

Oxford Cambridge and RSA

F

Thursday 19 May 2016 – Morning

**GCSE TWENTY FIRST CENTURY SCIENCE
CHEMISTRY A/SCIENCE A**

A171/01 Modules C1 C2 C3 (Foundation Tier)

Candidates answer on the Question Paper.
A calculator may be used for this paper.

OCR supplied materials:

None

Other materials required:

- Pencil
- Ruler (cm/mm)

Duration: 1 hour

Candidate forename					Candidate surname				
--------------------	--	--	--	--	-------------------	--	--	--	--

Centre number						Candidate number			
---------------	--	--	--	--	--	------------------	--	--	--

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the boxes above. Please write clearly and in capital letters.
- Use black ink. HB pencil may be used for graphs and diagrams only.
- Answer **all** the questions.
- Read each question carefully. Make sure you know what you have to do before starting your answer.
- Write your answer to each question in the space provided. If additional space is required, you should use the lined page(s) at the end of this booklet. The question number(s) must be clearly shown.
- Do **not** write in the bar codes.

INFORMATION FOR CANDIDATES

- The quality of written communication is assessed in questions marked with a pencil (✍).
- The Periodic Table is printed on the back page.
- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is **60**.
- This document consists of **20** pages. Any blank pages are indicated.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Answer **all** the questions.

1 Welding is used to join pieces of metal together.
 The metal is melted by heating it to a very high temperature.
 Ethyne is a gas used in welding.
 Burning this gas in oxygen gives a flame that is extremely hot.

(a) Suggest why ethyne is burned in oxygen rather than in air.

Put a tick (✓) in the box next to the correct answer.

Oxygen makes up 10% of the air.

Fuels burn faster in oxygen than air.

Burning fuels are reduced.

Fuels do not burn in air.

[1]

(b) Ethyne molecules contain only **carbon** and **hydrogen** atoms.

What type of compound is ethyne?

Put a **(ring)** around the correct answer.

carbonate

hydrocarbon

particulate

hydroxide

[1]

(c) When ethyne burns completely in oxygen **two** substances are made.

What are these **two** substances?

Put **(rings)** around the **two** correct answers.

argon

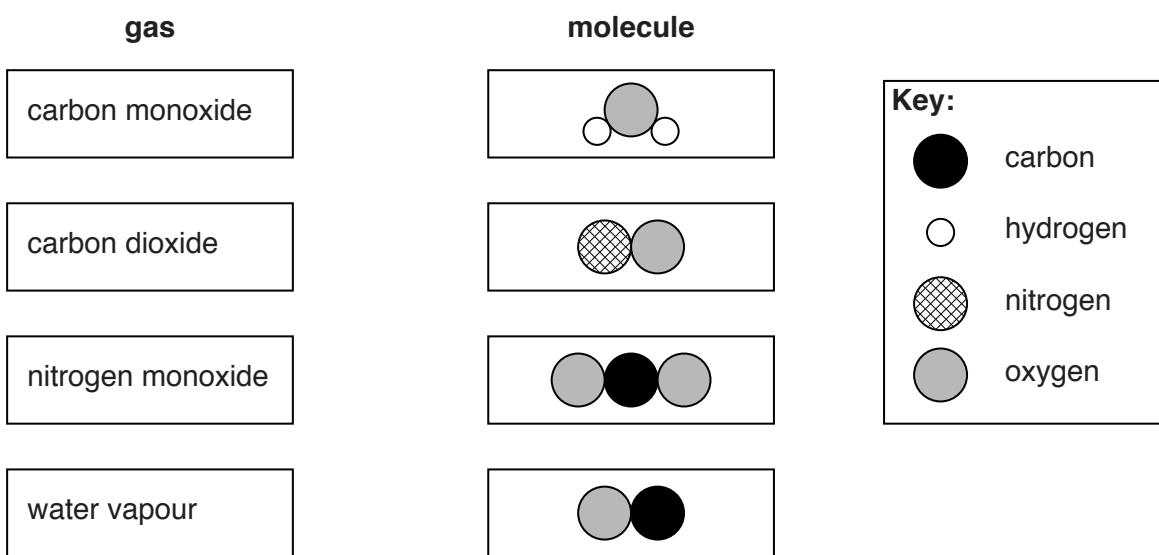
**carbon
dioxide**

chlorine

nitrogen

**sulfur
dioxide**

water


[2]

[Total: 4]

2 The air contains some gases that are emitted by cars.

(a) Some gases in the air are listed below.
Diagrams of their molecules are also shown.

