

RECOGNISING ACHIEVEMENT

F

A322/01

GENERAL CERTIFICATE OF SECONDARY EDUCATION
TWENTY FIRST CENTURY SCIENCE
CHEMISTRY A

Unit 2 Modules C4 C5 C6 (Foundation Tier)

WEDNESDAY 18 JUNE 2008

Afternoon

Time: 40 minutes

* C U P / T 4 4 8 3 4 *

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil
 Ruler (cm/mm)

Candidate
Forename
Candidate
Surname
Centre
Number

<input type="text"/>				
----------------------	----------------------	----------------------	----------------------	----------------------

Candidate
Number

<input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="text"/>
----------------------	----------------------	----------------------	----------------------

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- The Periodic Table is printed on the back page.

FOR EXAMINER'S USE		
Qu.	Max.	Mark
1	9	
2	3	
3	7	
4	5	
5	2	
6	3	
7	13	
TOTAL	42	

This document consists of 12 printed pages.

Answer **all** the questions.

1 The Periodic Table shows how many elements there are.

(a) Here are symbols for some chemical elements.

K Na P Po S Sn

Which of these symbols is for sodium?

answer

Which of these symbols is for potassium?

answer [2]

(b) Elements in the Periodic Table have their electrons arranged in different ways.

Draw a straight line from each **electron arrangement** to its matching **statement**.

You may draw more than one line to each statement.

electron arrangement

statement

2.1

This element has one electron in the outer shell.

2.8.1

This element has two electrons in the outer shell.

2.8.2

This element has three electrons in the outer shell.

2.8.3

[3]

(c) Some of the elements in the Periodic Table are halogens.

(i) Draw a straight line from the name of each **halogen** to its **colour**.

Draw a straight line from the name of each **halogen** to its **state** at room temperature.

colour	halogen	state
black/purple	chlorine	solid
green	bromine	liquid
orange/red	iodine	gas

[3]

(ii) Chlorine reacts with coloured dyes.

What colour will the dye change to?

Put a **ring** around the best answer.

blue green orange/red colourless

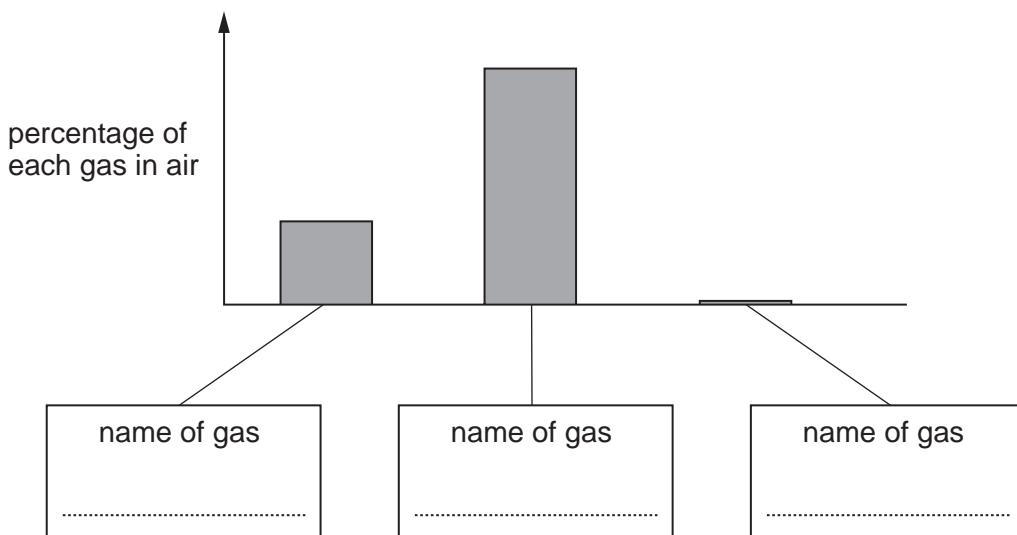
[1]

[Total: 9]

2 Air contains oxygen, nitrogen, carbon dioxide and water vapour.

(a) Put ticks (✓) in the boxes to show which of these are **elements** and which are **compounds**.

	elements	compounds
oxygen		
carbon dioxide		
nitrogen		
water vapour		


[2]

(b) The amounts of three of these gases in the air are:

nitrogen	78%
oxygen	21%
carbon dioxide	0.04%

The bar chart shows these three gases.

Fill in the labels.

[1]

[Total: 3]

3 (a) Sodium chloride forms ionic crystals.

