

H

A322/02

GENERAL CERTIFICATE OF SECONDARY EDUCATION
TWENTY FIRST CENTURY SCIENCE
CHEMISTRY A

Unit 2 Modules C4 C5 C6 (Higher Tier)

WEDNESDAY 18 JUNE 2008

Afternoon

Time: 40 minutes

* C U P / T 4 4 8 3 7 *

Candidates answer on the question paper.

Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil
 Ruler (cm/mm)

Candidate
 Forename

Candidate
 Surname

Centre
 Number

<input type="text"/>				
----------------------	----------------------	----------------------	----------------------	----------------------

Candidate
 Number

<input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="text"/>
----------------------	----------------------	----------------------	----------------------

INSTRUCTIONS TO CANDIDATES

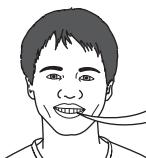
- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer **all** the questions.
- Do **not** write in the bar codes.
- Write your answer to each question in the space provided.

FOR EXAMINER'S USE

Qu.	Max.	Mark
1	2	
2	9	
3	9	
4	2	
5	3	
6	3	
7	5	
8	3	
9	6	
TOTAL	42	

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- The Periodic Table is printed on the back page.


This document consists of 17 printed pages and 3 blank pages.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Answer **all** the questions.

1 Bobby reads that helium was discovered on the Sun in 1868. Thirty years later it was found on Earth. He asks his friends why helium was discovered on the Sun first.

Antoine

It is a man-made element,
so none existed in 1868.

Brendan

It took thirty years for the
helium to get from the
Sun to the Earth.

Carol

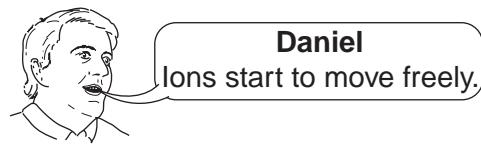
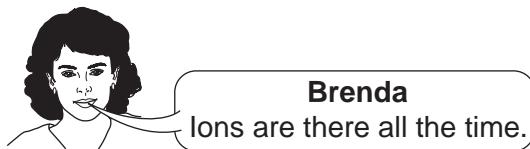
In 1868, new ways of
examining the light from
the Sun had just been
developed.

Delia

There is much more
helium on the Sun than
on the Earth.

Elton

Elements on the Sun
are not the same as
on the Earth.



Which **two** people give the best answers?

..... and [2]

[Total: 2]

2 Many chemicals form ionic crystals.

(a) Mary asks her friends to describe what happens when ionic crystals melt.

Which **two** people are correct?

..... and [2]

(b) Magnesium chloride is made of Mg^{2+} ions and Cl^- ions.


Put a (ring) around the formula of magnesium chloride.

[1]

(c) Lithium nitride is made of Li^+ ions and N^{3-} ions.

Put a (ring) around the formula of lithium nitride.

[1]

(d) Sodium chloride forms ionic crystals.

(i) Here are some statements about crystals of sodium chloride.

Write **T** in the box next to each **true** statement and **F** in the box next to each **false** one.

T (true)
or
F (false)

Each crystal contains many molecules of NaCl.

The bonds between the particles are strong.

The bonds are all on the outside of the crystal.

There is a very large number of bonds.

The particles in the crystal are held together by attraction between opposite charges.

The particles are arranged in a regular way.

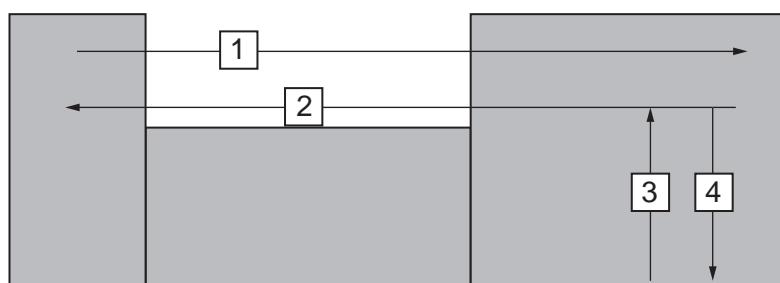
[3]

(ii) Put ticks (✓) in the boxes next to the **two** statements which explain why sodium chloride has a high melting point.