Draw a straight line from each **gas** to its correct **molecule**.

[3]

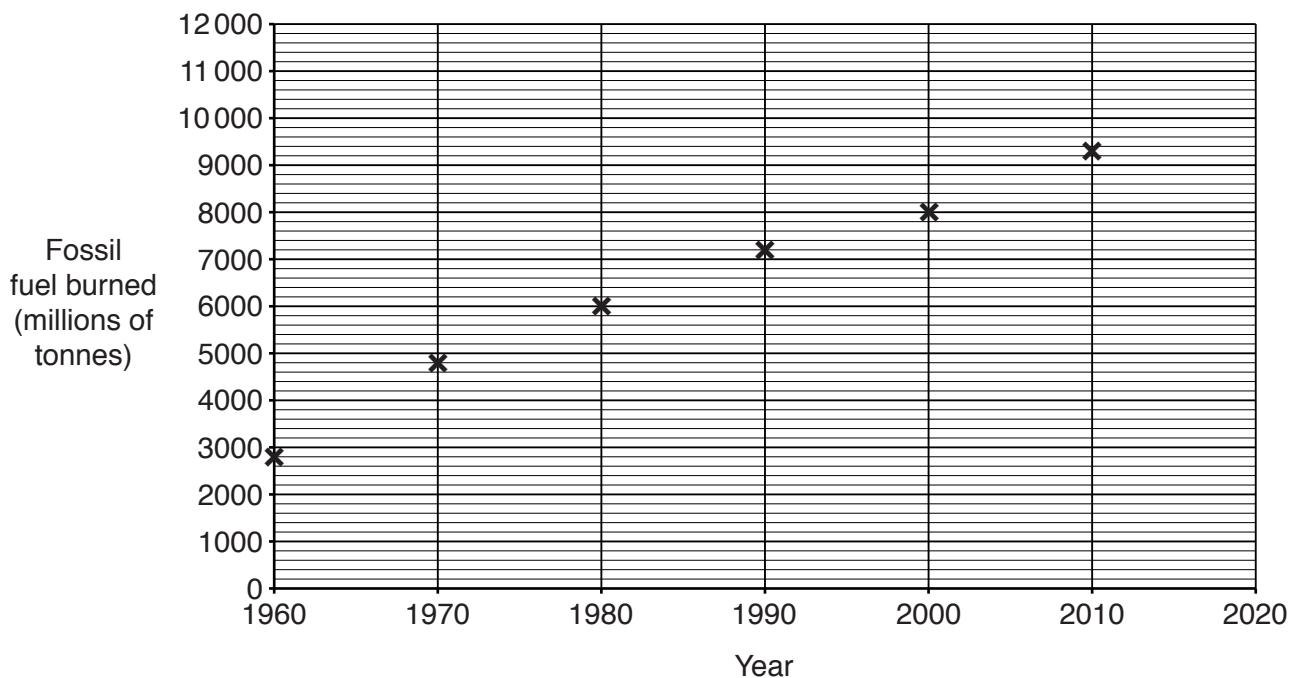
(b) Scientists measure the pollutants in the exhaust gases from 2 cars.

The cars are the same except for the fuel they use (petrol or diesel).

	Pollutant (grams per km travelled)	
	Nitrogen dioxide	Carbon particulates
Petrol car	6.0	none
Diesel car	9.0	0.5

Pollutants from cars build up in towns and can be harmful to human health.

Explain why each pollutant in the table is harmful and decide which car is better for use in towns.



The quality of written communication will be assessed in your answer.

. [6]

[Total: 9]

3 John looks at a graph that shows the amount of fossil fuels burned in the world between 1960 and 2010.

(a) (i) John says that the amount of fossil fuels burned has increased by the same amount every ten years.

Is he correct?

Use data from the graph to justify your answer.

