
Oxford Cambridge and RSA

F

Wednesday 15 June 2016 – Afternoon

**GCSE TWENTY FIRST CENTURY SCIENCE
CHEMISTRY A/ADDITIONAL SCIENCE A**

A172/01 Modules C4 C5 C6 (Foundation Tier)

Candidates answer on the Question Paper.
A calculator may be used for this paper.

OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour

Candidate forename					Candidate surname				
--------------------	--	--	--	--	-------------------	--	--	--	--

Centre number						Candidate number			
---------------	--	--	--	--	--	------------------	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Do **not** write in the bar codes.

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with a pencil (✍).
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **60**.
- This document consists of **20** pages. Any blank pages are indicated.
- A list of qualitative tests for ions is printed on page **2**.
- The Periodic Table is printed on the back page.

TWENTY FIRST CENTURY SCIENCE DATA SHEET

Qualitative analysis

Tests for ions with a positive charge

Ion	Test	Observation
calcium Ca^{2+}	add dilute sodium hydroxide	a white precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
copper Cu^{2+}	add dilute sodium hydroxide	a light blue precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
iron(II) Fe^{2+}	add dilute sodium hydroxide	a green precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
iron(III) Fe^{3+}	add dilute sodium hydroxide	a red-brown precipitate forms; the precipitate does not dissolve in excess sodium hydroxide
zinc Zn^{2+}	add dilute sodium hydroxide	a white precipitate forms; the precipitate dissolves in excess sodium hydroxide

Tests for ions with a negative charge

Ion	Test	Observation
carbonate CO_3^{2-}	add dilute acid	the solution effervesces; carbon dioxide gas is produced (the gas turns lime water from colourless to milky)
chloride Cl^-	add dilute nitric acid, then add silver nitrate	a white precipitate forms
bromide Br^-	add dilute nitric acid, then add silver nitrate	a cream precipitate forms
iodide I^-	add dilute nitric acid, then add silver nitrate	a yellow precipitate forms
sulfate SO_4^{2-}	add dilute acid, then add barium chloride or barium nitrate	a white precipitate forms

Answer **all** the questions.

1 In 1864, a chemist called John Newlands had an idea of arranging the elements in order, depending on their chemical properties.

He called his idea the 'Law of Octaves'.

(a) Newlands put elements with similar properties together.

He put lithium, sodium and potassium together.

Give **two** ways that the properties of lithium, sodium and potassium are similar.

.....
.....
.....

[2]

(b) The table shows Newlands' arrangement of some of the elements.

He put elements with similar properties into the same row of his table.

Row			
1	H	F	Cl
2	Li	Na	K
3	Gl	Mg	Ca
4	Bo	Al	Cr
5	C	Si	Ti
6	N	P	Mn
7	O	S	Fe

Newlands based the order of the elements on their relative atomic masses.

(i) Find the relative atomic masses for the elements in Row 1 of Newlands' table.
Use the **Periodic Table** on page 20 to help you.

Relative atomic masses H F Cl [1]

(ii) Use your answer to describe the trend in relative atomic masses across Row 1.

.....
.....

[1]

(iii) The Periodic Table that is used today was developed after Newlands' table.

In **Newlands' table**, the elements H, F and Cl are all together in Row 1.

In the **Periodic Table**, these elements are not all together in the same group.

Where are these elements placed in the Periodic Table?

.....
.....
.....
.....

[2]

(iv) One group of elements on the Periodic Table is completely missing from Newlands' table.

Which group is completely missing?

Use the Periodic Table to help you.

Put a **ring** around the correct answer.

Group 4

Group 5

Group 6

Group 0

[1]

(v) What is the most likely reason for Newlands missing these elements out of his table?

Put a tick (✓) in the box next to the best answer.

He only wanted to classify a few elements.

These elements were not discovered at the time.

He did not know the symbols for these elements.

These elements do not have a relative atomic mass.

[1]

(vi) The symbols that Newlands used for some of the elements are different to those used today.

Complete the table to show the symbols used today for elements Gl and Bo.
Use the Periodic Table to help you.

Newlands' symbol	Relative atomic mass	Symbol used today
Gl	9	
Bo	11	

[2]

(c) Newlands' arrangement was based on putting the elements in order of their relative atomic masses.

What decides the order of elements in the Periodic Table today?