Each crystal contains many molecules of NaCl.

The bonds between the particles are strong.

The bonds are all on the outside of the crystal.


There is a very large number of bonds.

The particles are arranged in a regular way.

[2]

[Total: 9]

3 Here is an outline of the Periodic Table.

(a) Which arrow or arrows show increasing numbers of electrons?

Put a tick (✓) in the box next to the correct answer.

arrow 1 only

arrow 2 only

arrow 3 only

arrow 4 only

arrows 1 & 4 only

arrows 2 & 3 only

arrows 1 & 3 only

arrows 2 & 4 only

[1]

(b) Which arrow or arrows show electrons filling within a shell?

Put a tick (✓) in the box next to the correct answer.

arrow 1 only

arrow 2 only

arrow 3 only

arrow 4 only

arrows 1 & 4 only

arrows 2 & 3 only

arrows 1 & 3 only

arrows 2 & 4 only

[1]

(c) Here are the names of four elements in the Periodic Table.

bromine

iodine

potassium

lithium

Choose from these names to answer the following questions.

(i) Which of these elements ...

... exist as diatomic molecules?

answer and

... react with water to make hydrogen gas?

answer and

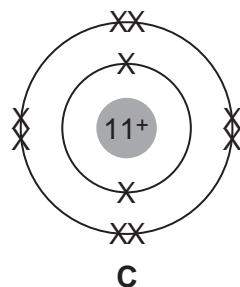
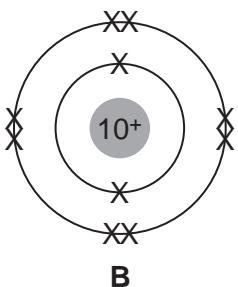
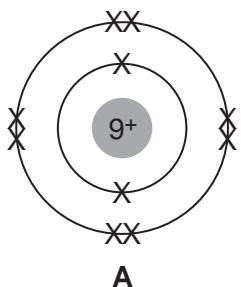
... has a melting point below room temperature?

answer [3]

(ii) Which two of these elements will react together most violently?

..... and [1]

(d) The table shows information about some different pure chemicals.




Put ticks (✓) in the correct boxes to show the type of bonding in each chemical.

chemical	melting point in °C	conducts electricity when solid	conducts electricity when melted	covalent	ionic	metallic
A	-219	no	no			
B	-39	yes	yes			
C	37	no	no			
D	119	no	no			
E	804	no	yes			
F	1539	yes	yes			

[3]

[Total: 9]

4 The diagrams show the electronic structure and the number of protons in the nucleus for each of three types of particle.

Which letter, **A**, **B** or **C**, shows the structure of ...

... an **atom**?

answer

... the **ion** of a Group 7 element?

answer

... the **ion** of a Group 1 element?

answer [2]

[Total: 2]

5 Chemicals used in medicines are produced to high levels of purity.

Put ticks (✓) in the **three** boxes which show why.

Impurities might have side effects.

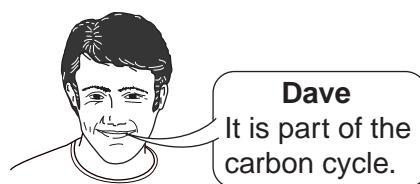
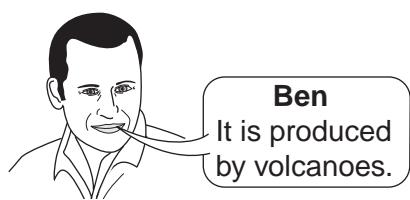
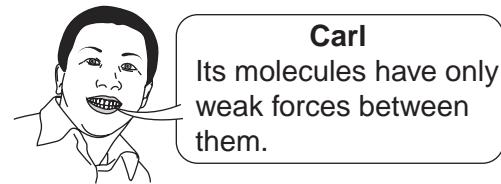
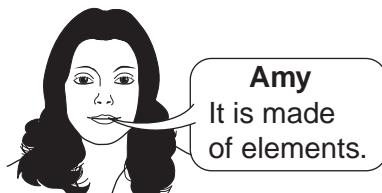
Manufacturers can charge more for pure chemicals.

