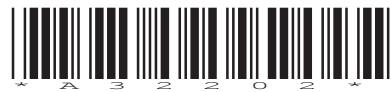


GENERAL CERTIFICATE OF SECONDARY EDUCATION
TWENTY FIRST CENTURY SCIENCE
CHEMISTRY A

Unit 2 Modules C4 C5 C6
 (Higher Tier)

A322/02


Candidates answer on the question paper
 A calculator may be used for this paper

OCR Supplied Materials:
 None

Other Materials Required:
 Pencil
 Ruler (cm/mm)

Friday 23 January 2009
Morning

Duration: 40 minutes

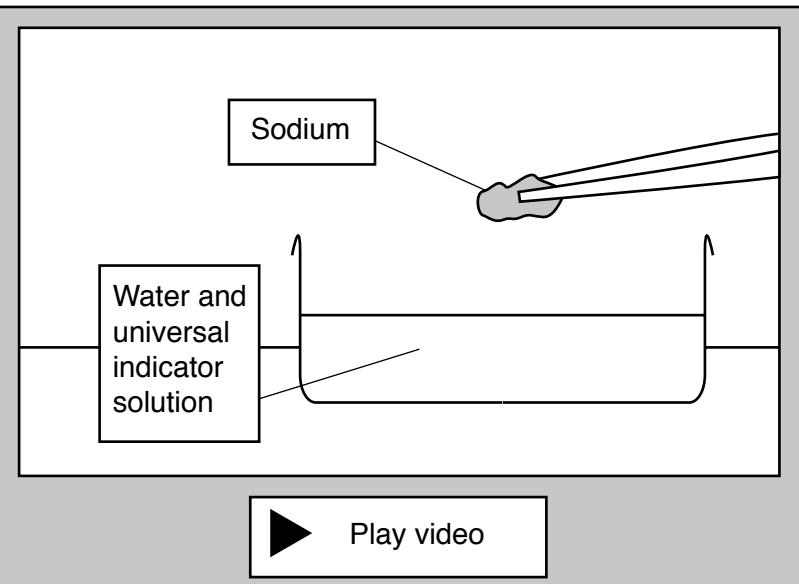
Candidate Forename						Candidate Surname					
--------------------	--	--	--	--	--	-------------------	--	--	--	--	--

Centre Number							Candidate Number				
---------------	--	--	--	--	--	--	------------------	--	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES


- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **42**.
- The Periodic Table is printed on the back page.
- This document consists of **20** pages. Any blank pages are indicated.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	9	
2	5	
3	5	
4	3	
5	6	
6	9	
7	5	
TOTAL	42	

Answer **all** the questions.

1 Eve looks at a website about sodium.
She clicks on the reaction with water.

Sodium

Symbol

Atomic Structure

Appearance

Reaction with water

(a) When sodium is dropped into water, a chemical reaction happens.

- Complete the word equation.
- Complete and balance the symbol equation for the reaction.

[3]

(b) Eve clicks on the button to find out the appearance of sodium.

Which statements about the appearance of sodium are correct?

Put ticks (✓) in the boxes next to the **two** correct answers.

When sodium is cut it is very shiny.

Sodium looks like white crystals.

Sodium goes dull quickly in the air.

Sodium is a liquid at room temperature.

Sodium gives off a yellow vapour.

[2]

(c) Eve clicks on the button to find out about the atomic structure of sodium. The website shows the following information about sodium.

Sodium

Symbol

Atomic Structure

Appearance

Reaction with water

Which of the following statements about the atomic structure of sodium are true and which are false?

Put ticks (✓) in the correct boxes.

a sodium atom has ...	true	false
... 23 protons		
... 12 neutrons		
... 12 electrons		
... one electron in the outer shell		
... 3 electron shells		

[2]

(d) Eve looks at other elements on the website.