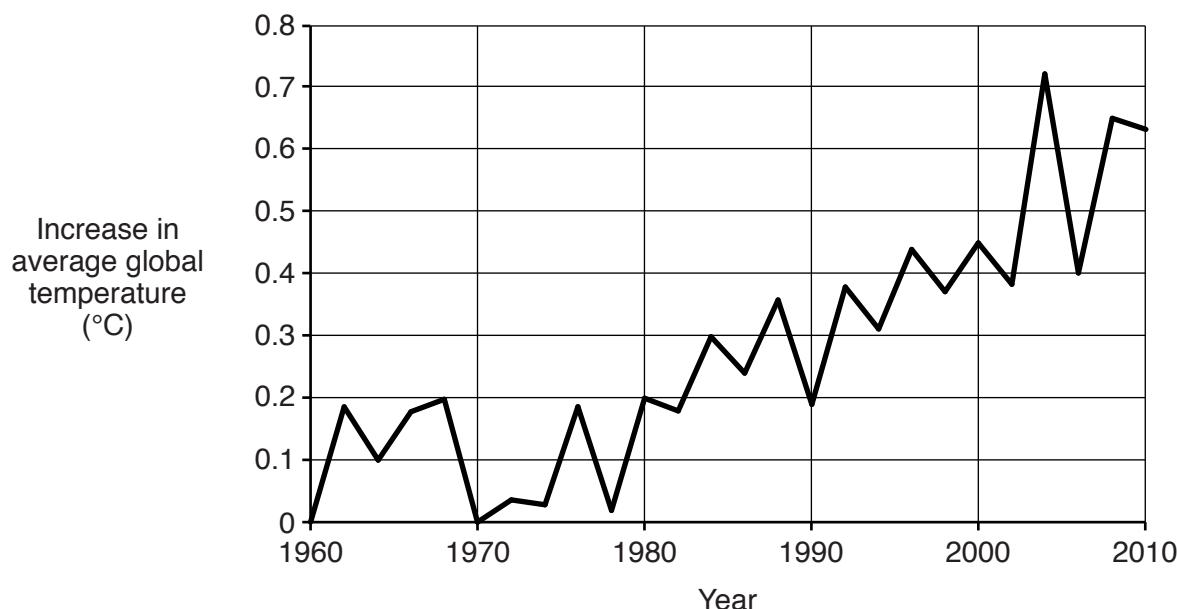
.....

.....

.....

.....

.....


[2]

(ii) Estimate the amount of fossil fuels that will be burned in 2020.

..... millions of tonnes

[1]

(b) John also looks at the changes in average global temperature over the same time.

(i) What does the graph show about changes in average global temperature?

.....

 [2]

(ii) Complete these sentences about the **two** graphs.
 Choose from the words in the list. You may use each word once, more than once or not at all.

cause

correlation

decreased

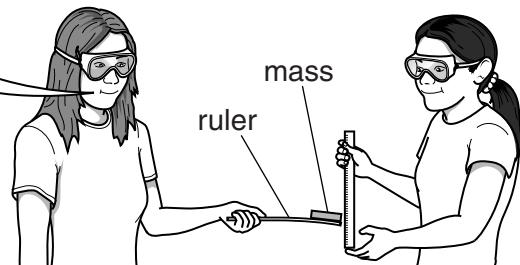
increased

reaction

stayed the same

From 1960–2010, the amount of fossil fuels burned has and the average global temperature has

This means there is a between the amount of fossil fuels burned and the average global temperature. [3]

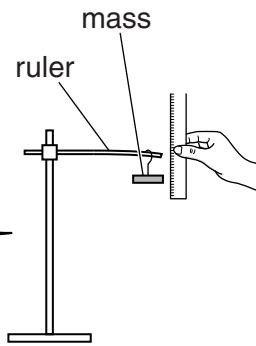

[Total: 8]

4 Some students investigate the stiffness of plastic rulers.

This is how three students plan their investigation.

Jane

I will hold the ruler at one end and put a mass on the other end. I will measure how much it bends and get my friend to repeat the test.


Katya

I will measure how far I can bend the ruler before it breaks. I will bend and break the rulers myself so that the test is fair.

Matt

I will use rulers that are the same length. I will hang the same mass to the end of each ruler and measure the distance it bends. I will do each test four times and work out the mean.

(a) Which plan is best? Explain why this plan is better than the other two plans.

The quality of written communication will be assessed in your answer.

[6]

- [6]

10

(b) Here are the measurements for one ruler.

Test number	1	2	3	4	5
Bend (mm)	23	26	13	19	24

(i) What is the range of **all** these measurements?

.....

[1]

(ii) These measurements include an outlier.

Which measurement is the outlier?

.....

[1]

(iii) What could the students do to decide whether or not to include the outlier when calculating the best estimate of the true value from their measurements?

.....

.....

.....

(iv) **Include** the outlier and work out the best estimate of the true value of their measurements.

