 2 or more significant figures.

If an answer is given to fewer than 2 sf, then penalise once only in the entire paper.

Any exception to this rule will be mentioned in the Additional Guidance.

Question	Answer	Marks	Guidance
1	C	1	
2	C	1	
3	B	1	
4	C	1	
5	B	1	
6	C	1	
7	A	1	
8	A	1	
9	A	1	
10	D	1	
11	D	1	
12	D	1	
13	A	1	
14	B	1	
15	C	1	
16	B	1	
17	D	1	
18	A	1	
19	B	1	
20	D	1	
	Total	20	

SECTION B

Question		Answer	Marks	Guidance
21	(a)	$(KE = \frac{1}{2} \times 0.900 \times 2.0^2)$ kinetic energy = 1.8 (J)	B1	
	(b)	<p>Constant velocity from 0 to 0.3(0 s) / up to 0.3(0 s) / up to the crash / at the start</p> <p>Velocity decreases / deceleration from <u>0.3</u>(0 s) to <u>0.8</u>(0 s)</p> <p>Zero velocity / stationary after 0.8 (s) / towards the end</p> <p>gradient (of the graph) = velocity</p>	B1 B1 B1 B1	<p>Allow speed instead of velocity Allow 0.30 to 0.40</p> <p>Allow 0.30 to 0.40 and 0.76 to 0.80 Allows slows down</p> <p>Possible ECF</p> <p>Allow slope instead of gradient Allow gradient is $2.0 \text{ (m s}^{-1}\text{)}$ / gradient is constant (up to 0.30 s) / straight line (up to 0.30 s), so velocity / speed is constant Allow gradient decreases (between 0.30 s and 0.80 s), so velocity / speed decreases Allow gradient is zero (after 0.80 s), so velocity / speed is zero</p>
	(c)	$s = 0.5 \text{ (m)}$ / $t = 0.5 \text{ (s)}$ $a = (-) \frac{2.0}{0.5}$ or $0 = 2.0^2 + 2 \times a \times 0.5$ deceleration = $(-) 4.0 \text{ (m s}^{-2}\text{)}$	C1 A1	<p>Allow other correct methods</p> <p>Possible ECF from (b)</p> <p>Allow 1 sf answer Ignore sign</p>
		Total	7	

Question		Answer	Marks	Guidance
22	(a)	<p>(clockwise moment = anticlockwise moment)</p> $2.5 \times 9100 = 3.5 \times F \quad (\text{Any subject})$ $F = 6500 \text{ (N)}$	<p>C1</p> <p>A1</p>	
	(b)	$1.4 \times 10^{10} = \frac{1.1 \times 10^5}{\text{strain}} \quad (\text{Any subject}) / \text{strain} = 7.86 \times 10^{-6}$ $x = \frac{1.1 \times 10^5}{1.4 \times 10^{10}} \times 2.3$ $x = 1.8 \times 10^{-5} \text{ (m)}$ <p>or</p> $1.1 \times 10^5 = \frac{6500}{A} \quad / \quad A = 0.059 \text{ (m}^2\text{)}$ $(F = \frac{EAx}{L}); \quad 6500 = \frac{1.4 \times 10^{10} \times 0.059 \times x}{2.3} \quad (\text{Any subject})$ $x = 1.8 \times 10^{-5} \text{ (m)}$	<p>C1</p> <p>C1</p> <p>A1</p> <p>C1</p> <p>C1</p> <p>A1</p>	Possible ECF from (a)
		Total	5	