Join the boxes to connect each **element** with its correct **statement**.

potassium

is in the same group but is less reactive than sodium

lithium

has the symbol K

calcium

reacts with sodium to make salt

chlorine

is a metal and is in a different group to sodium

[2]

[Total: 9]

2 Joe is doing some experiments on a compound called calcium chloride.

(a) Joe wants to prove that the compound contains calcium.

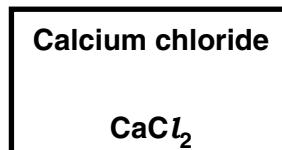
He tests the compound by heating a crystal in a Bunsen flame.

What should Joe look for when he heats the compound?

Put a tick (✓) in the box next to the correct answer.

look to see if it fizzes

look to see if it melts

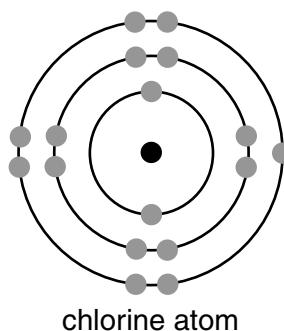

look to see if it burns

look for a particular colour in the flame

measure the temperature change

[1]

(b) This is the label from the jar of calcium chloride.



The symbol for a chloride ion is Cl^- .

What is the symbol for a calcium ion?

answer [1]

(c) This diagram shows the structure of a chlorine atom.

How many electrons are in the outer shell of a chloride **ion**?

answer [1]

(d) Joe dissolves the calcium chloride in water to make a solution.

He passes electricity through the calcium chloride solution.

Which two statements **when put together** explain why the solution conducts electricity?

Put ticks (✓) in the boxes next to the **two** correct answers.

calcium chloride solution contains ions

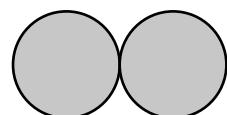
calcium is a metal

chlorine is a non-metal

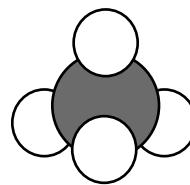
chlorine is in Group 7

the particles in the solution are free to move

the solution contains water molecules

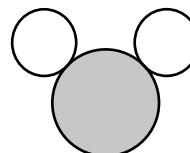
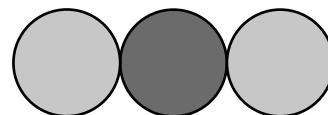

[2]

[Total: 5]


3 The diagrams show the structures of some of the molecules in air.

(a) Draw straight lines to join each **gas** to the correct **structure**.

methane
 CH_4



carbon dioxide
 CO_2

oxygen
 O_2

water
 H_2O

(b) The Earth's crust contains many different elements.

(i) Which of these elements is the **most abundant** in the Earth's crust?

Put a **ring** around the correct answer.

argon carbon iron nitrogen oxygen

[1]

(ii) Which of these elements is **not** found in gases in the Earth's atmosphere?

Put a **ring** around the correct answer.

argon carbon iron nitrogen oxygen

[1]

[Total: 5]

10

4 The table shows some data about oxygen and some other chemicals **A**, **B**, **C** and **D**.

Chemical	Melting point in °C	Boiling point in °C
Oxygen	-218	-183
A	-7	59
B	-210	-196
C	-157	-152
D	1074	1740

Use the letters **A**, **B**, **C** and **D** to answer the following questions.

(a) Which chemical has a lower boiling point than oxygen?

answer [1]

(b) Which chemical is a liquid at room temperature (20 °C)?

answer [1]

(c) One chemical has ionic bonding. Which one?

answer [1]

[Total: 3]