Show your working.

[2]

[Total: 11]

5 Plastic has been used to replace many other materials.

(a) A hundred years ago most buckets were made of metal.
Now most buckets are made of plastic.

Give **one** property of plastic that makes it a better material than metal for buckets, and explain why it is better.

.....
.....
.....
.....
.....

[2]

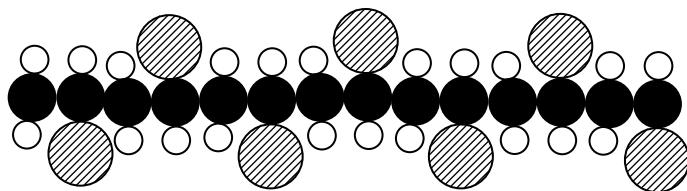
(b) (i) Name **another** material that has been replaced by plastic.

.....

Write down a **use** of this material.

.....

[1]


(ii) Give **two** reasons why plastic is better for this use than the material you have named.

.....
.....
.....
.....
.....

[2]

[Total: 5]

6 The diagram shows part of a molecule of PVC.

(a) PVC contains carbon, hydrogen and one other element.

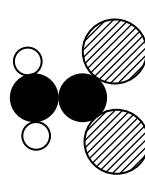
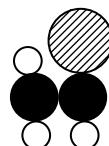
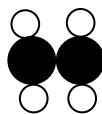
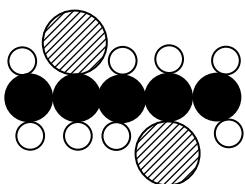
What is that other element?

Put a ring around the correct answer.

chlorine

nitrogen

oxygen





sulfur

[1]

(b) **Seven** monomers have been joined together to make the polymer in the diagram above.

Which diagram shows a monomer of PVC?

Put a ring around the correct answer.

[1]

13

(c) Plasticizers are small molecules. They are added to PVC to make it more flexible.

(i) Explain how adding plasticizers makes PVC more flexible.

Put ticks (✓) in the boxes to complete these sentences.

Plasticizers	move the PVC chains further apart.	
	link the PVC chains.	
	tangle the PVC chains together.	

This means the forces between the molecules are

stronger.	
the same.	
weaker.	

So the molecules

are held together and cannot move.	
can slide over each other.	
move out of their solid structure and become a liquid.	

[3]

(ii) PVC, which contains plasticizers, can be used for wrapping food. Plasticizers may leach out of the PVC.

Suggest why this could be harmful.

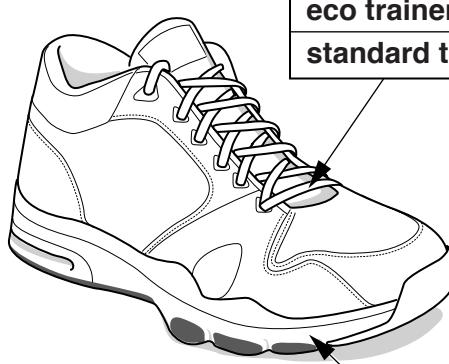
.....

.....

.....

.....

.....


[2]

[Total: 7]

7 A company makes a **standard** trainer using plastics made from crude oil.

They make a new **eco trainer** from plant fibres and recycled car tyres.

The table shows the data for the Life Cycle Assessment (LCA) of each type of trainer.

upper and laces
eco trainer made from plant fibres
standard trainer made from plastic fibres

sole
eco trainer made from recycled car tyres
standard trainer made from plastic

	Eco trainers		Standard trainers	
	Energy (MJ)	Greenhouse gases made (kg CO₂)	Energy (MJ)	Greenhouse gases made (kg CO₂)
Making materials for the trainers	1.6	0.1	6.0	4.2
Making the trainers from the materials	1.4	1.0	4.2	3.7
Disposing of the trainers	0.8	0.8	0.6
Total of the three stages	1.7	11.0	8.5

(a) (i) Complete the table above.

[2]

15

(ii) The company says that the eco trainers are less harmful to the environment and are more sustainable.

Are they correct?

Are they correct?
Use data from the table to justify your answer.

The quality of written communication will be assessed in your answer.

.. [6]

[Total: 8]

8 Salt has many uses.

(a) Salt is added to food.

Some scientists say that the amount of salt in food should be lowered.

Give an **advantage** and a **disadvantage** of adding salt to food.

Advantage

.....
.....