That way the dose is the same every time.

Each medicine is designed to do one job only.

Otherwise it would be impossible to test new medicines properly.

All substances work better if they are as pure as possible.

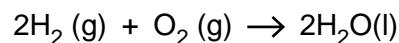




Tablets can be made smaller if the chemicals are purer.

[3]

[Total: 3]

6 Jenny is learning about gases.

(a) She asks her friends why air is a gas.



Who has suggested the best reason?

answer.....[1]

11

(b) The equation for the reaction between hydrogen gas and oxygen gas is:

(i) How much hydrogen will react with 8 g of oxygen gas?

Put a (ring) around the correct answer.

(relative atomic mass: H = 1, O = 16)

1 g 4 g 18 g 36 g

[1]

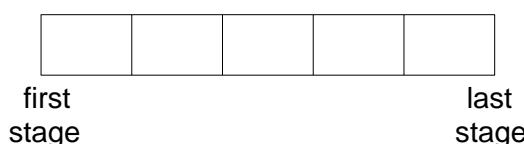
(ii) How much water will be formed when 6 g of hydrogen react?

Put a (ring) around the correct answer.

18 g 36 g 48 g 54 g

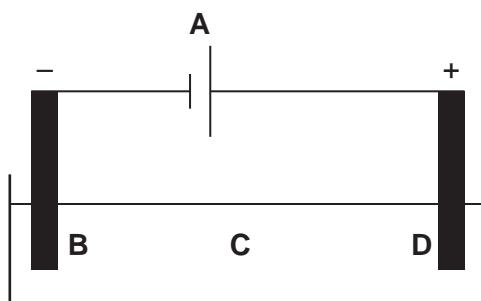
[1]

[Total: 3]


12

7 Metals can be extracted from their ores in different ways.

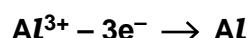
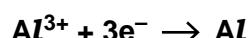
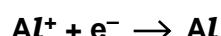
(a) When iron is extracted from iron ore, only **five** of these stages are used. They are in the wrong order.


- A Crush the ore.
- B Dig the ore out of the ground.
- C Electrolyse melted iron oxide.
- D Heat iron oxide with carbon.
- E Pour the molten iron into moulds to harden.
- F Separate the mineral from the rest of the rock.

Put the **five** stages used for the extraction of iron into the correct order.

[2]

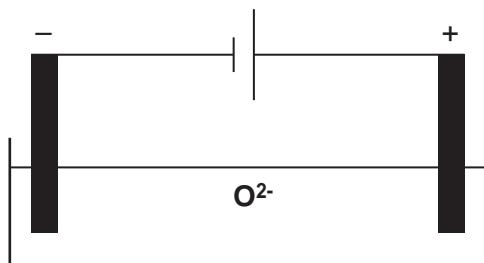
(b) Aluminium is produced by the electrolysis of aluminium oxide.

(i) Put a **ring** around the letter, **A**, **B**, **C** or **D**, which shows the electrode where the aluminium metal is formed.

A B C D

[1]


(ii) Put a **ring** around the equation which shows how aluminium ions are turned into aluminium atoms.

[1]

13

(iii) Draw an arrow on the diagram below to show the direction of movement of the oxide ion.

[1]

[Total: 5]

8 Bobby reacts solutions of two chemicals.

He measures the rate of the reaction and how much product is made.