11

5 Metals can be extracted from their oxides in different ways.

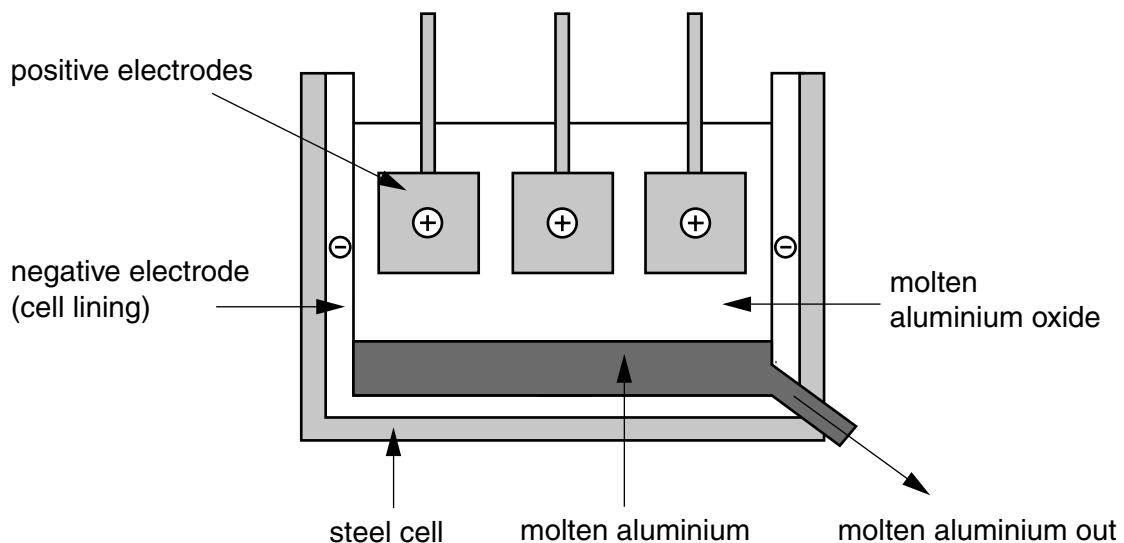
(a) Copper metal can be extracted from copper oxide by heating with carbon.
What type of chemical reaction happens to the copper oxide during the extraction?

Put a tick (✓) in the box next to the correct answer.

combustion	<input type="checkbox"/>
neutralisation	<input type="checkbox"/>
oxidation	<input type="checkbox"/>
reduction	<input type="checkbox"/>

[1]

(b) Aluminium **cannot** be extracted from aluminium oxide by reaction with carbon.
Which of the following is the best reason why.


Put a tick (✓) in the box next to the correct answer.

Aluminium does not react with oxygen.	<input type="checkbox"/>
Aluminium is too reactive.	<input type="checkbox"/>
Aluminium oxide has a very high melting point.	<input type="checkbox"/>
Aluminium is in Group 3.	<input type="checkbox"/>

[1]

12

(c) Aluminium can be extracted by electrolysis, as shown in the diagram.

Complete the equation to show what happens to aluminium ions at the negative electrode.

[2]

(d) Some people think that electrolysing aluminium oxide is very harmful to the environment.

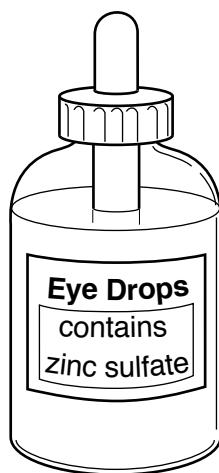
Which of the following statements could be used to argue that the extraction of aluminium **harms** the environment?

Put ticks (✓) in the boxes next to the **two** best answers.

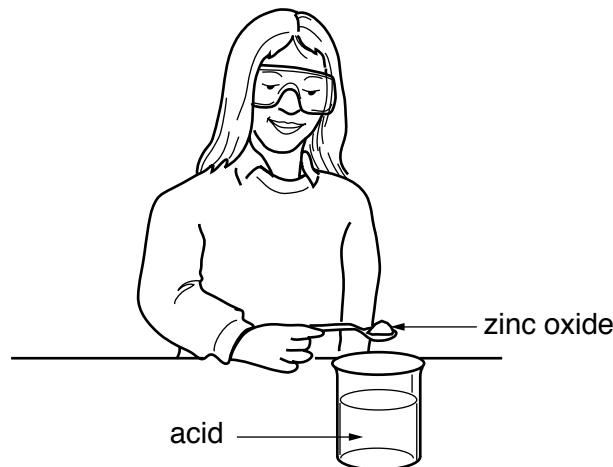
Large amounts of ore need to be mined for the process.