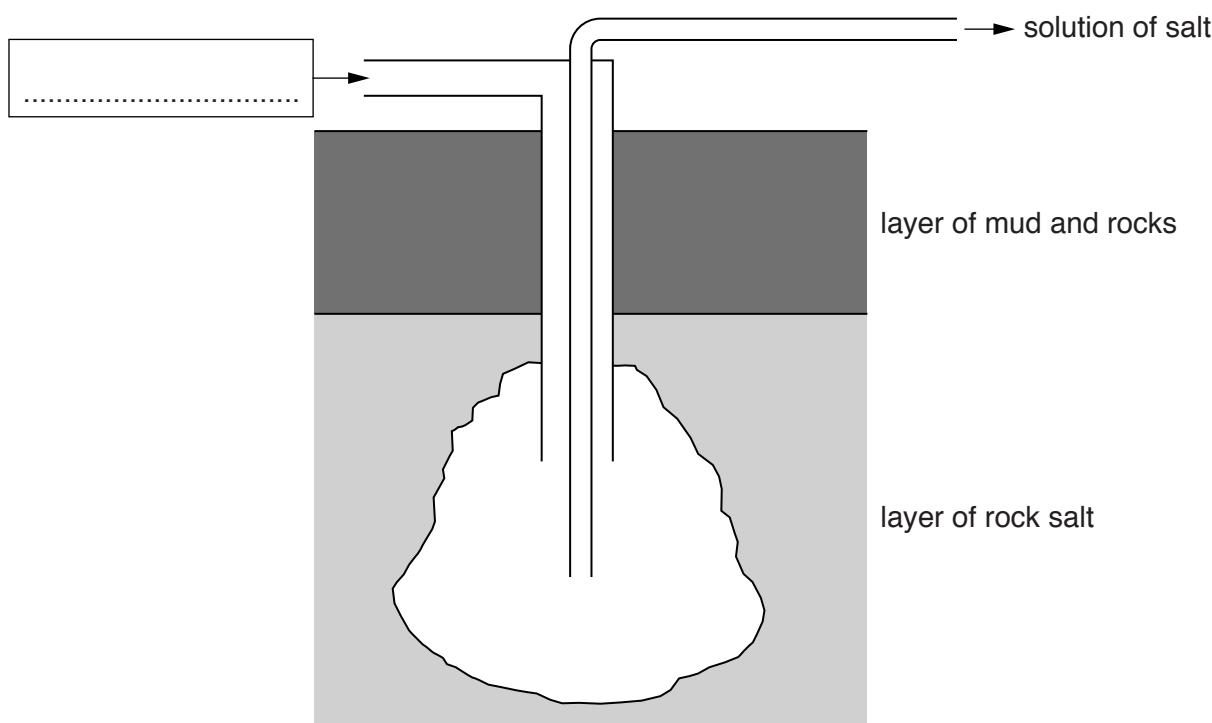
Disadvantage

.....
.....

[2]

(b) In some parts of the UK, layers of rock salt are found under the ground.

Rock salt can be dug out from under the ground using machines.


Salt can also be extracted by pumping water down to the rock. This is called solution mining.

Why is solution mining used when making salt to add to food?

.....
.....

[1]

(c) This is a diagram of solution mining of salt.

(i) Complete the label on the diagram and use the diagram to describe how a solution of salt is obtained from rock salt.