Put a tick (✓) in the box next to the correct answer.

the number of neutrons in the atom

the proton number

the type of bonds the elements form

the relative atomic mass

[1]

[Total: 11]

2 Joe collects some samples of three minerals, **A**, **B** and **C**.

He thinks the minerals contain compounds of Group 1 elements.

He looks up the flame colours for some Group 1 elements.

Element	Flame colour
lithium	red
sodium	yellow-orange
potassium	pale purple
rubidium	purple

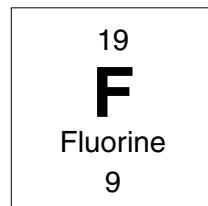
He does a flame test on each mineral.

These are his results.

Mineral	Flame colour
A	yellow-orange
B	purple
C	green

Write down what conclusions you can make about which elements each mineral contains and explain why there is not enough information to identify all of the elements in the minerals.

The quality of written communication will be assessed in your answer.

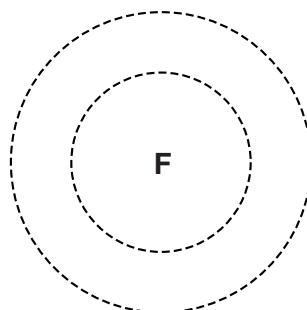

3 The halogens have different colours and states at room temperature.

(a) Draw straight lines to connect each **element** to its correct **colour** and **state** at room temperature.

colour	element	state
grey	chlorine	solid
green	bromine	liquid
orange	iodine	gas

[3]

(b) This is the symbol for fluorine on the Periodic Table.

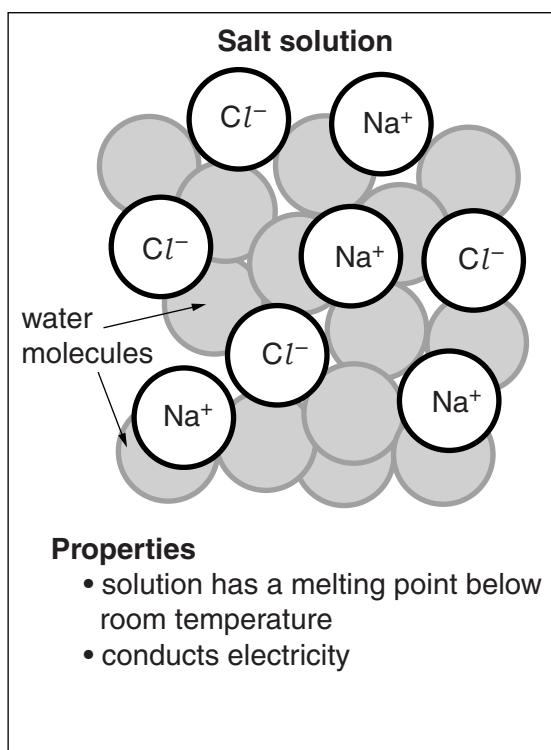
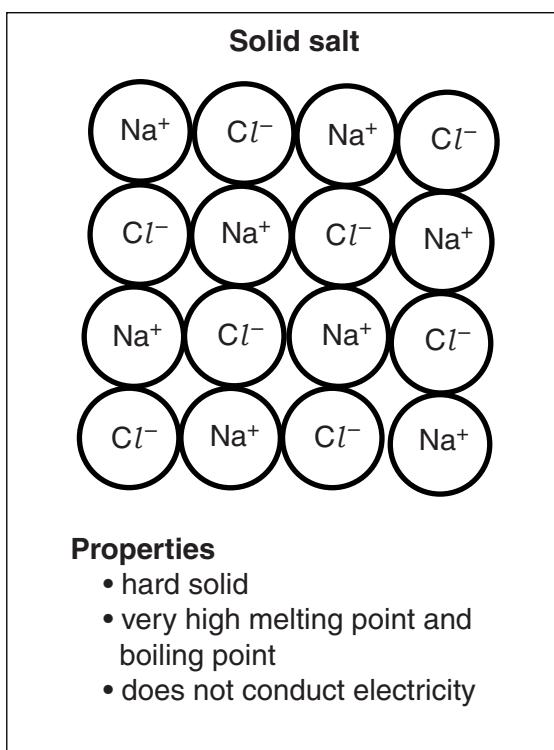


(i) Complete the sentence.

