

Candidate Forename						Candidate Surname				
Centre Number						Candidate Number				

**OXFORD CAMBRIDGE AND RSA EXAMINATIONS
GENERAL CERTIFICATE OF SECONDARY EDUCATION**

A322/02

**TWENTY FIRST CENTURY SCIENCE
CHEMISTRY A**

**UNIT 2: Modules C4 C5 C6
(Higher Tier)**

**WEDNESDAY 24 JUNE 2009: Morning
DURATION: 40 minutes**

SUITABLE FOR VISUALLY IMPAIRED CANDIDATES

**Candidates answer on the question paper
A calculator may be used for this paper**

OCR SUPPLIED MATERIALS:

None

OTHER MATERIALS REQUIRED:

Pencil

Ruler (cm/mm)

READ INSTRUCTIONS OVERLEAF

INSTRUCTIONS TO CANDIDATES

- **Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes on the first page.**
- **Use black ink. Pencil may be used for graphs and diagrams only.**
- **Read each question carefully and make sure that you know what you have to do before starting your answer.**
- **Answer ALL the questions.**
- **Write your answer to each question in the space provided, however additional paper may be used if necessary.**

INFORMATION FOR CANDIDATES

- **The number of marks is given in brackets [] at the end of each question or part question.**
- **The total number of marks for this paper is 42.**
- **The Periodic Table is printed on page 32.**

BLANK PAGE

Answer ALL the questions.**1 Lithium is an element in Group 1.**

It can be added to rocket fuel to give an extra boost for take off.

(a) Lithium works well in rocket fuels because it is very reactive.

Which of the following statements about the reactivity of lithium are TRUE and which are FALSE?

Put ticks (✓) in the correct boxes.

	TRUE	FALSE
Lithium reacts with cold water.		
Lithium reacts with other group 1 elements to form compounds.		
Lithium tarnishes in moist air more quickly than potassium.		
Lithium chloride is very unstable.		

[2]

(b) When the fuel burns, the lithium also burns.

Complete the balanced symbol equation to show what happens when lithium burns.

WORD EQUATION

lithium + oxygen → lithium oxide

BALANCED SYMBOL EQUATION

_____ + _____ → 2Li₂O [2]

[Total: 4]

2 Iodine solution can be used as a treatment for cuts.

(a) Solid iodine is used to make iodine solution.

Solid iodine is kept in sealed jars because it easily changes into iodine gas.

Iodine gas is very harmful to people.

(i) Draw straight lines to show the correct COLOUR for solid iodine and for iodine gas.

dark grey

solid iodine

red-brown

orange

purple

iodine gas

yellow

green

[2]

(ii) Draw straight lines to show the correct SYMBOLS for solid iodine and for iodine gas.

I(g)

solid iodine

I(s)

I(aq)

I₂(l)

iodine gas

I₂(s)

I₂(g)

[2]

(b) Iodine is used on cuts because it stops the cuts from becoming infected.

Which two statements WHEN PUT TOGETHER explain why iodine stops infection?

Put ticks (✓) in the boxes next to the TWO correct answers.

Iodine is in group 7.

Iodine is a non-metal.

Iodine tablets purify water.

All group 7 elements kill bacteria.

All group 7 elements form negative ions.

[1]

[Total: 5]

3 During an eclipse, astronomers study the light from the outer layers of the Sun.

They use spectroscopes to look at this light.

This is what they see.

(a) Why does the spectrum show a pattern of lines?

Put ticks (✓) in the boxes next to the TWO correct answers.

Light is lost due to the distance from the Sun.

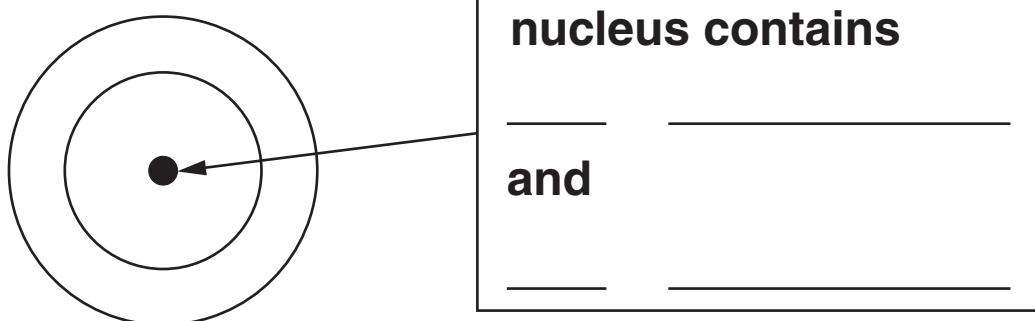
The Sun emits light in a series of flashes.