Question		Answer	Marks	Guidance
23	(a)	<p><u>Earth</u> mentioned (as an integral part of the system)</p> <p>The Earth has (equal and) <u>opposite</u> momentum to the (falling) ball (so momentum is conserved) or</p> <p>The Earth moves <u>upwards</u> / <u>towards the ball</u> (with a tiny speed, so momentum is conserved)</p>	<p>M1</p> <p>A1</p>	<p>Not 'ground'</p> <p>Allow: The Earth experiences an <u>upward</u> force (and moves upwards)</p>
	(b) (i)	$(F = \frac{\Delta p}{\Delta t}); \quad F = (-) \frac{10 - 6}{0.2} \quad \text{or} \quad F = (-) \frac{4}{0.2}$ <p>force = (-) 20 (N)</p>	<p>C1</p> <p>A1</p>	<p>Ignore sign</p> <p>Note '$F = (-) \frac{10 + 6}{0.2} = 80 \text{ N}$' scores zero</p>
	(ii)	<p>momentum = 8 (kg m s^{-1}) between $t = 0$ and 0.40 s</p> <p>momentum = 12 (kg m s^{-1}) after $t = 0.60$ s</p> <p>momentum increases linearly between 0.40 s and 0.60 s</p>	<p>B1</p> <p>B1</p> <p>B1</p>	Ignore omission of label Y
		Total	7	

Question			Answer	Marks	Guidance
24	(a)	(i)	current = 0.030 (A) $(I = Anev); 0.030 = 3.8 \times 10^{-6} \times 5.0 \times 10^{25} \times 1.6 \times 10^{-19} \times v$ $v = 9.9 \times 10^{-4} \text{ (m s}^{-1}\text{)}$	C1 A1	
		(ii)	The resistance (of the thermistor or circuit) decreases Current / I / ammeter reading increases because $I \propto 1/R$ or number density (of charge carriers) increases Voltmeter reading does not change (because there is no internal resistance)	B1 B1 B1	Allow $V = IR$ (any subject) and $V = \text{constant}$ Allow 'more electrons / more charge carriers' Allow voltmeter reading stays 3.0 (V)
	(b)	(i)	$R = 2.0 + 8.0 = 10 \text{ (\Omega)}$ $(I = 1.2/10); I = 0.12 \text{ (A)}$ $(1.5 = 1.2 + 0.12r); r = 2.5 \text{ (\Omega)}$	C1 C1 A1	Allow other correct methods Allow 2 marks for 4.5 (Ω); $R = 18 \Omega$ with $I = 0.067 \text{ (A)}$
		(ii)	As d increases the (total) resistance (of the circuit) increases (ORA) and therefore the current / I decreases (ORA) Any <u>one</u> from: <ul style="list-style-type: none">Explanation of V increasing in terms of $V + Ir = E$ or $V + V_r = 1.5$ or $V = E - \text{lost volts}$Explanation of V increasing in terms of potential dividerAnalysis showing $V \approx 0.7 \text{ V}$ when $d = 0$ or $V \approx 1.3 \text{ V}$ when $d = 1.0 \text{ m}$ or any other value of V for a given d	M1 A1 B1	Allow 'As length (of wire) increases resistance increases' (ORA) Allow 'lost volts / p.d across r / Ir decreases, so V increases'
			Total	11	

Question		Answer	Marks	Guidance
25	(a)	(i) 4 (cm)	B1	
	(ii)	(As the wave spreads out the) <u>amplitude decreases</u> intensity \propto amplitude ² and therefore intensity decreases	M1 A1	Not 'displacement' Not 'A decreases' Ignore 'energy is lost' Allow $I \propto A^2$ Note Do not allow this mark if we also have $I \propto 1/x^2$ but allow this mark if we also have $I \propto 1/x$ Allow 1 mark for: ($I = P/A$) <u>power</u> is constant and as area increases the intensity decreases or intensity \propto 1/area and as area increases the intensity decreases
	(b)	(i) The <u>superposition</u> of coherent waves	B1	Not 'combine / meet / interact' for 'superposition' Allow ' <u>superposition</u> of waves with a constant phase difference (at the sources)' Allow 'waves that <u>superpose</u> constructively / destructively'
	(ii)	path difference (is 4.5 cm, which) is 1.5λ Destructive interference occurs	M1 A1	Allow lengths are 5λ & 3.5λ and phase difference = 180° or waves are in anti-phase Not $\lambda/2$ out of phase Not path difference is 1.5 cycles / periods / oscillations
		Total	6	