The nucleus of a fluorine atom contains 9 protons and 10 [1]

(ii) The diagram shows part of the structure of a fluorine atom.

Complete the diagram to show the arrangement of electrons.
Use **x** to represent each electron.

[2]

[Total: 6]

4 The chemical name for common salt is sodium chloride.

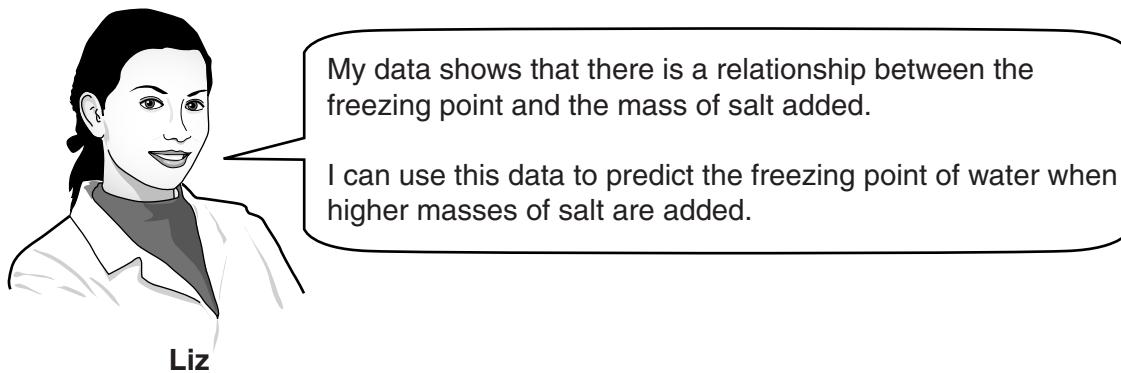
(a) The information shows the properties and arrangement of particles in solid salt and in salt solution.

Explain how the properties of solid salt and salt solution depend on the arrangement and movement of their particles.

The quality of written communication will be assessed in your answer.

[6]

(b) Salt is put on roads in winter because it lowers the freezing point of water.


Liz does some experiments to investigate whether salt can be used to stop water from freezing in extreme weather conditions.

She adds different masses of salt to 100 cm³ of water and records the temperature when the water freezes.

Here are her results.

Mass of salt added to 100 cm ³ water in g	Freezing point in °C
0.0	0
5.0	-3
10.0	-6
15.0	-9

Liz talks about her results.

(i) What is the relationship shown in this data between the mass of salt added and the freezing point?

.....
.....
.....

[2]

(ii) Use the relationship to predict the freezing point when 25.0 g of salt are added.

Show your working.

Freezing point = °C [2]

10

(c) Liz does another experiment using 35.0 g of salt.

The table shows her results

Mass of salt added to 100 cm ³ water in g	Freezing point in °C
35.0	-6

(i) Liz thinks that this result may be an outlier.
Explain why she thinks this.

.....
.....

[1]

(ii) What should Liz do to check whether this result is an outlier?

.....
.....

[1]

(iii) Liz wants to investigate the relationship between mass of salt and the freezing point of water when she adds up to 50.0 g of salt.

Describe what experiments she should do.

.....
.....
.....

[3]

[Total: 15]

5 The table gives some information about three substances that are extracted from the Earth.

Substance	Where found	Solubility in water	Melting and boiling point
graphite	rocks	does not dissolve	very high
oxygen	atmosphere	low solubility	below room temperature
potassium chloride	sea	very soluble	very high

(a) Oxygen is found in the atmosphere. Potassium chloride is found in the sea. Use the information to explain why oxygen and potassium chloride are not found in surface rocks.

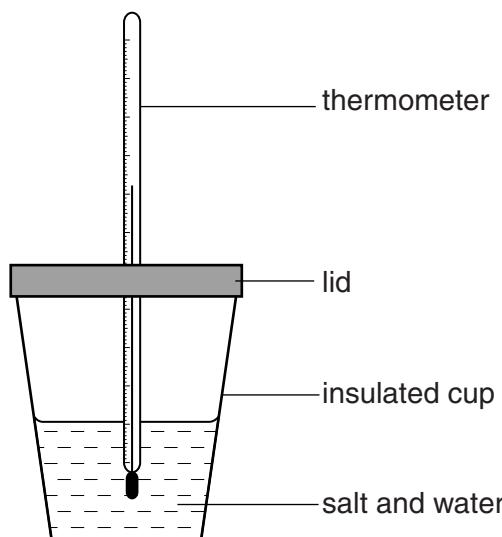
.....
.....
.....