Different elements in the Sun give out light of different colours.

Planets orbiting the Sun make shadows on its surface.

Elements in the Sun are very hot and so emit light.

[2]

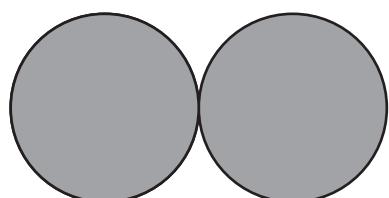

(b) One of the elements in the Sun is beryllium.

This is how beryllium is shown in the Periodic Table.

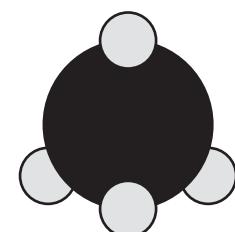
9
Be
beryllium
4

Complete the diagram to show the structure of a beryllium atom. You need to show

- the NUMBERS and NAMES of the particles in the nucleus.
- the ARRANGEMENT OF ELECTRONS in the electron shells (show each electron as X).

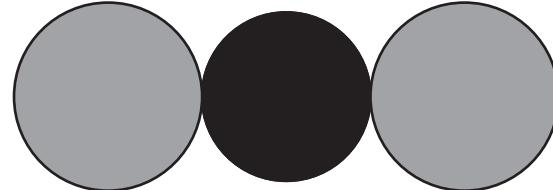
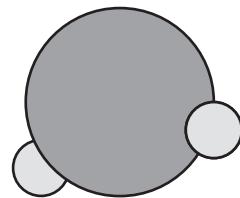
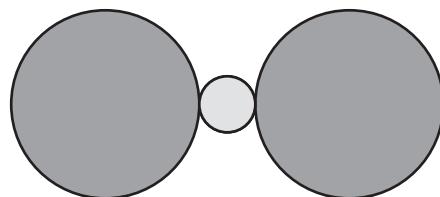
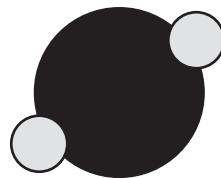


[3]

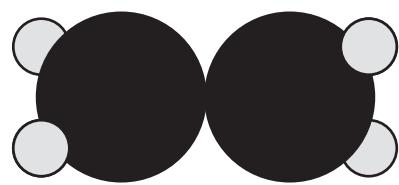

[Total: 5]

BLANK PAGE

4 These diagrams show the arrangement of atoms in oxygen and methane molecules.





OXYGEN
O₂

METHANE
CH₄


(a) Which of the diagrams below shows a molecule of water, H_2O ?

Put a tick (✓) in the box next to the correct answer.

[1]

(b) What is the formula for this molecule?

formula _____ [2]

[Total: 3]