Aluminium extraction uses large amounts of electricity.

The process operates for 24 hours a day.


Used aluminium articles can be recycled instead of making more aluminium.

If people changed their habits we could use less aluminium.


[2]

[Total: 6]

6 Zinc sulfate is a salt used in eye drops.

(a) Liz makes some zinc sulfate by adding zinc oxide to an acid.

Complete the equation by filling in the **name** and **formula** of the acid Liz uses.

[2]

(b) (i) Liz tests the pH of the acid before she adds the zinc oxide. Which of the following would **not** show the pH of the acid?

Put a tick (✓) in the box next to the correct answer .

Universal Indicator paper	<input type="checkbox"/>
pH probe	<input type="checkbox"/>
Universal Indicator solution	<input type="checkbox"/>
litmus paper	<input type="checkbox"/>

[1]

(ii) How does the pH of the solution change as the acid is used up?
Choose from **A, B, C, D** or **E**.

A	The pH starts at 7 and rises
B	The pH starts at 10 and falls
C	The pH starts at 1 and rises
D	The pH starts at 7 and falls
E	The pH starts at 1 and stays the same

answer [1]

(c) Liz works out how much zinc sulfate she can make from different amounts of zinc oxide.
Each of these is a theoretical yield.
The table shows the figures she uses.

	zinc oxide ZnO	zinc sulfate ZnSO₄
relative formula mass	81	161
Experiment 1	Mass of ZnO used = 16.2g	Theoretical yield of ZnSO ₄ = 32.2g
Experiment 2	Mass of ZnO used = 4.05g	Theoretical yield of ZnSO ₄ = g

(i) Fill in the table to show the theoretical yield of zinc sulfate in experiment 2.

Choose from this list.

4.05 g

8.05 g

8.2 g

16.2 g

[1]

15

(ii) How much zinc oxide would Liz need to use to give a theoretical yield of 483 g of zinc sulfate?

Put a **ring** round the correct answer.

3 g

162 g

243 g

324 g

483 g

[1]

(d) Liz weighs the zinc sulfate that she makes in each experiment. She uses her theoretical yield to calculate a percentage yield.

The calculation gives a value over 100%. Liz knows this must be wrong.

What errors might Liz have made?

Put ticks (✓) in the box next to the **two** correct answers.

Liz forgot to dry her product.

Liz lost some of her product during the experiment.

Liz used less zinc oxide than she meant to.

Liz used more zinc oxide than she meant to.

Liz did not add enough acid.

[2]

(e) Liz knows that the zinc sulfate that she has made cannot be used for making eye drops.

Why is her zinc sulfate not suitable?

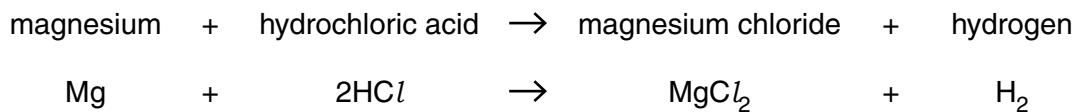
Put a tick (✓) in the box next to the correct answer.

She should have carried out a titration.