(a) Bobby asks his friends what **rate of reaction** means.

Adrian

It is the total amount of chemical that reacts.

Bertram

It is how far down an element is in the Periodic Table.

Caroline

It is the amount of energy given out during the reaction.

Denise

It is the amount of chemical that reacts each second.

Who is correct?

answer [1]

(b) Bobby repeats the experiment.

He uses the same volumes of solution but doubles the concentration of each chemical.

Here are some statements about the particle collisions in the new reaction and about the change that Bobby observes.

Draw **one** straight line from the correct **collision statement** about the new reaction to the **change** that Bobby observes.

collision statement
(choose one only)

There are more particle collisions every second.
The number of reacting collisions during the whole reaction stays the same.

There are more particle collisions every second.
The number of reacting collisions during the whole reaction increases.

Particles move faster and collide harder.
The number of reacting collisions during the whole reaction increases.

Particles move faster and collide harder.
The number of reacting collisions during the whole reaction stays the same.

change
(choose one only)

The rate increases.
The amount of product increases.

The rate increases.
The amount of product stays the same.

The rate does not increase.
The amount of product increases.

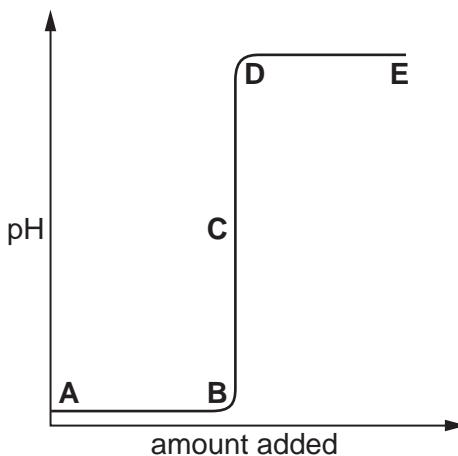
The rate does not increase.
The amount of product stays the same.

[2]

[Total: 3]

9 (a) Naomi reacts sulfuric acid with sodium hydroxide.

Complete the equation for this reaction.



(b) When hydrochloric acid reacts with sodium hydroxide, which pair of ions react?

- A H^+ and Cl^-
- B H^+ and OH^-
- C H^+ and H^+
- D Na^+ and OH^-

answer..... [1]

(c) Naomi measures the pH as she adds one reactant to the other.

The chemicals in the flask change as they react.

What can you say about the amount of acid and alkali at stages A, C and E?

Draw a straight line from each **letter** to the correct **statement**.

letter	statement
A	There is lots of acid and lots of alkali.
C	There is lots of acid and no alkali.
E	There is no acid and lots of alkali.
	There is no acid and no alkali.
	There is some acid and some alkali.

[3]

[Total: 6]

END OF QUESTION PAPER

17

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

18

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1	2	3	4	5	6	7	0
7 Li lithium 3	9 Be beryllium 4	11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12	27 Al aluminum 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	101 Ru ruthenium 44	103 Rh rhodium 45
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhenium 75	190 Os osmium 76
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[264] Sg seaborgium 106	[268] Bh bohrium 107	[271] Hs hassium 108
[272] Rg roentgenium 111							

Key

relative atomic mass
atomic symbol
name
atomic (proton) number

1 H hydrogen 1

11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
27 Al aluminum 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
55 Cu copper 29	59 Ni nickel 28	63.5 Zn zinc 30	70 Ga gallium 31	75 Ge germanium 32	80 Br bromine 35
65 Cd cadmium 48	106 Ag silver 47	115 In indium 49	119 Sn tin 50	122 Sb antimony 51	127 Te tellurium 52
119 Hg mercury 80	201 Au gold 79	204 Pb lead 82	209 Bi bismuth 83	210 Po polonium 84	210 At astatine 85
222 Rn radon 86					

Elements with atomic numbers 112-116 have been reported but not fully authenticated

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.