BLANK PAGE

5 Joe does an experiment. He passes electricity through molten potassium iodide.

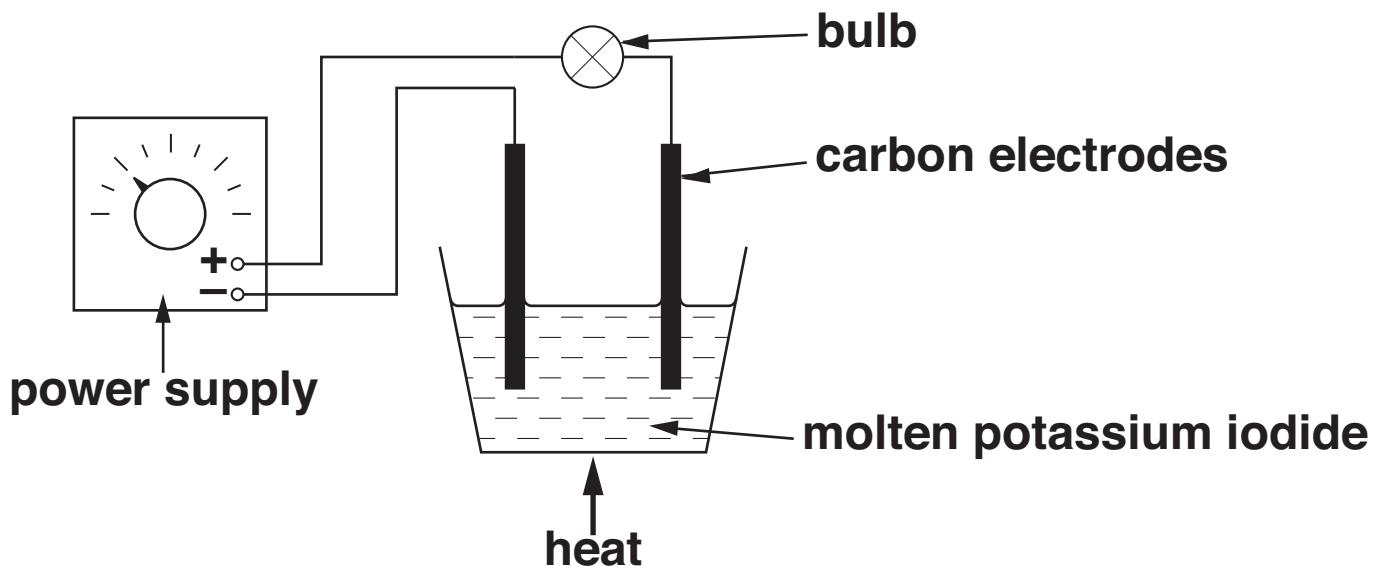
The diagram on the opposite page shows how he sets up his experiment.

(a) Why does molten potassium iodide conduct electricity?

Put ticks (✓) in the boxes next to the TWO correct answers.

Atoms can move freely between electrodes.

Potassium iodide is an ionic compound.


Ions in the liquid are free to move.

Ions in the liquid are randomly arranged.

Electrons can move freely through the liquid.

The positive electrode is attracted to the negative electrode.

[2]

(b) Lead bromide also conducts electricity when it is molten.

What is the name of the element that forms at the NEGATIVE electrode?

[1]

(c) Joe finds out that atoms of sodium metal can be made from sodium chloride by electrolysing molten sodium chloride.

Complete the equation to show what happens when a sodium ion forms a sodium atom.

[1]

[Total: 4]

6 The table on the page opposite shows information about some chemicals.

(a) Which chemical is most likely to be a metal?

answer _____ [1]

(b) Which chemical is a liquid at room temperature?

answer _____ [1]

(c) Which chemical is most likely to be silicon dioxide?

answer _____ [1]

(d) Chemical E is a MOLECULAR compound.

Which statements about the bonding in chemical E are correct?

Put ticks (✓) in the boxes next to the TWO correct answers.

Electrons are gained or lost to form a full outer shell.

Electrons are shared between atoms.

The nucleus of each bonded atom attracts electrons.

Charged ions are attracted together.

The nuclei of the atoms attract each other.

[2]

<u>CHEMICAL</u>	<u>MELTING POINT IN °C</u>	<u>BOILING POINT IN °C</u>	<u>DOES IT CONDUCT ELECTRICITY WHEN IT IS A SOLID?</u>	<u>DOES IT CONDUCT ELECTRICITY WHEN IT IS A LIQUID?</u>
<u>A</u>	-95	69	no	no
<u>B</u>	1261	2239	no	yes
<u>C</u>	1240	2100	yes	yes
<u>D</u>	1650	2230	no	no
<u>E</u>	-138	0	no	no

(e) One of the chemicals is magnesium fluoride.

Magnesium fluoride contains magnesium ions (Mg^{2+}) and fluoride ions (F^-).

What is the formula for magnesium fluoride?

formula _____ [1]

[Total: 6]

7 Ben makes some magnesium sulfate crystals for a school display.

(a) He makes magnesium sulfate by reacting a solid with an acid.

(i) Give the name of the acid Ben should use.

[1]

(ii) Two of the following compounds react with the acid to make magnesium sulfate.

Put a **ring** around the **TWO** correct compounds.

MAGNESIUM CARBONATE

MAGNESIUM CHLORIDE

MAGNESIUM BROMIDE

MAGNESIUM OXIDE

MAGNESIUM NITRATE

[2]

(b) The flow chart on the page opposite shows how Ben makes his crystals.