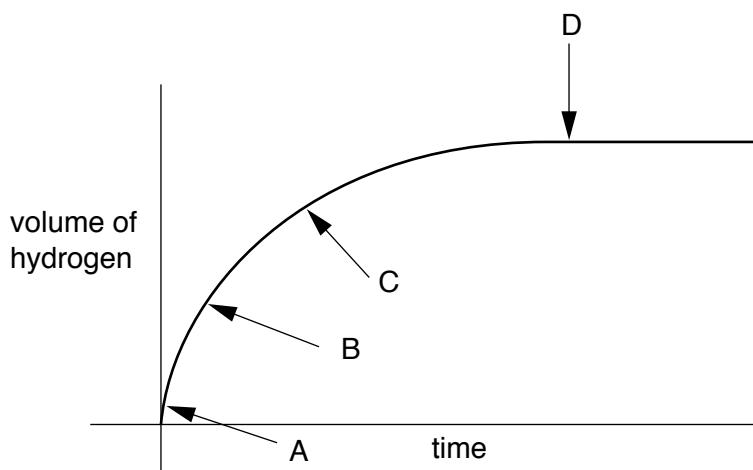
The product has not been purified.

She did not check the pH of the zinc oxide.

She has not controlled the rate of reaction.


[1]

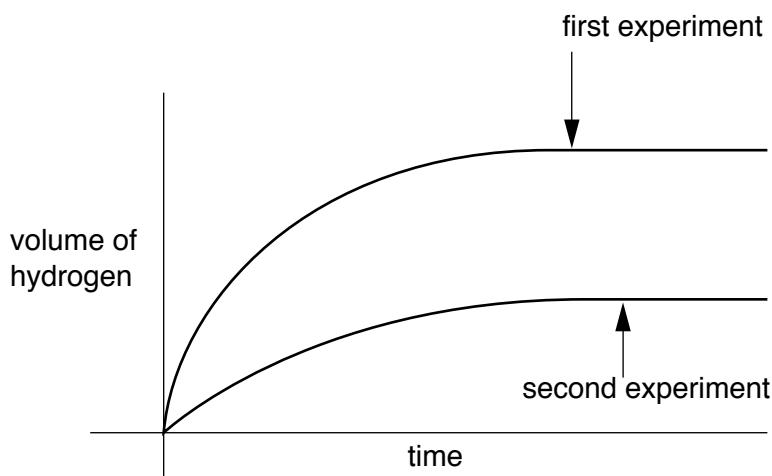
[Total: 9]


16

7 Rose carries out an experiment to find out the rate of reaction when a small amount of magnesium reacts with hydrochloric acid.

This is the equation for the reaction.

(a) Rose measures the volume of hydrogen gas that is made. She takes a reading every 5 seconds. This graph shows her results.


(i) At which point on the graph, **A**, **B**, **C** or **D**, is the reaction happening fastest?

answer [1]

(ii) At which point on the graph, **A**, **B**, **C** or **D**, is the acid at its least concentrated?

answer [1]

(b) Rose knows that the reaction finishes when the magnesium is all used up. She does a second experiment. This graph shows the results for both experiments.

What does Rose change when she carries out her second experiment?

Put a tick (✓) in the box next to the correct answer.

She uses half the volume of acid that is twice as concentrated.

She uses twice the volume of acid that is half as concentrated.

She uses half as much magnesium.

She uses twice as much magnesium.

[1]

(c) Rose carries out a third experiment.

She uses the same conditions as in her first experiment, but she carries out this experiment at a higher temperature.

Which of the following statements are true?

Put ticks (✓) in the boxes next to the **two** correct answers.

More hydrogen is made.

The curve on the graph is steeper at the beginning.

The graph levels out sooner.

The graph finishes at a higher level.

There is an increase in the surface area of the magnesium.

[2]

[Total: 5]

END OF QUESTION PAPER

18

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1	2	3	4	5	6	7	0
7 Li lithium 3	9 Be beryllium 4	11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12	27 Al aluminum 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44
133 Cs caesium 55	137 Ba barium 56	139 La[*] lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhenium 75	190 Os osmium 76
[223] Fr francium 87	[226] Ra radium 88	[227] Ac[*] actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[268] Mt meitnerium 109
[227] Rg roentgenium 111	[271] Ds darmstadtium 110	[277] Hs hassium 108	[271] Mt meitnerium 109	[277] Ds darmstadtium 110	[272] Rg roentgenium 111	Elements with atomic numbers 112-116 have been reported but not fully authenticated	

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.