[2]

(b) Complete the table to show the missing **formulae** and **elements** in each substance.

Substance	Formula	Elements in substance
graphite		carbon only
oxygen		oxygen only
potassium chloride	KCl	

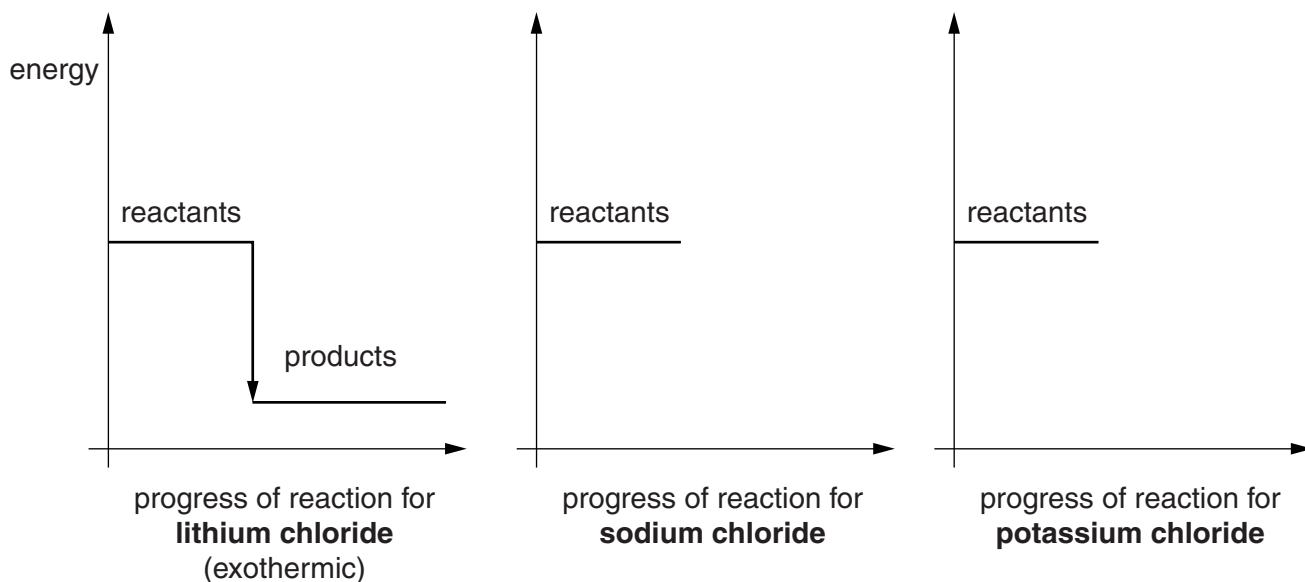
[2]


[Total: 4]

12

6 Rose investigates the energy changes when three salts dissolve in water.

She adds the same amount of each salt to the same amount of water.


She measures the maximum temperature change when each salt dissolves.

The table shows her results.

Salt	Temperature change in °C	Type of energy change
lithium chloride	+7.0	exothermic
sodium chloride	-0.5	endothermic
potassium chloride	-4.0	endothermic

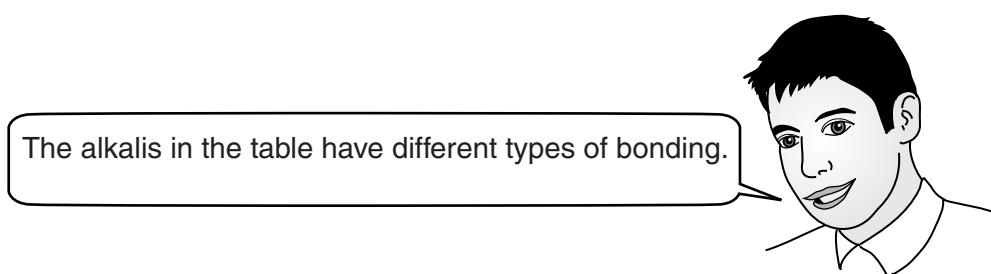
Complete and label the energy level diagrams. Compare the changes in temperature and energy that happen when each salt dissolves.

The quality of written communication will be assessed in your answer.