(i) Why does the solid compound stop reacting?

Put a tick (✓) in the box next to the correct answer.

The pH of the acid falls.

All the gas is used up.

The magnesium compound becomes less reactive.

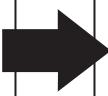
All the acid is used up.

[1]

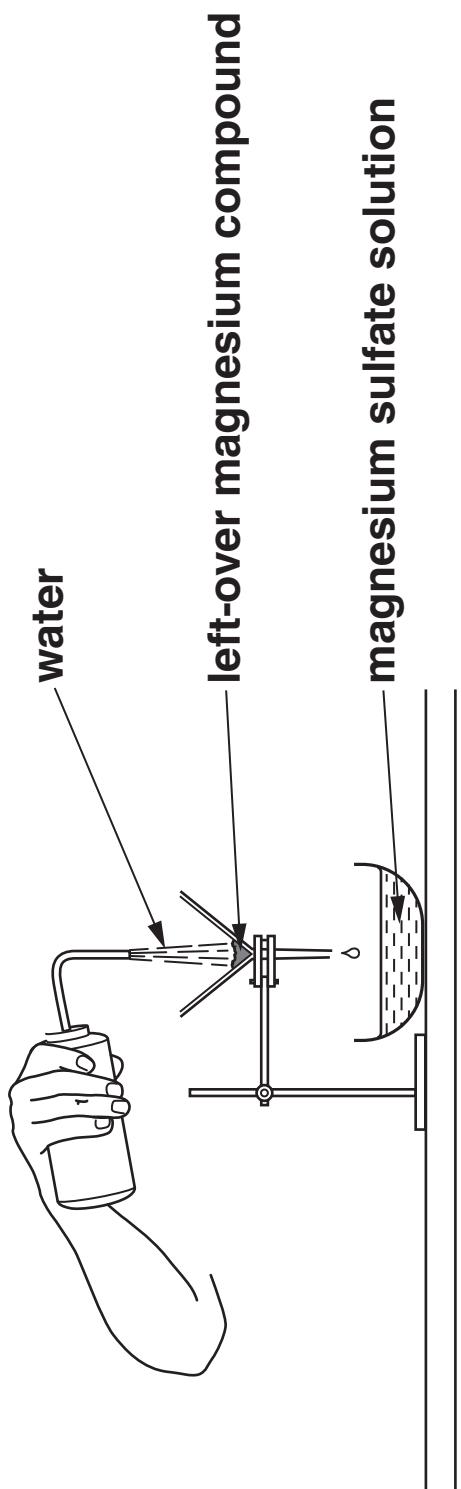
(ii) Why does Ben wash water through the filter paper?

Put a tick (✓) in the box next to the correct answer.

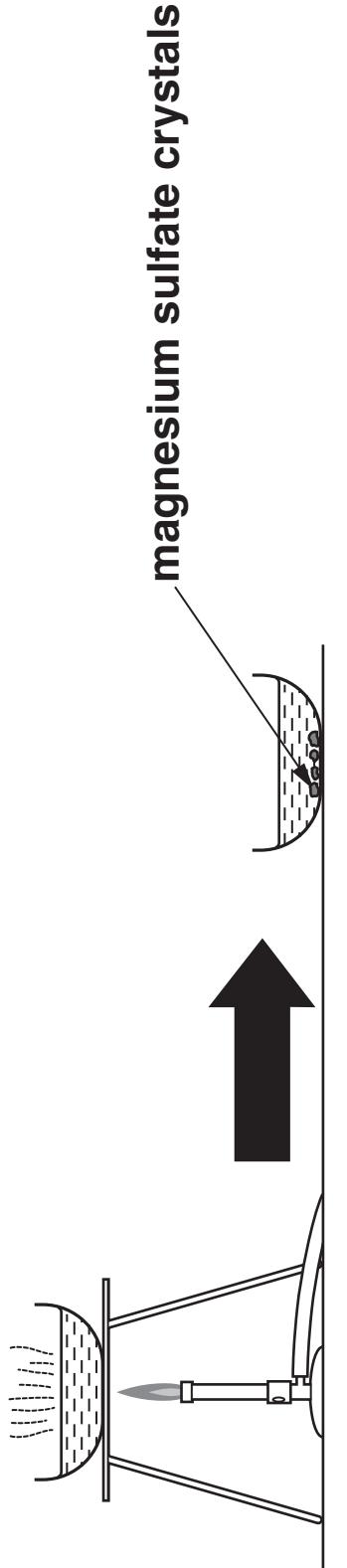
to dilute the solution


to stop the reaction

to get more magnesium sulfate through the filter


to remove impurities

[1]


Step 1 Add the solid magnesium compound to the acid until no more reacts.