Here are some statements about crystals of sodium chloride.

Write **T** in the box next to each **true** statement and **F** in the box next to each **false** one.

T (true)
or
F (false)

Each crystal contains many molecules of NaCl.

The bonds between the particles are strong.

The bonds are all on the outside of the crystal.

There is a very large number of bonds.

The particles in the crystal are held together by attraction between opposite charges.

The particles are arranged in a regular way.

[3]

(b) Put ticks (✓) in the boxes next to the **two** statements which explain why sodium chloride has a high melting point.

Each crystal contains many molecules of NaCl.

The bonds between the particles are strong.

The bonds are all on the outside of the crystal.

There is a very large number of bonds.

The particles are arranged in a regular way.

[2]

(c) Mary asks her friends to describe what happens when ionic crystals melt.

Arnold
Ions form.

Craig
Ions melt.

Brenda
Ions are there all the time.

Daniel
Ions start to move freely.

Which **two** people are correct?

..... and [2]

[Total: 7]

4 Here are the ten most abundant elements in the Earth's lithosphere.

element	percentage in the Earth's lithosphere
aluminium	7.5
calcium	3.4
hydrogen	0.9
iron	4.7
magnesium	1.9
oxygen	49.0
potassium	2.4
sodium	2.6
silicon	26.0
titanium	0.6

(a) Which is the most abundant element on this list?

answer

Which is the third most abundant element on this list?

answer [2]

(b) Most of the silicon is in the form of silicon dioxide.

What type of substance is silicon dioxide?

Put a (ring) around the **best** answer.

compound gas mixture element ore

[1]

(c) Silicon dioxide is the main substance in one of these types of rock.

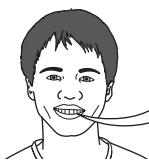
What is the name of this type of rock?

Put a (ring) around the correct answer.

chalk coal limestone sandstone

[1]

(d) The crust makes up one part of the lithosphere.


Put a (ring) around the name of the other part.

atmosphere hydrosphere magma mantle

[1]

[Total: 5]

5 Bobby reads that helium was discovered on the Sun in 1868. Thirty years later it was found on Earth. He asks his friends why helium was discovered on the Sun first.

Antoine

It is a man-made element, so none existed in 1868.

Brendan

It took thirty years for the helium to get from the Sun to the Earth.

Carol

In 1868, new ways of examining the light from the Sun had just been developed.

Delia

There is much more helium on the Sun than on the Earth.

Elton

Elements on the Sun are not the same as on the Earth.

Which **two** people give the best answers?

..... and [2]

[Total: 2]

6 Chemicals used in medicines are produced to high levels of purity.

Put ticks (✓) in the **three** boxes which show why.

Impurities might have side effects.

Manufacturers can charge more for pure chemicals.

That way the dose is the same every time.

Each medicine is designed to do one job only.

Otherwise it would be impossible to test new medicines properly.

All substances work better if they are as pure as possible.

Tablets can be made smaller if the chemicals are purer.

[3]

[Total: 3]

7 Amy reacts different chemicals with hydrochloric acid.

(a) Put a (ring) around the name of the reaction between an acid and an alkali.

concentration

electrolysis

neutralisation

reduction

[1]

(b) Draw a straight line from the name of each **chemical** to its **formula**.

chemical

formula

hydrochloric acid

Mg

magnesium

$Mg(OH)_2$

magnesium oxide

MgO

magnesium hydroxide

HCl

[3]

(c) Complete the table to show what is formed in each reaction.

Put ticks (✓) in the correct boxes.

The first one has been done for you.

reaction	reaction forms		
	a salt	hydrogen gas	water
magnesium oxide and acid	✓		✓
magnesium and acid			
magnesium hydroxide and acid			

[3]

(d) Complete the names of the salts formed.

alkali	acid	salt
magnesium oxide	sulfuric acid	magnesium
copper oxide	hydrochloric acid	copper

[2]

10

(e) When hydrochloric acid reacts with sodium hydroxide, which pair of ions react?

- A H^+ and Cl^-
- B H^+ and OH^-
- C H^+ and H^+
- D Na^+ and OH^-

answer [1]

(f) Impure salts can be purified by using the following techniques.

Draw a straight line from each **technique** to **what the technique is for**.

technique	what the technique is for
dissolving	removes a solid from a mixture of a liquid and a solid
crystallisation	removes a liquid by heating
evaporation	makes a solid appear in a solution
filtration	turns a solid into a solution

[3]

[Total: 13]

END OF QUESTION PAPER

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.