[6]

[Total: 6]

7 Matt finds out about the bonding in some compounds. He dissolves them in water and uses a pH meter to find out if each compound is an acid or an alkali.


The table shows his results.

Compound	Bonding in compound	Acid or alkali?
sodium hydroxide	ionic	alkali
ammonia	covalent	alkali
hydrogen chloride	covalent	acid
ethanoic acid	covalent	acid
calcium hydroxide	ionic	alkali

(a) How does a pH meter show whether each compound is an acid or an alkali?

.....

 [2]

(b) Matt has an idea.

Do you agree with Matt's idea?
 Use examples from the table to explain your reasoning.

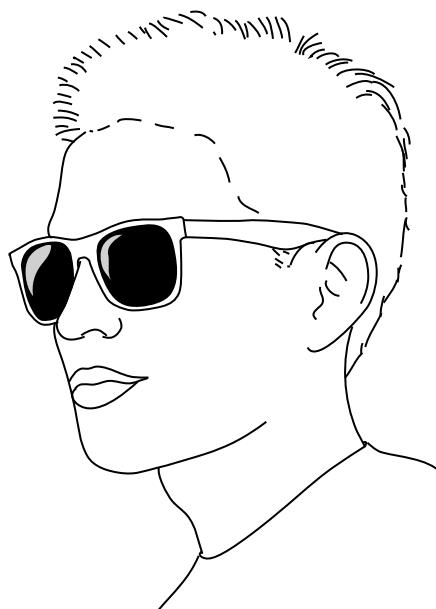
.....

 [2]

15

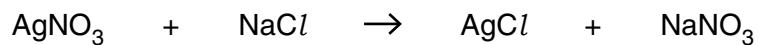
(c) The pure compounds in the table have different states at room temperature and pressure.

They all dissolve in water to form a solution.


Draw straight lines to connect each **substance** to the correct **state symbol**.

substance	state symbol
solid sodium hydroxide	(g)
hydrogen chloride gas	(l)
liquid ethanoic acid	(s)
a solution dissolved in water	(aq)

[2]

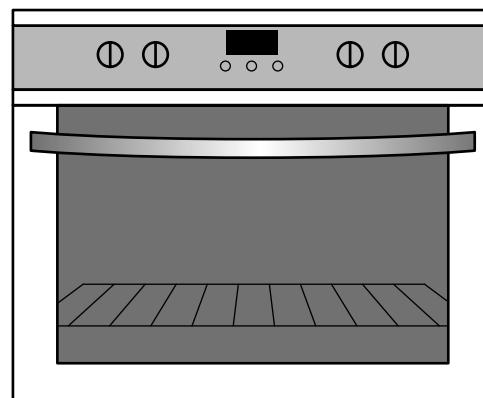
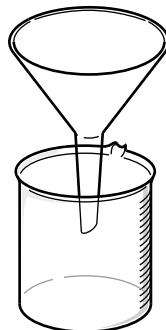
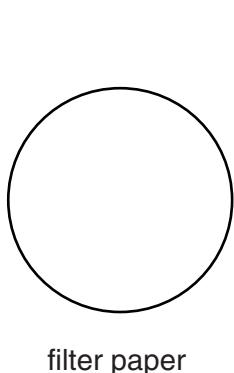

[Total: 6]

8 Silver chloride is a salt that is used to make lenses that darken in bright light.

(a) Terry uses silver nitrate to make some silver chloride in a precipitation reaction.

This is the symbol equation for the reaction.

Use these words to write a word equation for this reaction.




sodium chloride
silver chloride
sodium nitrate
silver nitrate

[2]

(b) In the reaction, silver chloride forms as a precipitate.

Terry wants to make a pure, dry sample of silver chloride from the reaction mixture.

The diagram shows the apparatus he uses.

oven

Describe how Terry should use this apparatus to make a pure, dry sample of silver chloride.

.....

[3]

(c) The lenses go dark because a solid forms when light shines on silver chloride.

The solid is silver metal.

What is the name of the other element that forms in the reaction?

Put a (ring) around the correct answer.