Step 2 Filter off the left-over magnesium compound.
Wash water through the filter paper.

Step 3 Heat the magnesium sulfate solution until about half has evaporated away.
Leave to cool and crystals form.

(iii) Ben evaporates the solution. He stops heating when about half the solution is left.

Read the following statements and decide whether they are TRUE or FALSE.

Put ticks (✓) in the correct boxes.

	<u>TRUE</u>	<u>FALSE</u>
Heating the solution to dryness gives the largest crystals.		
The solution becomes more concentrated as he heats it.		
The more water left after heating, the faster the crystals form.		
Heating the solution for too long makes the solid salt evaporate.		

[2]

(c) Ben thinks the rate of reaction between the solid and the acid is too fast.

Which of the following changes will SLOW DOWN the rate of reaction?

Put a tick (✓) in the box next to the correct answer.

increase the temperature

use a catalyst

use acid that is more dilute

grind the solid into smaller pieces

[1]

[Total: 8]

8 Look at the labels on the following solutions of chemicals.

A

dilute sodium hydroxide

B

dilute sulfuric acid

C

$\text{H}_2\text{SO}_4(\text{aq})$

D

$\text{K}_2\text{SO}_4(\text{aq})$

(a) (i) Which chemical has a high pH?

Put a **ring** around the correct answer.

A

B

C

D

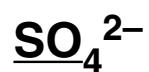
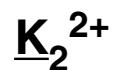
[1]

(ii) Which two solutions contain the same compound?

Put a **ring** around each correct answer.

A

B




C

D

[1]

(b) What ions are present in K_2SO_4 ?

Put **ring** around the correct ions.

[2]

(c) Sodium hydroxide reacts with sulfuric acid to make a soluble salt.

Which of the following statements about the reaction are TRUE, and which are FALSE?

Put ticks (✓) in the correct boxes.

	<u>TRUE</u>	<u>FALSE</u>
The reaction produces a precipitate.		
The reaction is a neutralisation reaction.		
The acid produces OH^- ions.		
An equation for the reaction is $\text{H}^+ + \text{OH}^- \rightarrow \text{H}_2\text{O}$.		
Hydrogen gas is given off.		

[3]

[Total: 7]

END OF QUESTION PAPER

BLANK PAGE

BLANK PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1	2	3	4	5	6	7	0
7	9	11	12	14	16	19	
Li lithium 3	Be beryllium 4	B boron 5	C carbon 6	N nitrogen 7	O oxygen 8	F fluorine 9	
23	24	27	28	31	32	35.5	
Na sodium 11	Mg magnesium 12	Al aluminum 13	Si silicon 14	P phosphorus 15	S sulfur 16	Cl chlorine 17	
39	40	45	48	51	52	55	
K potassium 19	Ca calcium 20	Sc scandium 21	Ti titanium 22	Cr chromium 24	Fe iron 26	Co cobalt 27	
85	88	89	91	93	96	98	
Rb rubidium 37	Sr strontium 38	Y yttrium 39	Zr zirconium 40	Nb niobium 41	Mo molybdenum 42	Tc technetium 43	
133	137	139	178	181	184	186	
Cs caesium 55	Ba barium 56	La* lanthanum 57	Hf hafnium 72	Ta tantalum 73	W tungsten 74	Re rhenium 75	
[223]	[226]	[227]	[261]	[262]	[266]	[264]	
Fr francium 87	Ra radium 88	Ac* actinium 89	Rf rutherfordium 104	Db dubnium 105	Sg seaborgium 106	Hs meitnerium 108	
[271]	[268]	[277]	[264]	[266]	[264]	[268]	
Ds darmstadtium 110	Mt meitnerium 109	Rg roentgenium 111					

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.