Question		Answer	Marks	Guidance
26	(a)	$\sqrt{\frac{T}{\mu}} \rightarrow \sqrt{\frac{\text{kg m s}^{-2}}{\text{kg m}^{-1}}} \text{ clearly leading to m s}^{-1}$ <p>Homogeneous because v and $(T/\mu)^{1/2}$ have same units</p>	M1 A0	
	(b)	<p>$(\mu = \text{mass/length})$</p> <p>Use (digital) balance / scales for mass</p> <p>Use ruler / measuring tape for the length</p> <p>Any <u>one</u> from:</p> <ol style="list-style-type: none"> 1. Measure mass to the nearest gram / 0.1 g / 0.01 g / 0.001 g / 'high resolution' 2. Measure length to (the nearest) mm 3. Repeat for different <u>length</u> / <u>mass</u> (and determine average value for the mass per unit length) 4. Use a longer length of wire (reduce the percentage uncertainty) 5. Ensure there is no zero-error for the balance / scales or use calibrated balance / scales (AW) 	B1 B1 B1	<p>Not 'weight', but allow 'weigh using scales to get mass'</p> <p>Allow for $\mu = T/v^2$ route: T is measured using a newtonmeter or determine T using mg by measuring (hanging) mass m using a balance / scales</p> <p>Allow for $\mu = T/v^2$ route: Determine v by measuring length using a ruler / tape measure (and also either stopwatch or stroboscope)</p> <p>Allow any other sensible suggestion</p> <p>Ignore incorrect use of the terms accuracy and precision</p> <p>Not 'repeat measurements' for 3</p> <p>Allow 'determine gradient of mass against length graph' or 'determine gradient of $T-v^2$ graph' for 3</p>
	(c)	<p>Speed / v (of the progressive wave) is the same</p> <p>Wavelength / λ decreases as frequency / f increases</p> <p>length = $\lambda/2$ (for the first harmonic), length = λ (for the second harmonic) and length = $3\lambda/2$ (for the third harmonic)</p>	B1 B1 B1	<p>Allow $f \propto 1/\lambda$ or λ is halved when f is doubled (AW)</p> <p>Allow L for length</p> <p>Allow $\lambda = 2L/n$ (n is 1, 2 and 3)</p> <p>Not just $\lambda/2$, λ and $3\lambda/2$ next to the patterns</p>
		Total	7	

Question		Answer	Marks	Guidance
27	(a)	The <u>minimum</u> frequency of the EM waves / light / uv / photon for the removal of (surface) electron(s)	B1	Allow 'minimum / smallest frequency of EM wave to cause photoelectron emission' Not wave
	(b) (i)	$hf = \phi + KE_{(\max)}$ and kinetic energy = 0 (at f_0) (therefore $\phi = hf_0$)	B1	
	(ii)	Data point (to with $\frac{1}{2}$ small square) and a reasonable straight (best-fit) line drawn with a straight edge / ruler	B1	Not freehand / wobbly line
	(iii)	Correct conversion from eV to J using 1.6×10^{-19} (gradient = h) gradient determined and $h = (6.4 \text{ to } 7.4) \times 10^{-34} \text{ (J s)}$	B1 B1	Note this can be a single value of ϕ or $\Delta\phi$ Allow value of h must be given to 2 or 3 SF
	(iv)	Draw a worst-fit line (and determine gradient / h) (AW) $\% \text{ uncertainty} = (h \text{ from biii} - h \text{ from worst line}) \times 100 \div h \text{ from biii}$ or Calculate the average h using f_0 and ϕ (values) $\% \text{ uncertainty} = (\frac{1}{2} \text{ range} \div \text{average } h) \times 100$	B1 B1 B1 B1	Allow (line of) maximum / minimum gradient Ignore sign Allow gradient instead of h
		Total	7	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223 553998
Facsimile: 01223 552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office: 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223 552552
Facsimile: 01223 552553

© OCR 2017