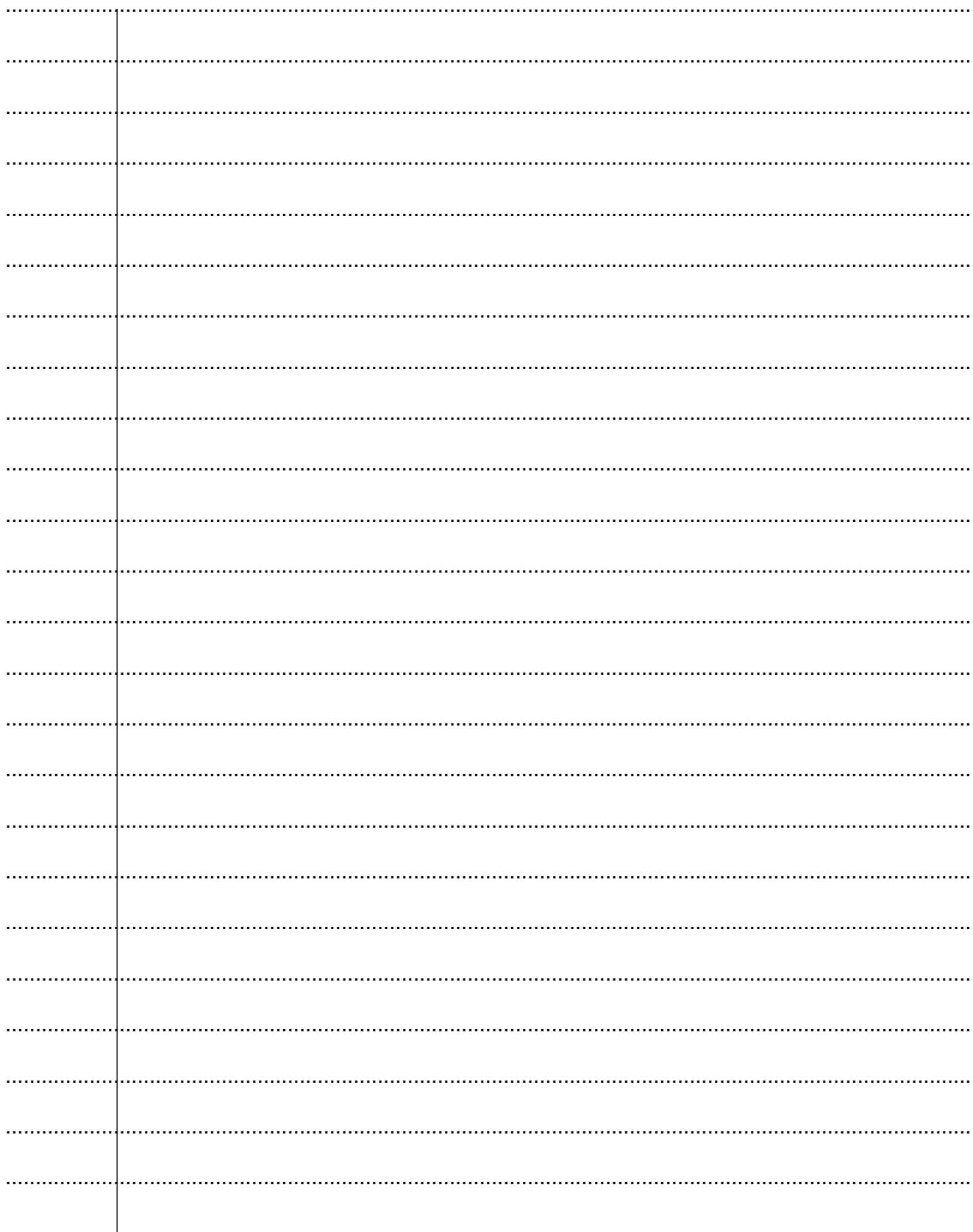
carbon

chlorine

hydrogen

iodine

water


[1]

[Total: 6]

END OF QUESTION PAPER

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GF.

For queries or further information please contact the Copyright Team, First Floor, 3 Hills Road, Cambridge CB2 2EL.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1	2	3	4	5	6	7	0
7 Li lithium 3	9 Be beryllium 4	11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12	27 Al aluminum 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti titanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttrium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hafnium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re rhodium 75	190 Os osmium 76
[223] Fr francium 87	[226] Ra radium 88	[227] Ac* actinium 89	[261] Rf rutherfordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108
					[268] Mt meitnerium 109	[271] Ds darmstadtium 110	[272] Rg roentgenium 111
							Elements with atomic numbers 112-116 have been reported but not fully authenticated

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.