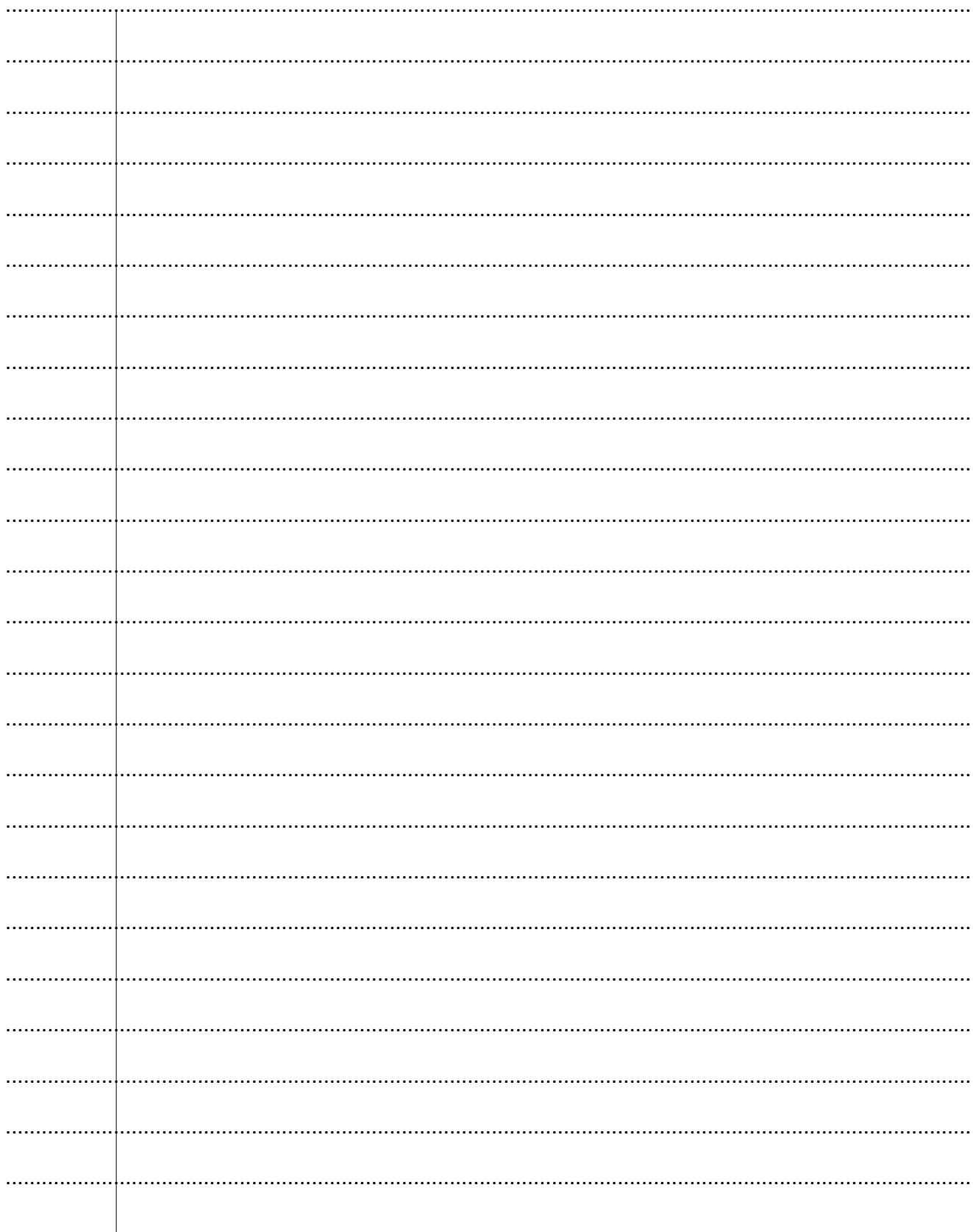
.....
.....
.....
.....
.....
.....
..... [3]

(ii) Electrolysis of salt solution makes chlorine and two other products.

Name the **two** other products.

1

2


[2]

[Total: 8]

END OF QUESTION PAPER

ADDITIONAL ANSWER SPACE

If additional space is required, you should use the following lined page(s). The question number(s) must be clearly shown in the margin(s).

Oxford Cambridge and RSA

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.

If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.

For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GF.

For queries or further information please contact the Copyright Team, First Floor, 3 Hills Road, Cambridge CB2 2EL.

OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of the Elements

1 H hydrogen 1
Key
relative atomic mass atomic symbol atomic name atomic (proton) number
2 1

3	4	5	6	7	0	4 He helium 2
11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O oxygen 8	19 F fluorine 9	20 Ne neon 10	
27 Al aluminum 13	28 Si silicon 14	31 P phosphorus 15	32 S sulfur 16	35.5 Cl chlorine 17	40 Ar argon 18	
59 Ni nickel 28	63.5 Cu copper 29	65 Zn zinc 30	70 Ga gallium 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34
106 Pd platinum 46	108 Ag silver 47	112 Cd cadmium 48	115 In indium 49	119 Sn tin 50	122 Sb antimony 51	128 Te tellurium 52
195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 Tl thallium 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84
2711 Ds dysprosium 110	[272] Rg roentgenium 111	[272] Rg roentgenium 111	[272] Rn radon 86	[272] Rn radon 86	[272] Rn radon 86	Elements with atomic numbers 112-116 have been reported but not fully authenticated

* The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted.

The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.